JPH02186599A - Heat pipe type antenna - Google Patents

Heat pipe type antenna

Info

Publication number
JPH02186599A
JPH02186599A JP22817188A JP22817188A JPH02186599A JP H02186599 A JPH02186599 A JP H02186599A JP 22817188 A JP22817188 A JP 22817188A JP 22817188 A JP22817188 A JP 22817188A JP H02186599 A JPH02186599 A JP H02186599A
Authority
JP
Japan
Prior art keywords
antenna
pipe
heat
heat pipe
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22817188A
Other languages
Japanese (ja)
Other versions
JP2614283B2 (en
Inventor
Yuichi Morozumi
両角 祐一
Nobuo Suzuki
信男 鈴木
Kyosuke Nagata
恭介 永田
Aritaka Tatsumi
辰巳 有孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63228171A priority Critical patent/JP2614283B2/en
Publication of JPH02186599A publication Critical patent/JPH02186599A/en
Application granted granted Critical
Publication of JP2614283B2 publication Critical patent/JP2614283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To diffuse heat generated in a high-frequency antenna with simple constitution rapidly and surely by composing the antenna of a hollow pipe while sealing an actuating liquid inside the pipe for being made a heat pipe. CONSTITUTION:Since an antenna 1 is composed of a heat pipe, an actuating liquid inside a heating part A of the antenna 1 inside a high-frequency cavity 10 evaporates due to heating of the antenna 1 to move to a radiation part B provided with a large number of radiation fins 2 and 2 to be made a condensed liquid for flowing back again to the heating part A by gravity. This operation rapidly cools the antenna 1. Thereby, heat generated in the antenna 1 can be radiated without applying any operation from outside while reducing processing cost as well as installation cost.

Description

【発明の詳細な説明】 U産業上の利用分野] 本発明は、粒子加速器の空洞内などにおいて不要な電磁
波を捕捉して外部に取出ず際に有用なアンテナおよび結
合器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an antenna and a coupler useful for capturing unnecessary electromagnetic waves in a cavity of a particle accelerator or the like and preventing them from being extracted to the outside.

し従来の技術] 粒子加速器は、真空の空洞内にある磁場に大電力の高周
波を発振入力させることによりイオンを共鳴加速させる
ものである。
BACKGROUND ART A particle accelerator resonantly accelerates ions by inputting high-power high-frequency waves into a magnetic field within a vacuum cavity.

上記高周波電場の近傍には不要な電磁波を捕捉し外部に
取出してこれを熱として消費させるだめのアンテナか多
数設置されている。このようなアンテナは、誘導による
発熱を生ずるから、これを冷却してやる必要かある。し
かし、当該アンテナは真空内に設置されており、アンテ
ナ自身の熱伝導による以外熱の移動はほとんど起らず、
これの冷却のためには、従来はアンテナ内部に水路を形
成する方法がもっばらとられてきた。
A large number of antennas are installed near the high-frequency electric field to capture unnecessary electromagnetic waves, extract them to the outside, and consume them as heat. Since such an antenna generates heat due to induction, it is necessary to cool it. However, the antenna is installed in a vacuum, and almost no heat transfer occurs other than through thermal conduction of the antenna itself.
In order to cool this antenna, conventionally the most common method has been to form a water channel inside the antenna.

「発明が解決しようとする課題」 一、Th記のように細いアンテナ内部に水路を形成する
ことは非常に面r5jlであり、相当の加重工数と技術
を要する」二、溶接や1コラ接部などからの水漏れの心
配もあり、信vI姓において必ずしも十分なものとはい
えなかった。
``Problems to be solved by the invention'' 1. Forming a waterway inside a thin antenna as described in Th is extremely complicated and requires considerable man-hours and techniques. 2. Welding and 1-column joints There was also a concern about water leakage from other sources, so it was not necessarily sufficient for ShinvI surnames.

本発明のに1的は、上記したような従来技術の問題点を
解消し、高周波アンテナに生じた発熱を簡易な構成をも
って迅速確実に放散し得ると共に、信頼性の向」二と保
守の容易性を併せ確立することのできるアンテナおよび
それを用いた結合器を提供しようとするものである。
One object of the present invention is to solve the problems of the prior art as described above, to quickly and reliably dissipate the heat generated in the high frequency antenna with a simple configuration, and to improve reliability and ease of maintenance. The present invention aims to provide an antenna and a coupler using the same, which can establish both the antenna and the antenna.

[課題を解決するための手段] 本発明は、アンテナを中空パイプて構成し、該パイプ内
に作動液を封入してヒートパイプとしだものである。
[Means for Solving the Problems] According to the present invention, an antenna is constructed as a hollow pipe, and a working fluid is sealed in the pipe to function as a heat pipe.

「作用」 アンテナ自身がピー1ヘパイブに構成されていれば、ア
ンテナに生じた熱を迅速に外部に移動させ放熱すること
ができる上、作動液をパイプ内に単に密封するなりでよ
いから従来の水冷方式に比ノ\、構造を格段に簡略化で
き、水漏れといっな問題もないから信頼性を大rlに向
1さ1Jることができる。
``Function'' If the antenna itself is configured as a P1 pipe, the heat generated in the antenna can be quickly transferred to the outside and dissipated, and the working fluid can be simply sealed inside the pipe, which is much easier than the conventional method. Compared to a water-cooled system, the structure can be greatly simplified, and there is no problem of water leakage, so reliability can be increased to 1-1J.

[実施例」 以下に、本発明について実施例図面を参照し説明する。[Example" The present invention will be described below with reference to the drawings.

第1図は、本発明に係る実施例を示ず説明図てあり、j
は高周波加速空洞10内に設Cられな高周波アンテナで
ある。
FIG. 1 is an explanatory diagram without showing an embodiment according to the present invention.
is a high frequency antenna installed inside the high frequency acceleration cavity 10.

アンテナ1は、銅のような高い導電率と良好な熱伝達性
を有する材料よりなる中空パイプがらなり、内部に作動
液か密封されてヒー1〜バイブに構成される。
The antenna 1 is made of a hollow pipe made of a material having high conductivity and good heat transfer properties, such as copper, and has a working fluid sealed therein, and is configured into a heater 1 to a vibrator.

第2図は、ヒー1へパイプ20の動作原理を示す説明図
である。図に示すような密封パイプ内に水あるいはフロ
ンのような作動液21が封入されていて、集熱部Aにお
いて作動液21は蒸気2121となって蒸発移動し、放
熱部Bにおいて凝縮液化してン?支体2 l bとなり
重力により集熱部Aに環流する。集熱部Aに戻った作動
液は再び蒸発し、以下作動液21は蒸発、蒸気移動、凝
縮、液環流を繰り返しつつ集熱部Aより放熱部13 /
\と迅速に熱を伝えて放散冷却させるものである。
FIG. 2 is an explanatory diagram showing the principle of operation of the pipe 20 to the heater 1. A working fluid 21 such as water or fluorocarbon is sealed in a sealed pipe as shown in the figure, and the working fluid 21 evaporates as steam 2121 in the heat collecting section A, and condenses and liquefies in the heat dissipating section B. hmm? It becomes a support body 2 lb and circulates to the heat collecting part A by gravity. The working fluid that has returned to the heat collecting section A evaporates again, and the working fluid 21 then repeats evaporation, vapor movement, condensation, and liquid reflux, and is transferred from the heat collecting section A to the heat radiating section 13 /
\It quickly transmits heat and radiates cooling.

本発明に係るアンテナ1は、上記のようなヒートパイプ
に構成されているから、高周波空洞10内のアンテナ1
の集熱部A内の作動液(図示されていない)は、アンテ
ナ1の発熱によって蒸発し、多数の放熱フィン2,2を
有する放熱部Bに移動して凝縮液化し、重力により再び
集熱部Aへと環流する。この動作によりアンテナ1は前
記水冷機構等を必要とせずに速やかに冷却される。従っ
て、本発明においてはアンテナ1内に作動液を封入する
という極めて簡易な構成をとるのみでよく、従来例にお
けるような水路の加]二、配管の収1=1けあるいは多
量の冷却水の循環やと過のための機械の運転などの必要
もないから加工T数や設備費を格段に紙載できるばかり
でなく、気密性か確実で溶接やI7つ接なと萌述した問
題点となる個所も存在しないから信頼figを大rl−
+に向」ニさせることかてさる上、作動液はパイプ内に
安定した状態で]゛・1人されているから特別の保守も
必要とはしない。
Since the antenna 1 according to the present invention is configured as a heat pipe as described above, the antenna 1 inside the high frequency cavity 10
The working fluid (not shown) in the heat collecting part A is evaporated by the heat generated by the antenna 1, moves to the heat radiating part B having a large number of heat radiating fins 2, 2, condenses and liquefies, and collects the heat again by gravity. It flows back to part A. By this operation, the antenna 1 is quickly cooled without requiring the water cooling mechanism or the like. Therefore, in the present invention, it is only necessary to adopt an extremely simple structure of sealing the working fluid inside the antenna 1, and the addition of water channels as in the conventional example is not required. Since there is no need to operate machines for circulation or filtration, it is not only possible to record the number of machining parts and equipment costs on paper, but also to ensure airtightness and eliminate problems such as welding and I7 connections. There is no such place, so please send a reliable fig.
In addition to directing the pipe toward +, the hydraulic fluid is kept in a stable state inside the pipe by one person, so no special maintenance is required.

第11Jに示すアンテナ1については、具体的には銅製
パイプを用いるのが熱と後述する電気とを共に伝達する
上で適当であり、作動液としては熱輸送量を大きくとれ
る水を用いるのか適当である。
Regarding the antenna 1 shown in No. 11J, specifically, it is appropriate to use a copper pipe in order to transmit both heat and electricity, which will be described later, and it is appropriate to use water as the working fluid because it can transport a large amount of heat. It is.

具体的外径8.66mmのし−1へパイプ型アンテナは
、これと同軸管を構成する外径20++un、内径19
.94m+nの外導体3″内に収納され、真空フランジ
5により高周波空洞10と一体に組合せ固定される。パ
イプ状アンテナ1は、凝縮した作動液の重力による環流
を容易にするために、水トに対し約45° (45°に
限定される訳ではない)傾斜して設置される。
A concrete pipe type antenna with an outer diameter of 8.66 mm has an outer diameter of 20++un and an inner diameter of 19mm, which constitutes a coaxial tube with this.
.. It is housed in an outer conductor 3'' of 94m+n, and is combined and fixed integrally with the high frequency cavity 10 by a vacuum flange 5.The pipe-shaped antenna 1 is placed in a water tank to facilitate circulation of the condensed working fluid due to gravity. It is installed at an angle of approximately 45° (not limited to 45°).

パイプ状アンテナ1の外部への取出し部分の中間には、
これとほぼ直角方向(直角に限定される訳で番jない)
に同軸管7が取(I G−)られ、同i!Ql+管7の
内導体4とパイプ状アンテナ1か図のように連結され、
それぞれの外導体3および3−か一体に連通されて結合
器に構成され、中途が例えばセラミックスよりなる真空
シール6により真空空洞側と遮断される。
In the middle of the external extraction part of the pipe-shaped antenna 1,
Direction almost perpendicular to this (limited to right angles, so there are no exceptions)
The coaxial tube 7 is taken out (I G-), and the same i! The inner conductor 4 of the Ql+ tube 7 and the pipe-shaped antenna 1 are connected as shown in the figure,
The respective outer conductors 3 and 3- are integrally communicated with each other to form a coupler, and the middle part thereof is isolated from the vacuum cavity side by a vacuum seal 6 made of, for example, ceramics.

本発明に係る結合器は、1−4記のように構成されてい
るから、高周波空洞10内の不要電磁波かアンテナ1に
より捕捉され、その際にアンテナ1に生じた発熱は、前
記ヒートパイプの作動により放熱部I3に輸送されて放
熱される一方、捕捉された電磁波は同軸管7を介してタ
ミー11−ド8に導かれ、該タミーY7−ド8で熱に変
換されて消費放散される。
Since the coupler according to the present invention is configured as described in 1-4, unnecessary electromagnetic waves within the high frequency cavity 10 are captured by the antenna 1, and the heat generated in the antenna 1 at that time is transferred to the heat pipe. When activated, the heat is transported to the heat dissipation part I3 and radiated, while the captured electromagnetic waves are guided to the tammy 11-dore 8 through the coaxial pipe 7, where they are converted into heat and consumed and dissipated. .

[発明の効果−1 以十の通り、本発明によれば、アンテナに生じた発熱を
なんら外部よりの動作(−1加を行なうことなく放熱す
ることができ、加工費や設備費を大巾に低減できるばか
りでなく、従来行なっていたポンプ等による冷却水の循
環が必要なくなることで、水漏れなどを心配する必要が
なく、信頼性を格段に向上させ保守の大[1jな省力化
を達成することができる。
[Effect of the invention-1 As described above, according to the present invention, heat generated in the antenna can be radiated without any external operation (-1 addition), and processing and equipment costs can be greatly reduced. In addition to eliminating the need to circulate cooling water using conventional pumps, there is no need to worry about water leaks, greatly improving reliability and significantly reducing maintenance costs. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る結合器の構成を示す説明図、第2
図はヒートパイプの動作を示す説明図である。 1:アンテナ、 2二放熱フイン、 3.3−:外導体、 4:内導体、 7:同軸管、 8:ダミーロード、 10:高周波空洞、 A:集熱部、 B:放熱部。
FIG. 1 is an explanatory diagram showing the configuration of a coupler according to the present invention, and FIG.
The figure is an explanatory diagram showing the operation of the heat pipe. 1: Antenna, 2 Heat dissipation fins, 3.3-: Outer conductor, 4: Inner conductor, 7: Coaxial tube, 8: Dummy load, 10: High frequency cavity, A: Heat collection section, B: Heat dissipation section.

Claims (3)

【特許請求の範囲】[Claims] (1)アンテナを中空パイプで構成し、該中空パイプ内
に作動液を封入しておき、アンテナの一端に発生した熱
をヒートパイプ方式によって他端に移送し放熱し得るよ
うに構成してなるヒートパイプ式アンテナ。
(1) The antenna is composed of a hollow pipe, and a working fluid is sealed in the hollow pipe so that the heat generated at one end of the antenna can be transferred to the other end using a heat pipe method and radiated. Heat pipe antenna.
(2)高周波空洞内に連通する同軸管を設置し、その一
部が該同軸管の内導体を構成しているアンテナ内に作動
液を封入してヒートパイプを形成し、空洞内のアンテナ
で発生した熱を該ヒートパイプにより外部に放熱する一
方、アンテナが捕捉した高周波電力を外部に伝達し得る
ように構成してなる結合器。
(2) A coaxial pipe communicating with the radio frequency cavity is installed, a part of which constitutes the inner conductor of the coaxial pipe, and a working fluid is sealed inside the antenna to form a heat pipe, and the antenna inside the cavity A coupler configured to radiate generated heat to the outside through the heat pipe, while transmitting high frequency power captured by an antenna to the outside.
(3)高周波空洞内に取付けられるアンテナを中空パイ
プにより構成し、該中空パイプ内にヒートパイプの作動
液を封入してこれを外部に取出し、端部に放熱フィンを
取付ける一方、前記中空パイプの中途においてこれとほ
ぼ直角方向に同軸管を取付けて該同軸管の内導体を前記
中空パイプに接続し、かつ同軸管の中途に真空封止部を
設けてなる結合器。
(3) The antenna installed in the high-frequency cavity is constructed of a hollow pipe, the working fluid of the heat pipe is sealed in the hollow pipe and taken out to the outside, and a radiation fin is attached to the end of the hollow pipe. A coupler comprising: a coaxial pipe installed in a direction substantially perpendicular to the coaxial pipe in the middle, an inner conductor of the coaxial pipe connected to the hollow pipe, and a vacuum sealing part provided in the middle of the coaxial pipe.
JP63228171A 1988-09-12 1988-09-12 Combiner using heat pipe Expired - Lifetime JP2614283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228171A JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228171A JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Publications (2)

Publication Number Publication Date
JPH02186599A true JPH02186599A (en) 1990-07-20
JP2614283B2 JP2614283B2 (en) 1997-05-28

Family

ID=16872337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228171A Expired - Lifetime JP2614283B2 (en) 1988-09-12 1988-09-12 Combiner using heat pipe

Country Status (1)

Country Link
JP (1) JP2614283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533871A (en) * 2011-11-17 2014-12-15 イオン ビーム アプリケーションズIon Beam Applications RF system for synchrocyclotron
US20220026119A1 (en) * 2020-07-25 2022-01-27 Choon Sae Lee Electromagnetic cooling and heating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192300U (en) * 1983-06-08 1984-12-20 株式会社日立製作所 Irradiation target device
JPS61285828A (en) * 1985-06-12 1986-12-16 Mitsubishi Electric Corp Portable radio equipment
JPS6376213A (en) * 1986-09-17 1988-04-06 石川島播磨重工業株式会社 High voltage terminal
JPS63141300A (en) * 1986-12-02 1988-06-13 株式会社東芝 Synchrotron accelerator
JPS63123099U (en) * 1987-02-05 1988-08-10

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192300U (en) * 1983-06-08 1984-12-20 株式会社日立製作所 Irradiation target device
JPS61285828A (en) * 1985-06-12 1986-12-16 Mitsubishi Electric Corp Portable radio equipment
JPS6376213A (en) * 1986-09-17 1988-04-06 石川島播磨重工業株式会社 High voltage terminal
JPS63141300A (en) * 1986-12-02 1988-06-13 株式会社東芝 Synchrotron accelerator
JPS63123099U (en) * 1987-02-05 1988-08-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533871A (en) * 2011-11-17 2014-12-15 イオン ビーム アプリケーションズIon Beam Applications RF system for synchrocyclotron
US20220026119A1 (en) * 2020-07-25 2022-01-27 Choon Sae Lee Electromagnetic cooling and heating
US11644222B2 (en) * 2020-07-25 2023-05-09 Choon Sae Lee Electromagnetic cooling and heating

Also Published As

Publication number Publication date
JP2614283B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
EP3314784B1 (en) A rotatable antenna apparatus
US6604575B1 (en) Heat exchange apparatus
US20050099775A1 (en) Pumped liquid cooling for computer systems using liquid metal coolant
CN109612314A (en) Phase-change heat radiating device
CN106376223A (en) Liquid-cooling heat radiation system and electronic equipment
CN101999042B (en) Device for dissipating lost heat, and ion accelerator arrangement comprising such a device
CN108141110A (en) Driving unit and the unit with cooler
CN105611791B (en) A kind of high efficiency and heat radiation system suitable for high-power space combination amplifier
CN114423135A (en) Radiation source
JPH02186599A (en) Heat pipe type antenna
US6437983B1 (en) Vapor chamber system for cooling mobile computing systems
CN210432265U (en) Heat radiation structure of high-heating graphene
WO2008016364A2 (en) Cryogenic vacuum rf feedthrough device
CN112292739B (en) Superconducting magnet
CN106993393A (en) A kind of heat dissipation equipment and terminal
JPH01129766A (en) Superconducting rotor
CN102592866B (en) Evaporative cooling system with circuit breaker
JPH01193592A (en) Self-cooling type heat pipe
GB0228265D0 (en) Electron collector
CN216352188U (en) Novel notebook cooling system
CN211015252U (en) Heat radiator for reinforcement type computer
CN107990736A (en) A kind of temperature automatically controlled smelting device
JPS61259445A (en) Rotary anode x-ray tube
CN112020167B (en) Radio frequency heating equipment
JP2000340978A (en) Heat radiation structure for communication equipment