JPH02186072A - Vibration-suppressing device for structure body - Google Patents

Vibration-suppressing device for structure body

Info

Publication number
JPH02186072A
JPH02186072A JP578389A JP578389A JPH02186072A JP H02186072 A JPH02186072 A JP H02186072A JP 578389 A JP578389 A JP 578389A JP 578389 A JP578389 A JP 578389A JP H02186072 A JPH02186072 A JP H02186072A
Authority
JP
Japan
Prior art keywords
container
electromagnetic coil
magnetic fluid
vibration
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP578389A
Other languages
Japanese (ja)
Other versions
JPH086498B2 (en
Inventor
Hiroshi Kiyokawa
清川 博
Toshifumi Niino
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP578389A priority Critical patent/JPH086498B2/en
Publication of JPH02186072A publication Critical patent/JPH02186072A/en
Publication of JPH086498B2 publication Critical patent/JPH086498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To improve responsiveness by installing a container filled with magnetic fluid into a structure body and supplying electric current into an electromagnetic coil from an electric power source and allow the magnetic force to act onto the magnetic fluid in the container and shifting the center of gravity of the structure body. CONSTITUTION:A sealed container 2 made of nonmagnetic material is arranged inside a structure 1, and magnetic fluid 3 which changes the characteristic frequency of the whole structure 1 is poured into the container 2. Then, in the lower part of the container 2, an electromagnetic coil 4 which changes the center of gravity of the structure 1 by allowing a magnetic force to act onto the magnetic fluid 3 is installed and connected with an electric power source device 9. The specific gravity distribution of the magnetic fluid 3 in the container 2 is changed by the magnetic force of the electromagnetic coil 4, and the center of gravity of the structure body 1 is shift downward, and the characteristic frequency is changed towards increase. Therefore, the apparent synchronization characteristic of the structure 1 can be controlled, and the vibration of the structure 1 can be reduced easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造物の振動を低減する制振装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a vibration damping device for reducing vibrations of a structure.

(従来の技術) 従来、地震や風荷重等による外力から建築物等の構造物
の振動を低減する制振装置としては、(a)構造物の最
上部に振り子の作用をする装置(これは構造物と同一の
固有振動数を有する)を設置し、構造物に伝わる振動を
振り子の運動エネルギに変換することで構造物の振動を
低減する振り子方式のもの、 (b)構造物の上部に水を封入した容器(これは構造物
と同一の固有周期を有する)を設置し、構造物に伝わる
振動を、外力と位相を逆にして容器内の水の運動エネル
ギに変換し構造物の振動を低減するスロッシング方式の
もの、 (c)構造物の天井に取り付けた金属プレートと、構造
物の床面から独立に立ち上がる壁の上端に取り付けた金
属プレートとを擦り合わせることによって、振動を摩擦
エネルギに変換し、これにより構造物の振動を低減させ
る摩擦ダンパ方式のものが知られている。
(Prior Art) Conventionally, vibration damping devices that reduce vibrations of structures such as buildings due to external forces such as earthquakes and wind loads have been used as (a) devices that act like a pendulum on the top of the structure (this is (b) A pendulum-type device that reduces the vibration of the structure by installing a pendulum (having the same natural frequency as the structure) and converting the vibration transmitted to the structure into kinetic energy of the pendulum. A container filled with water (which has the same natural period as the structure) is installed, and the vibrations transmitted to the structure are converted into kinetic energy of the water in the container by reversing the phase of the external force and causing the structure to vibrate. (c) A metal plate attached to the ceiling of a structure and a metal plate attached to the top of a wall that stands up independently from the floor of the structure are rubbed against each other to reduce vibrations by converting them into frictional energy. A friction damper type is known, which reduces the vibration of a structure by converting it into a structure.

(発明が解決しようとする課題) しかしながら、上述のような従来の制振装置は何れも機
械方式で制振する構成であるため、外部からの振動に対
して応答性が遅い問題がある。
(Problems to be Solved by the Invention) However, since all of the conventional vibration damping devices as described above have a structure in which vibration is damped using a mechanical method, there is a problem in that the response to external vibrations is slow.

また、振り子方式及びスロッシング方式の制振装置では
、装置自体が重量化し、構造物に対する構造上の負担が
大きくなる問題がある。
Further, in the pendulum type and sloshing type vibration damping devices, there is a problem that the device itself becomes heavy and the structural load on the structure increases.

また、摩擦ダンパ方式では、金属プレートの静止摩擦係
数と動摩擦係数との違いによって作動時に衝撃力が発生
するため、安定した制振制御を行ない難(、また、発錆
等の劣化が生じる問題がある。更に、摩擦ダンパは天井
とこれに対面する床面間に介在させるため、ワンフロア
−に対し2個所以上必要となり、階数が多くなると摩擦
タンパの数量が増大し、構造が複雑化する問題がある。
In addition, with the friction damper method, impact force is generated during operation due to the difference between the static friction coefficient and the dynamic friction coefficient of the metal plate, making it difficult to perform stable vibration damping control (and causing problems such as deterioration such as rusting). Furthermore, since friction dampers are interposed between the ceiling and the floor facing it, two or more friction dampers are required for each floor, and as the number of floors increases, the number of friction dampers increases and the structure becomes more complex. be.

本発明は、上述の問題を解決するためになされたもので
、本発明の目的は、応答性に優れ、構造物に対する負担
も小さく、簡易な構成で構造物の制振を安定して行える
構造物の制振装置を提供するにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to create a structure that has excellent responsiveness, reduces the burden on the structure, and can stably damp the vibration of the structure with a simple configuration. To provide vibration damping devices for objects.

(課題を解決するための手段) 前記目的を達成するための本発明を実施例に対応する図
面を参照して説明する。
(Means for Solving the Problems) The present invention for achieving the above object will be described with reference to drawings corresponding to embodiments.

本発明は、構造物lの内部に設置され磁性流体3が封入
された所定容積の容器2と、電流が供給されることで前
記容器2内の磁性流体に磁力を作用し前記構造物lの重
心を変化させる電磁コイル4と、前記電磁コイル4に電
流を供給する電源9とを備えてなる構造物の制振装置で
ある。
The present invention includes a container 2 of a predetermined volume installed inside a structure l and filled with a magnetic fluid 3, and a magnetic force applied to the magnetic fluid in the container 2 by supplying an electric current to the structure l. This is a vibration damping device for a structure comprising an electromagnetic coil 4 that changes the center of gravity, and a power source 9 that supplies current to the electromagnetic coil 4.

(作用) 電磁コイル4が励磁され、その磁力が容器2内の磁性流
体3に作用すると、磁性流体3内の磁気微粒子が容器2
内を移動して構造物lの重心位置が変わる。これにより
構造物l全体の固有振動数を変化させ、その共振点を外
部振動周波数帯域外へ移行させる。
(Function) When the electromagnetic coil 4 is excited and its magnetic force acts on the magnetic fluid 3 in the container 2, the magnetic particles in the magnetic fluid 3 are attracted to the container 2.
The position of the center of gravity of structure l changes as it moves inside. This changes the natural frequency of the entire structure l and moves its resonance point out of the external vibration frequency band.

従って、磁性流体3に磁力を与えるという簡易な構成で
構造物lの制振を安定して行なえ、しかも外部からの振
動に迅速に応答でき、制振装置の構造物lに対する負担
も小さくできる。
Therefore, with a simple configuration of applying magnetic force to the magnetic fluid 3, vibrations of the structure 1 can be stably damped, and moreover, it is possible to quickly respond to external vibrations, and the load on the structure 1 of the vibration damping device can be reduced.

この場合、電磁コイル4の配設箇所は容器2の上下や左
右或は内部など任意である。
In this case, the electromagnetic coil 4 may be disposed at any location such as above and below the container 2, on the left and right sides, or inside the container 2.

また、電磁コイル4に供給される電流値を外部振動波の
周波数に応じて変化させることにより、構造物lの振動
の低減を容易にコントロールでき、制振制御が最適とな
る。
Further, by changing the current value supplied to the electromagnetic coil 4 according to the frequency of the external vibration wave, the reduction in vibration of the structure I can be easily controlled, and vibration damping control can be optimized.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は第1実施例の概略構成図である。FIG. 1 is a schematic configuration diagram of the first embodiment.

lは地上に設置される建築等の構造物で、構造物lの内
部には、非磁性材料からなる所定大きさ、形状の密閉容
器2を設置する。
1 is a structure such as a building installed on the ground, and inside the structure 1 is installed an airtight container 2 of a predetermined size and shape made of a non-magnetic material.

容器2内には、構造物l全体の固有振動数を変化させる
磁性流体3を充填封入する。
The container 2 is filled and sealed with a magnetic fluid 3 that changes the natural frequency of the entire structure 1.

容器2の下部には、磁性流体3に磁力を作用させること
で構造物lの重心を変化させるための電磁コイル4を設
置し、電磁コイル4は電源装置9と接続する。この場合
、電磁コイル4として超電導材料を利用すれば、エネル
ギロスが少なく効率的である。
At the bottom of the container 2, an electromagnetic coil 4 is installed to change the center of gravity of the structure 1 by applying a magnetic force to the magnetic fluid 3, and the electromagnetic coil 4 is connected to a power supply device 9. In this case, if a superconducting material is used as the electromagnetic coil 4, it is efficient with less energy loss.

前記磁性流体3は、例えば水又は溶液と磁性微粒子とを
混合したコロイド溶液で構成する。
The magnetic fluid 3 is composed of, for example, water or a colloidal solution in which a solution and magnetic fine particles are mixed.

容器2の構造物l内への設置位置、大きさ及び形状は、
封入される磁性流体3の比重、電磁コイル4から発生す
る磁力を勘案して決定し、これにより構造物1全体の固
有振動数が構造物lに作用する危険な振動帯域から外れ
るように選定する。
The installation position, size and shape of the container 2 within the structure l are as follows:
It is determined by taking into account the specific gravity of the magnetic fluid 3 to be enclosed and the magnetic force generated from the electromagnetic coil 4, and is selected so that the natural frequency of the entire structure 1 is out of the dangerous vibration band that acts on the structure 1. .

上記のように構成された本実施例の制振装置において、
電磁コイル4が非励磁状態にある時、磁性流体3中の磁
性微粒子は容器2内全体に均一に分散しているため、磁
性流体封入容器2を含めた構造物l全体の重心は、第2
図(a)に示すように底面からL2の位置にある。なお
、磁性流体封入容器2がない場合の構造体lの重心は、
第2図(b)に示すように底面からLl  (Ll>L
2)の位置にある。
In the vibration damping device of this embodiment configured as described above,
When the electromagnetic coil 4 is in a non-excited state, the magnetic particles in the magnetic fluid 3 are uniformly dispersed throughout the container 2, so the center of gravity of the entire structure l including the magnetic fluid-filled container 2 is at the second
As shown in Figure (a), it is located at L2 from the bottom surface. In addition, the center of gravity of the structure l when there is no magnetic fluid enclosure container 2 is
As shown in Figure 2(b), Ll (Ll>L
2).

また、電磁コイル4が通電により励磁されると、第1図
の破線に示すように磁束が発生し、これにより磁性流体
3中の磁性微粒子を容器2の底部へ吸収集合させるため
、容器2底部側の比重が大きくなる。これに伴い磁性流
体封入容器2を含めた構造物全体の重心は、第1図に示
すように底面からL3 (、L−1>L2>L3)の位
置に変化する。
Furthermore, when the electromagnetic coil 4 is excited by electricity, a magnetic flux is generated as shown by the broken line in FIG. The specific gravity on the side increases. Accordingly, the center of gravity of the entire structure including the magnetic fluid-filled container 2 changes to a position L3 (L-1>L2>L3) from the bottom surface, as shown in FIG.

このように構造物1の重心がL2からL3へと変化する
と、構造物l全体の固有振動数がf2からf3 (f2
<f3)へと増加し、これによって地盤振動等に対する
構造物lの共振点が上昇することになり、地盤振動等に
対する構造物lの振動が低減されることになる。
When the center of gravity of structure 1 changes from L2 to L3 in this way, the natural frequency of the entire structure 1 changes from f2 to f3 (f2
<f3), thereby raising the resonance point of the structure l with respect to ground vibrations, etc., and reducing the vibration of the structure l with respect to ground vibrations etc.

本実施例では、構造物l内部に磁性流体3を封入した容
器2を設置し、この容器2内の磁性流体3の比重分布を
電磁コイル4の磁力により変化させることで構造体lの
重心を下方へ変化させ、その固有振動数を増大方向へ変
化させるものであるから、構造物1の見掛けの同期特性
を容易にコントロールでき、地震動等に対する構造物l
の振動を容易に低減し得る。
In this embodiment, a container 2 containing a magnetic fluid 3 is installed inside a structure 1, and the specific gravity distribution of the magnetic fluid 3 in the container 2 is changed by the magnetic force of an electromagnetic coil 4 to center the gravity of the structure 1. Since it changes the natural frequency downward and increases its natural frequency, the apparent synchronization characteristics of the structure 1 can be easily controlled, and the structure l against earthquake motion etc.
vibration can be easily reduced.

また、構造物の固有振動数を変化させる重量可変体は磁
性流体であり、通常(電磁コイル4に通電していない時
)この磁性流体は比重が小さいため、構造物に対する構
造上の負担を小さくできる。
In addition, the variable weight body that changes the natural frequency of the structure is a magnetic fluid, and normally (when the electromagnetic coil 4 is not energized) this magnetic fluid has a small specific gravity, so it reduces the structural burden on the structure. can.

また、従来の摩擦ダンパ方式のような発錆等による経年
変化もなく、安定した制振機能を維持できる。
Furthermore, unlike conventional friction damper systems, there is no aging effect due to rust, and a stable vibration damping function can be maintained.

第3図は第2実施例の概略構成図である。FIG. 3 is a schematic diagram of the second embodiment.

第2実施例では、地盤上に建築した構造物1内の床面上
に磁性流体3を封入した密閉容器2を支持台6を介して
設置し、容器2の下部には電磁コイル4を設置すると共
に、iimコイル4に供給される電力を制御する制御部
7を設けている。
In the second embodiment, a closed container 2 containing a magnetic fluid 3 is installed on the floor of a structure 1 built on the ground via a support 6, and an electromagnetic coil 4 is installed at the bottom of the container 2. At the same time, a control section 7 that controls the power supplied to the IIM coil 4 is provided.

また、構造物1から離れた地点には、地盤振動を検知す
るための振動センサ8を複数個設置し、この各振動セン
サ8で検知した地震波動信号を前記制御部7に入力する
ようにしている。
Further, a plurality of vibration sensors 8 for detecting ground vibration are installed at a point away from the structure 1, and seismic wave signals detected by each vibration sensor 8 are inputted to the control section 7. There is.

また、制御部7の制御信号は電磁コイル4に電力を供給
する電源装置9に出力するようにしている。
Further, the control signal from the control section 7 is outputted to a power supply device 9 that supplies power to the electromagnetic coil 4.

次に、第2実施例の動作を第4図に示すフローチャート
を参照して説明する。
Next, the operation of the second embodiment will be explained with reference to the flowchart shown in FIG.

地盤振動が発生すると、各振動センサ8が地震振動波を
検知し、これを電流信号に変換して制御部7に人力する
(ステップSL)。
When ground vibration occurs, each vibration sensor 8 detects an earthquake vibration wave, converts this into a current signal, and manually inputs it to the control unit 7 (step SL).

制御部7では、入力した地震波動の周波数を解析しくス
テップS2)、次のステップS3において、構造物1の
全体の固有振動数が危険な地盤振動数帯域から外れるよ
うに電磁コイル4への最適電流値を決定する制御指令を
求める。
The control unit 7 analyzes the frequency of the input seismic waves (step S2), and in the next step S3, optimizes the electromagnetic coil 4 so that the natural frequency of the entire structure 1 is out of the dangerous ground frequency band. Find the control command that determines the current value.

そして、この制御指令を電源装置9に加えることによっ
て、電源袋@9から電磁コイル4に通電される電流を制
御する(ステップS4)。
Then, by applying this control command to the power supply device 9, the current flowing from the power supply bag @9 to the electromagnetic coil 4 is controlled (step S4).

電磁コイル4に電流が流れると、その電流値に応じた磁
力が発生し、この磁力が容器2内の磁性流体3に作用す
ることによって、磁性流体3内の磁性微粒子が容器の底
部側へ吸引集合する。
When a current flows through the electromagnetic coil 4, a magnetic force corresponding to the current value is generated, and as this magnetic force acts on the magnetic fluid 3 inside the container 2, the magnetic particles inside the magnetic fluid 3 are attracted to the bottom side of the container. Gather.

その結果、構造物l全体の重心は第1図の場合と同様に
下方へ移動し、同時に構造物1全体の固有振動数を最適
値に上昇させて地盤振動の周波数帯域から外し、構造物
1が地盤振動と共振しないようにする。これにより構造
物1は制振され、構造物lの振動が低減されることにな
る。
As a result, the center of gravity of the entire structure 1 moves downward as in the case of Fig. 1, and at the same time, the natural frequency of the entire structure 1 is raised to the optimum value and removed from the frequency band of ground vibration, and the structure 1 prevent it from resonating with ground vibrations. As a result, the structure 1 is damped, and the vibration of the structure 1 is reduced.

このように第2実施例では、第1実施例と同様な効果が
得られるほか、構造物の固有振動数を地盤振動の周波数
に対応させて変化できるので、構造物の制振制御が最適
となる。
In this way, in the second embodiment, in addition to obtaining the same effects as in the first embodiment, the natural frequency of the structure can be changed in accordance with the frequency of ground vibration, so that the vibration damping control of the structure can be optimized. Become.

なお、第1.第2実施例では、容器2の下部に電磁コイ
ル4を配設した場合について説明したが、電磁コイル4
の配設箇所は適用する構造物の形状や、容器の配設箇所
等に応じて容器2の上下や左右或は内部に配設する等任
意である。
In addition, 1. In the second embodiment, the case where the electromagnetic coil 4 is disposed at the bottom of the container 2 has been described, but the electromagnetic coil 4
The arrangement location is arbitrary, such as disposing it above and below, on the left and right sides, or inside the container 2, depending on the shape of the structure to which it is applied, the location of the container, etc.

(発明の効果) 以上の説明から明らかなように、本発明によれば、磁性
流体に磁力を与えて構造物の重心を変え、これにより構
造物全体の固有振動数を変化させる構成であるので、応
答性に優れ、構造物に対する負担も小さく、簡易な構成
で構造物の制振を安定して行うことができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, magnetic force is applied to the magnetic fluid to change the center of gravity of the structure, thereby changing the natural frequency of the entire structure. , it has excellent responsiveness, has a small burden on the structure, and can stably damp the vibration of the structure with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る第1実施例の概略構成図、第2図
(a)(b)はその説明図、第3図は第2実施例の概略
構成図、第4図はその動作説明用のフローチャートであ
る。 尚図中1は構造物、2は容器、3は磁性流体、4は電磁
コイル、7は制御部、8は振動センサ、9は電源装置で
ある。 特 許 出 願 人   フジタ工業株式会社代理人 
弁理士  野 1)  茂
FIG. 1 is a schematic configuration diagram of the first embodiment according to the present invention, FIGS. 2(a) and (b) are explanatory diagrams thereof, FIG. 3 is a schematic configuration diagram of the second embodiment, and FIG. 4 is its operation. It is a flowchart for explanation. In the figure, 1 is a structure, 2 is a container, 3 is a magnetic fluid, 4 is an electromagnetic coil, 7 is a control section, 8 is a vibration sensor, and 9 is a power supply device. Patent applicant Agent: Fujita Kogyo Co., Ltd.
Patent Attorney No 1) Shigeru

Claims (3)

【特許請求の範囲】[Claims] (1)構造物の内部に設置され磁性流体が封入された所
定容積の容器と、 電流が供給されることで前記容器内の磁性流体に磁力を
作用し前記構造物の重心を変化させる電磁コイルと、 前記電磁コイルに電流を供給する電源と、 を備えてなる構造物の制振装置。
(1) A container with a predetermined volume installed inside a structure and filled with magnetic fluid; and an electromagnetic coil that applies magnetic force to the magnetic fluid in the container and changes the center of gravity of the structure when supplied with electric current. A vibration damping device for a structure, comprising: a power source that supplies current to the electromagnetic coil;
(2)前記電磁コイルは前記容器の下部に設置されてい
る請求項1記載の構造物の制振装置。
(2) The vibration damping device for a structure according to claim 1, wherein the electromagnetic coil is installed at a lower part of the container.
(3)前記電磁コイルに供給される電流を、外部振動の
周波数に基づいて最適値に制御する制御手段が設けられ
ている請求項1記載の構造物の制振装置。
(3) The vibration damping device for a structure according to claim 1, further comprising a control means for controlling the current supplied to the electromagnetic coil to an optimum value based on the frequency of external vibration.
JP578389A 1989-01-12 1989-01-12 Vibration control device for structures Expired - Lifetime JPH086498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP578389A JPH086498B2 (en) 1989-01-12 1989-01-12 Vibration control device for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP578389A JPH086498B2 (en) 1989-01-12 1989-01-12 Vibration control device for structures

Publications (2)

Publication Number Publication Date
JPH02186072A true JPH02186072A (en) 1990-07-20
JPH086498B2 JPH086498B2 (en) 1996-01-24

Family

ID=11620705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP578389A Expired - Lifetime JPH086498B2 (en) 1989-01-12 1989-01-12 Vibration control device for structures

Country Status (1)

Country Link
JP (1) JPH086498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321923A (en) * 1992-06-17 1994-06-21 Hitachi Metals, Ltd. Antivibration actuator
JPH0971303A (en) * 1995-03-30 1997-03-18 Kongo Kk Movable shelf

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3152920B1 (en) 2014-06-03 2018-11-28 Dolby Laboratories Licensing Corporation Audio speakers having upward firing drivers for reflected sound rendering
WO2019111335A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321923A (en) * 1992-06-17 1994-06-21 Hitachi Metals, Ltd. Antivibration actuator
JPH0971303A (en) * 1995-03-30 1997-03-18 Kongo Kk Movable shelf

Also Published As

Publication number Publication date
JPH086498B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
KR100269034B1 (en) Self tuning type vibration damper
US6874748B2 (en) Active floor vibration control system
GB2205921A (en) A vibration damping apparatus
KR20070118758A (en) Bearing device for seismic control and control system having it
JP5001810B2 (en) Variable stiffness spring, damping device, and structure
JPH02186072A (en) Vibration-suppressing device for structure body
KR102228003B1 (en) Smart vibration reduction devices for retractable roof structure
Benassi et al. Global control of a vibrating plate using a feedback-controlled inertial actuator
KR101369897B1 (en) Semi-active seismic isolation devices
CN210177734U (en) Vibration damper
Liu et al. Application of an active electromagnetic vibration absorber in vibration suppression
JPH0674294A (en) Active dynamic vibration absorber
JPH0472094B2 (en)
JPH03250165A (en) Hybrid dynamic vibration reducer
Burian et al. The active system of vibration isolation with electrodynamic actuator
JPH0366952A (en) Vibration control suspension device
JP2006349053A (en) Natural frequency variable type vibration control method and vibration control device
JP3099706B2 (en) Seismic isolation structure of pile
US6138998A (en) Spacecraft antenna slew control systems
JPH10176432A (en) Three-dimensional vibration isolation device
JPH06129487A (en) Spring constant variable type damping device
JP2549436B2 (en) Vibration control device
JPH02136478A (en) Damping device utilizing magnetic fluid
JP2020190286A (en) Seismic isolator
JP2008223282A (en) Active damper for building structure and active damping method for building structure