JPH02184513A - Production of disilane and trisilane - Google Patents

Production of disilane and trisilane

Info

Publication number
JPH02184513A
JPH02184513A JP390689A JP390689A JPH02184513A JP H02184513 A JPH02184513 A JP H02184513A JP 390689 A JP390689 A JP 390689A JP 390689 A JP390689 A JP 390689A JP H02184513 A JPH02184513 A JP H02184513A
Authority
JP
Japan
Prior art keywords
disilane
trisilane
monosilane
complex catalyst
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP390689A
Other languages
Japanese (ja)
Inventor
Yoshiharu Okumura
奥村 義治
Kazutoshi Takatsuna
和敏 高綱
Yusuke Yagihashi
八木橋 雄介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK filed Critical Tonen Sekiyu Kagaku KK
Priority to JP390689A priority Critical patent/JPH02184513A/en
Publication of JPH02184513A publication Critical patent/JPH02184513A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon

Abstract

PURPOSE:To inexpensively and efficiently obtain a high-purity disilane and trisilane by dehydrogenating and condensing a monosilane in the presence of a specific complex catalyst. CONSTITUTION:In producing a disilane and a trisilane by dehydrogenating and condensing a monosilane, the following complex catalyst exists. Namely, the complex catalyst is a complex catalyst obtained by coordinating (2) at least one ligand selected from organic phosphorus compound, an organic arsenic compound and an organic antimony compound on (1) at least one metal selected from platinum, rhodium and ruthenium and compounds thereof. The complex catalyst may be used for dehydrogenation condensation reaction as it is or supported or immobilized to a porous solid such as active carbon, silica gel, silica alumina, silicon carbide, alumina, diatomaceous earth or ion exchange resin and may be used for dehydrogenation condensation reaction.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ジシランおよびトリシランの製造方法に関し
、さらに詳しくは、モノシランを触媒の存在下に脱水素
縮合して、ジシランおよびトリシランを製造する方法に
関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing disilane and trisilane, and more particularly to a method for producing disilane and trisilane by subjecting monosilane to dehydrogenation condensation in the presence of a catalyst.

発明の技術的背景 ジシランおよび/またはトリシランは、太陽電池、電子
写真用感光ドラムなどに用いられるアモルファスシリコ
ン製造用原料ガスおよび半導体製造用エピタキシャルガ
スなどとして用いられる有用な化合物である。従って、
ジシランお、よび/またはトリシランの安価でかつ効率
のよい製造方法の開発が強く望まれている。
Technical Background of the Invention Disilane and/or trisilane are useful compounds used as a raw material gas for producing amorphous silicon used in solar cells, photosensitive drums for electrophotography, etc., and as an epitaxial gas for producing semiconductors. Therefore,
There is a strong desire to develop an inexpensive and efficient method for producing disilane and/or trisilane.

ところで従来、ジシランおよび/またはトリシランなど
の高次シランを製造する方法としては、以下のようなも
のが開示されている。
By the way, the following methods have been disclosed as methods for producing higher-order silanes such as disilane and/or trisilane.

(イ)ヘキサクロルジシランなどのジシラン誘導体を、
リチウムアルミニウムハイドライドなどの金属水素化物
にて還元してジシランを生成させた後、加温した反応液
に不活性ガスを吹込むことにより、ジシランを溶媒から
分離してジシランを製造する方法(特開昭58−156
522号公報)。
(a) Disilane derivatives such as hexachlorodisilane,
A method of producing disilane by reducing it with a metal hydride such as lithium aluminum hydride and then separating the disilane from the solvent by blowing an inert gas into the heated reaction solution (Unexamined Japanese Patent Publication) Showa 58-156
522 Publication).

(ロ)ケイ化マグネシウムなどの合金と酸の水溶液とを
一90″〜0℃の低温下に反応させることにより、ジシ
ランおよびトリシランなどを製造する方法(特開昭60
−14613号公報)。
(b) A method for producing disilane, trisilane, etc. by reacting an alloy such as magnesium silicide with an aqueous acid solution at a low temperature of -90" to 0°C
-14613).

(ハ)モノシランガスを無声放電管に循環させることに
よりジシランを製造する方法(特開昭60−12721
4号公報)。
(c) A method for producing disilane by circulating monosilane gas through a silent discharge tube (Japanese Patent Application Laid-Open No. 60-12721
Publication No. 4).

しかしながら、上記に開示された製造方法では、以下よ
うな問題点があった。すなわち、ヘキサクロルジシラン
などのジシラン誘導体をリチウムアルミニウムハイドラ
イドなどの金属水素化物で還元してジシランを製造する
方法では、原料および還元剤として、ヘキサクロルジシ
ランおよびリチウムアルミニウムハイドライドなどの高
価な化合物を必要とするうえに、生成物であるジシラン
中に原料に基因するクロル化合物が混入し、高純度のジ
シランを得ることが困難であるという問題点があった。
However, the manufacturing method disclosed above has the following problems. In other words, the method of producing disilane by reducing a disilane derivative such as hexachlorodisilane with a metal hydride such as lithium aluminum hydride requires expensive compounds such as hexachlorodisilane and lithium aluminum hydride as raw materials and reducing agents. In addition, there was a problem in that chloro compounds originating from raw materials were mixed into the disilane product, making it difficult to obtain highly pure disilane.

また、ケイ化マグネシウムなどの合金と酸の水溶液とを
低温下にて接触させてケイ化マグネシウムなどの合金を
加水分解してジシランおよびトリシランを製造する方法
では、原料および/または中間体であるSIH,、ラジ
カルの加水分解生成物に基因する不純物が生成物中に混
入し、高純度のジシランまたはトリシランを得ることが
困難であるとともに、低温下で反応を行なうために高エ
ネルギーを要するという問題点があった。
In addition, in the method of producing disilane and trisilane by hydrolyzing an alloy such as magnesium silicide by contacting the alloy such as magnesium silicide with an aqueous acid solution at a low temperature, SIH, which is a raw material and/or an intermediate, is used. , Impurities caused by radical hydrolysis products are mixed into the product, making it difficult to obtain high-purity disilane or trisilane, and requiring high energy to carry out the reaction at low temperatures. was there.

また、シランガスを無声放電管に循環させることにより
ジシランを製造する方法では、無声放電に高エネルギー
を必要とするという問題点があった。
Furthermore, the method of producing disilane by circulating silane gas through a silent discharge tube has a problem in that high energy is required for silent discharge.

さらに、モノシランからジシランおよびトリシランを製
造する方法は、上記のモノシランを無声放電管に循環す
る方法に限られ、このことは、従来、モノシランからジ
シランおよびトリシランを製造するうえで、工業的に有
効な触媒が未だ、見出されていないことを意味している
Furthermore, the method for producing disilane and trisilane from monosilane is limited to the above-mentioned method of circulating monosilane through a silent discharge tube. This means that a catalyst has not yet been discovered.

発明の目的 本発明は、ジシランおよびトリシランを製造するに際し
、高純度のジシランおよびトリシランが得られない、高
価な原料および還元剤を必要とする、さらに高エネルギ
ーを必要とするといった工業的に実施するうえにおいて
の従来技術に伴う問題点を解決しようとするものであり
、高純度のジシランおよびトリシランを安価でかつ効率
よく製造することができるようなジシランおよびトリシ
ランの製造方法を提供することを目的としている。
Purpose of the Invention The present invention is directed to industrial implementation of disilane and trisilane, which cannot be produced with high purity, requires expensive raw materials and reducing agents, and requires high energy. The purpose of the present invention is to provide a method for producing disilane and trisilane that can produce high-purity disilane and trisilane at low cost and efficiently. There is.

発明の概要 本発明に係るジシランおよびトリシランの製造方法を種
々検討する中で、モノシランを、(i)白金、ロジウム
、ルテニウムから選ばれる少なくとも1種の金属または
化合物に(i)有機リン化合物、有機砒素化合物、有機
アンチモン化合物から選ばれる少なくとも1種の配位子
が配位してなる錯体触媒の存在下に脱水素縮合反応させ
ると、ジシランおよびトリシランを高純度でかつ効率的
に製造しうろことを見出し、本発明を完成するに至った
Summary of the Invention While various methods for producing disilane and trisilane according to the present invention were investigated, monosilane was mixed with (i) at least one metal or compound selected from platinum, rhodium, and ruthenium (i) an organic phosphorus compound, an organic When a dehydrogenation condensation reaction is carried out in the presence of a complex catalyst coordinated with at least one type of ligand selected from arsenic compounds and organic antimony compounds, disilane and trisilane can be efficiently produced with high purity. They discovered this and completed the present invention.

すなわち、本発明に係るジシランおよびトリシランの製
造方法は、モノシランを脱水素縮合して、ジシランおよ
びトリシランを製造するに際して、(i)白金、ロジウ
ム、ルテニウムから選ばれる少なくとも1種の金属また
は化合物に(i)有機リン化合物、有機砒素化合物、有
機アンチモン化合物から選ばれる少なくとも1種の配位
子が配位してなる811体触媒の存在下に、モノシラン
の脱水素縮合反応を行なうことを特徴としている。
That is, in the method for producing disilane and trisilane according to the present invention, when monosilane is subjected to dehydrogenation condensation to produce disilane and trisilane, (i) at least one metal or compound selected from platinum, rhodium, and ruthenium ( i) A dehydrogenation condensation reaction of monosilane is carried out in the presence of an 811 catalyst which is coordinated with at least one type of ligand selected from an organic phosphorus compound, an organic arsenic compound, and an organic antimony compound. .

発明の詳細な説明 以下、本発明に係るジシランおよびトリシランの製造方
法について具体的に説明する。
DETAILED DESCRIPTION OF THE INVENTION The method for producing disilane and trisilane according to the present invention will be specifically described below.

錯体触媒 本発明では、モノシランを脱水素縮合する際に、(i)
白金、ロジウム、ルテニウムから選ばれる少なくとも1
種の金属または化合物に(i)有機リン化合物、有機砒
素化合物、有機アンチモン化合物から選ばれる少なくと
も1種の配位子が配位してなる錯体触媒が用いられる。
In the present invention, when dehydrogenating monosilane, (i)
At least one selected from platinum, rhodium, and ruthenium
A complex catalyst is used in which at least one type of ligand selected from (i) an organic phosphorus compound, an organic arsenic compound, and an organic antimony compound is coordinated to a seed metal or compound.

白金金属または白金化合物 本発明で用いられる白金金属または白金化合物としては
、活性炭、シリカなどに担持された白金金属、白金ブラ
ック、白金のO価錯体、白金の2価、4価の化合物また
は錯体などが挙げられる。
Platinum metal or platinum compound The platinum metal or platinum compound used in the present invention includes platinum metal supported on activated carbon, silica, etc., platinum black, O-valent complex of platinum, divalent or tetravalent platinum compound or complex, etc. can be mentioned.

このような白金の化合物または錯体としては、具体的に
は、Pt(II  NC112CIl□N112)2、
PL(Nll)   CO、pt (CI13CN) 
2  CJI’ 6.K  PtC,95Pt(II□
 NC112C112Ni12)R2、II  PtC
jJ  、  PtCΩ2(1,5−シクロオクタジエ
ン)、PL(アセチルアセトナート>  、Pi(J1
2、PtC14などが挙げられる。
Specifically, such platinum compounds or complexes include Pt(II NC112CIl□N112)2,
PL (Nll) CO, pt (CI13CN)
2 CJI' 6. K PtC, 95Pt(II□
NC112C112Ni12) R2, II PtC
jJ, PtCΩ2 (1,5-cyclooctadiene), PL (acetylacetonate>, Pi (J1
2, PtC14, etc.

ロジウム金属またはロジウム化合物 本発明で用いられるロジウム金属またはロジウム化合物
としては、活性炭、シリカなどに担持されたロジウム金
属、ロジウムブラック、ロジウムのO価錯体、ロジウム
の1価、2価、3価、5価の化合物または錯体などが挙
げられる。
Rhodium metal or rhodium compound The rhodium metal or rhodium compound used in the present invention includes rhodium metal supported on activated carbon, silica, etc., rhodium black, O-valent complexes of rhodium, monovalent, divalent, trivalent, and 5-valent rhodium. Examples include valent compounds or complexes.

このようなロジウムの化合物または錯体としては、具体
的には、Rh  (Co)  、Rh4(Co)1□、
Rh  (CO)  、Rh  (CO)14(ノルボ
ルナジェン)、[R1+(μmOMc) (1、5−シ
クロオクタジエン)]2、[Rh (μmCO)(1,
5−シクロオクタジエン)]2、[Rh (μ −(4
>(C02−CIl □ ) 2 コ 2 、[Rh 
(μmCg)(CO)2]2、[Rh (、cz −0
Ac) (1、5−シクロオクタジエン)]2、[Rb
(μm0Ph)(1,5−シクロオクタジエン)]2、
Rh  (1,5−シクロオクタジエン)(C03)3
.[Rh(OAc)  ]   、[RhCfl e 
][1?h (μmcn><π−アリル)  ]  、
RhCR3、R h 13 r  、R h I aな
どが挙げられる。
Specifically, such rhodium compounds or complexes include Rh(Co), Rh4(Co)1□,
Rh (CO) , Rh (CO) (norbornadiene), [R1+ (μmOMc) (1,5-cyclooctadiene)]2, [Rh (μmCO) (1,
5-cyclooctadiene)]2,[Rh (μ −(4
>(C02-CIl □ ) 2 ko 2 , [Rh
(μmCg) (CO)2]2, [Rh (, cz -0
Ac) (1,5-cyclooctadiene)]2,[Rb
(μm0Ph)(1,5-cyclooctadiene)]2,
Rh (1,5-cyclooctadiene) (C03)3
.. [Rh(OAc)], [RhCfl e
] [1? h (μmcn><π-allyl) ],
Examples include RhCR3, R h 13 r , R h Ia, and the like.

ルテニウム金属またはルテニウム化合物本発明で用いら
れるルテニウム金属またはルテニウム化合物としては、
活性炭、シリカなどに担持されたルテニウム金属、ルテ
ニウムブラック、ルテニウムの0価錯体、ルテニウムの
1価〜8価の化合物または錯体などが挙げられる。
Ruthenium metal or ruthenium compound The ruthenium metal or ruthenium compound used in the present invention includes:
Examples include ruthenium metal supported on activated carbon, silica, etc., ruthenium black, zero-valent complexes of ruthenium, and monovalent to octavalent ruthenium compounds or complexes.

このようなルテニウムの化合物または錯体としては、具
体的に、RuO  、RuO  、  l?ucg2、
RuCp   、  RuC,Q   、  RuP 
 、  RuF4、[RuF  ]   、RuF  
、  RuF  、  K2RuCl 6、Ru(GO
>  、Ru(011)(J!  SRu(OCOCI
I3) 3、Ru(OCOCPa ) aなどが挙げら
れる。
Examples of such ruthenium compounds or complexes include RuO, RuO, l? ucg2,
RuCp, RuC,Q, RuP
, RuF4, [RuF ], RuF
, RuF, K2RuCl6, Ru(GO
> , Ru (011) (J! SRu (OCOCI
I3) 3, Ru(OCOCPa) a, and the like.

配位子 本発明て用いられる配位子は、下記式[IIまたは[I
I]で示される化合物などである。
Ligand The ligand used in the present invention has the following formula [II or [I
I] and the like.

ER’ 3        ・・・[11R’  E−
CHR  −CHR2−ER’ 2・・・[111[式
中、Eはリン、砒素またはアンチモンであり、R はそ
れぞれ同一でも異なっていてもよく、アルキル基、アリ
ール基、シクロアルキル基またはアルアルキル基であり
、R2は水素、アルキル基、アリール基、シクロアルキ
ル基またはアルアルキル基である。] 上記式[1]または[n]で示される配位子としては、
具体的には、PMe  SPIシL  、PI)R3、
PPh  SP(Cll  Ph)  、PPh2Me
, Asia3、AslEL3、As13u3、AsP
h3、As (Cl12Ph) 3、AsPh  Me
lSbMe  SSblEts 、SbI3us 、S
bPt+s、Sb (Cll  Ph)  、sbph
2Me。
ER' 3 ... [11R' E-
CHR -CHR2-ER' 2...[111 [wherein, E is phosphorus, arsenic or antimony, each R may be the same or different, an alkyl group, an aryl group, a cycloalkyl group or an aralkyl group] and R2 is hydrogen, an alkyl group, an aryl group, a cycloalkyl group or an aralkyl group. ] As the ligand represented by the above formula [1] or [n],
Specifically, PMe SPI, PI) R3,
PPh SP (Cll Ph), PPh2Me
, Asia3, AslEL3, As13u3, AsP
h3, As (Cl12Ph) 3, AsPh Me
lSbMe SSblEts , SbI3us , S
bPt+s, Sb (Cll Ph), sbph
2Me.

Ph  P−CIl  − Cll  −Pr’h2、
Ph2As− Cl12− Cl12− AsPh2、
Ph  Sb− CIl  − CIl  − SbP
h2などが挙げられる。
Ph P-CIl-Cll-Pr'h2,
Ph2As- Cl12- Cl12- AsPh2,
Ph Sb- CIl- CIl- SbP
Examples include h2.

本発明で用いられる錯体触媒としては、予め、上記の白
金、ロジウムまたはルテニウム金属あるいはその化合物
に、」二足の配位子が配位した錯体触媒を使用してもよ
いし、上記の白金、ロジウムまたはルテニウム金属ある
いはその化合物と上記の配位子とを反応系にて混合し、
反応系にて錯体触媒を生成させながら使用してもよい。
As the complex catalyst used in the present invention, a complex catalyst in which a bipedal ligand is coordinated to the above-mentioned platinum, rhodium or ruthenium metal or a compound thereof may be used, or a complex catalyst in which a bipedal ligand is coordinated to the above-mentioned platinum, rhodium or ruthenium metal or a compound thereof, or the above-mentioned platinum, Mixing rhodium or ruthenium metal or its compound and the above ligand in a reaction system,
The complex catalyst may be used while being generated in the reaction system.

反応系で錯体触媒を生成させる場合には、配位子と、白
金、ロジウムまたはルテニウム金属るあるいはその化合
物とを、1〜20のモル比の範囲で混合することが好ま
しい。
When producing a complex catalyst in a reaction system, it is preferable to mix the ligand and platinum, rhodium, or ruthenium metal or a compound thereof in a molar ratio of 1 to 20.

本発明で用いられる上記のような錯体触媒としでは、具
体的には、PtCl2   (Co)PPb3、1)L
(PI:L  )   R II、 PtCN 2(P
Pl+3) 2、1’tR   (AsPh  )  
、PLCN   (SbPha ) 2、+)tnr 
 (PEL  )   、[Pt(r’nU  )R2
]2、PLO  (Pr’h  )   、I’t(P
Pb3) 4、PL ( Ph  PCII  Cll
  PPb  )CΩ2、11Rh(CO)(PI”h
  )   、lIRh(CO)(^sPhs ) 3
、11Rh(CO)(Sbr’h  )   、RhC
U (PPb3) 3、RhOff  (AsPh  
)   、RhCj)  (SbPha ) 3、11
Rh(PPh  )   、[PPb  Rh(OAc
) 2] 2.RhCI(PEt  )   、Rt+
(PPb  )   CR2,Ru(CO)   (P
Phs ) 2、Ru(Ph  PCII  C1l 
 PPb2) 2CD 2.RuCII(CO)  (
PPha ) 2、Ru(CO)(PPh  )   
Cl;l  1RuCJl’   (PPba ) 3
.RullCj? (CO)(PPb3) 3、Ru(
PPh  )   (OCOCIla ) 2、Ru(
^sPh  )   C1l  、Ru(SbPh  
)   R,、,Ru (r’h  AsCII  C
1l  ^5Ph)   R2,Ru (Ph  5b
CII  Cll  5bPh2) 2C112などが
挙げられる。
Specifically, the above-mentioned complex catalyst used in the present invention includes PtCl2(Co)PPb3,1)L
(PI:L) R II, PtCN 2 (P
Pl+3) 2,1'tR (AsPh)
, PLCN (SbPha) 2, +)tnr
(PEL), [Pt(r'nU)R2
]2, PLO (Pr'h ), I't(P
Pb3) 4, PL (Ph PCII Cll
PPb)CΩ2, 11Rh(CO)(PI”h
), lIRh(CO)(^sPhs) 3
, 11Rh(CO)(Sbr'h), RhC
U (PPb3) 3, RhOff (AsPh
), RhCj) (SbPha) 3, 11
Rh(PPh), [PPbRh(OAc
) 2] 2. RhCI(PEt), Rt+
(PPb) CR2,Ru(CO) (P
Phs ) 2, Ru (Ph PCII C1l
PPb2) 2CD 2. RuCII(CO) (
PPha) 2, Ru(CO)(PPh)
Cl;l 1RuCJl' (PPba) 3
.. RullCj? (CO) (PPb3) 3, Ru(
PPh ) (OCOCIla) 2, Ru(
^sPh) C1l, Ru(SbPh
) R,,,Ru (r'h AsCII C
1l ^5Ph) R2, Ru (Ph 5b
CII Cll 5bPh2) 2C112 and the like.

本発明の錯体触媒は、そのままで脱水素縮合反応に供し
てもよいし、錯体触媒を活性炭、シリカゲル、シリカア
ルミナ、シリコンカーバイド、アルミナ、けいそう土、
イオン交換樹脂などの多孔性固体に、担持もしくは固体
化した触媒として脱水素縮合反応に供してもよい。
The complex catalyst of the present invention may be subjected to the dehydrogenation condensation reaction as it is, or the complex catalyst may be prepared using activated carbon, silica gel, silica alumina, silicon carbide, alumina, diatomaceous earth,
The dehydrogenation condensation reaction may be carried out as a supported or solidified catalyst on a porous solid such as an ion exchange resin.

本発明で用いられる錯体触媒において、白金、ロジウム
またはルテニウム金属は、下式に示すようにモノシラン
の什素−水素結合を酸化的に付加させて、金属から脱離
する時に硅素−硅素結合を生成させ、また配位子は白金
、ロジウムまたはルテニウム錯体の安定化に寄与して、
脱水素縮合反応を持続させる役割を果すものと推定され
る。
In the complex catalyst used in the present invention, platinum, rhodium, or ruthenium metal oxidatively adds the fluorine-hydrogen bond of monosilane to form a silicon-silicon bond when desorbed from the metal, as shown in the formula below. and the ligand contributes to stabilizing the platinum, rhodium or ruthenium complex,
It is presumed that it plays a role in sustaining the dehydrogenation condensation reaction.

281+14 +MeLal−+  ll3st  M
etal   5il13→II  SI   5il
ls +I12+MeLa1脱水素縮合条件 本発明におけるモノシランの脱水素綜合反応は、溶媒に
上記のような錯体触媒を溶解させた溶液中または溶媒に
上記のような錯体触媒を担持した担持触媒などを分散さ
せた溶液中に、モノシランガスを吹きこんで気液反応と
して行なってもよいし、錯体触媒を多孔性固体に担持も
しくは固体化した触媒を用いて、モノシランガスを流通
して気相反応として行なってもよい。その際、原料であ
るモノシランガスを連続的あるいは断続的に反応器へ供
給し、脱水素縮合生成物である、ジシランおよびトリシ
ランを連続的あるいは断続的に反応器から取り出すこと
が望ましい。また上記の気液反応を行なう場合には、溶
媒中に溶解しているジシランおよび/またはトリシラン
を回収するために、モノシランガスを窒素ガスなどの不
活性ガスで希釈して用いることが好ましい。また溶媒と
しては、トルエン、キシレン、ヘプタン、ドデカン、ト
リルブタン、キュメン、ドデシルベンゼン、ジフェニル
ブタンなどの炭化水素溶媒が好ましく用いられる。
281+14 +MeLal-+ll3st M
etal 5il13→II SI 5il
ls +I12+MeLa1 Dehydrogenation condensation conditions The dehydrogenation reaction of monosilane in the present invention is carried out in a solution in which the above-mentioned complex catalyst is dissolved in a solvent, or in a solution in which a supported catalyst supporting the above-mentioned complex catalyst is dispersed in a solvent. A gas-liquid reaction may be carried out by blowing monosilane gas into the solution, or a gas-phase reaction may be carried out by flowing monosilane gas using a complex catalyst supported or solidified on a porous solid. In this case, it is desirable to continuously or intermittently supply monosilane gas as a raw material to the reactor, and to take out disilane and trisilane, which are dehydrogenation condensation products, from the reactor continuously or intermittently. Further, when performing the above gas-liquid reaction, it is preferable to use monosilane gas diluted with an inert gas such as nitrogen gas in order to recover disilane and/or trisilane dissolved in the solvent. As the solvent, hydrocarbon solvents such as toluene, xylene, heptane, dodecane, tolylbutane, cumene, dodecylbenzene, and diphenylbutane are preferably used.

また、本発明におけるモノシランの脱水素縮合反応は、
窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気中で
行なうか、反応生成物である水素ガス雰囲気中で行ない
、反応系に酸素あるいは水が存在しない状態で行なうこ
とが好ましい。反応系に酸素あるいは水が存在すると、
硅素−水素結合が酸化され、シラノール基やシロキサン
結合を生成し易くなる。
Furthermore, the dehydrogenation condensation reaction of monosilane in the present invention is
It is preferable to carry out the reaction in an atmosphere of an inert gas such as nitrogen, helium, or argon, or in an atmosphere of hydrogen gas, which is a reaction product, in the absence of oxygen or water in the reaction system. When oxygen or water is present in the reaction system,
Silicon-hydrogen bonds are oxidized, making it easier to generate silanol groups and siloxane bonds.

上記のような脱水素縮合反応は、常圧下で行なってもよ
く、また加圧下で行なってもよい。また反応温度は、0
〜200℃好ましくは15〜150℃であることが望ま
しい。
The dehydrogenation condensation reaction as described above may be carried out under normal pressure or under increased pressure. Also, the reaction temperature is 0
The temperature is preferably 15 to 150°C, preferably 15 to 150°C.

またモノシランガスと錯体触媒との接触時間は、常温・
常圧換算でのガス空間速度にて1〜20〇時間 、好ま
しくは2〜150時間−1程度である。
In addition, the contact time between monosilane gas and complex catalyst is
The time is about 1 to 200 hours, preferably about 2 to 150 hours at a gas hourly space velocity converted to normal pressure.

本発明によれば、通常ジシランとトリシランとが同時に
生成し、ジシランとトリシランの生成比は、縮合条件に
より異なるが、−船釣には、モル比で30=1〜3:1
の範囲である。
According to the present invention, disilane and trisilane are usually produced at the same time, and the production ratio of disilane and trisilane varies depending on the condensation conditions.
is within the range of

また上記のようにしてモノシランを脱水素縮合反応させ
て得られるジシランおよびトリシランは、公知の方法た
とえば蒸留などにより容易に分離することができる。
Furthermore, disilane and trisilane obtained by subjecting monosilane to a dehydrogenation condensation reaction as described above can be easily separated by known methods such as distillation.

本発明によれば、場合によっては、ジシランとトリシラ
ンとを両者とも得ることは必ずしも必要ではなく、ジシ
ランのみを得てもよく、またトリシランのみを得てもよ
い。
According to the present invention, in some cases it is not necessary to obtain both disilane and trisilane, but only disilane or only trisilane may be obtained.

発明の効果 本発明に係るジシランおよびトリシランの製造方法によ
れば、従来、高エネルギー放電下においてしか進行しな
かった、モノシランの脱水素縮合反応を、温和な反応条
件下にてかつ効率的に進行させることができる。また本
発明に係るジシランおよびトリシランの製造方法では、
原料としてモノシランを使用しているので、得られるジ
シランおよびトリシラン中に原料に基因する不純物が含
まれず、従って高純度のジシランおよびトリシランを製
造することが可能である。さらに、本発明に係るジシラ
ンおよびトリシランの製造方法では、モノシランを触媒
の存在下に脱水素縮合させることによってジシランおよ
びトリシランが11tられるため、高エネルギーが必要
なく操作が容易であり、大量生産に適している。1 以下、本発明を実施例により説明するが、本発明はこれ
ら実施例に限定されるものではない。
Effects of the Invention According to the method for producing disilane and trisilane according to the present invention, the dehydrogenation condensation reaction of monosilane, which conventionally proceeded only under high-energy discharge, can proceed efficiently under mild reaction conditions. can be done. Furthermore, in the method for producing disilane and trisilane according to the present invention,
Since monosilane is used as a raw material, the resulting disilane and trisilane do not contain impurities originating from the raw material, making it possible to produce highly pure disilane and trisilane. Furthermore, in the method for producing disilane and trisilane according to the present invention, 11 tons of disilane and trisilane are produced by dehydrogenating monosilane in the presence of a catalyst, so it is easy to operate without requiring high energy, and is suitable for mass production. ing. 1 Hereinafter, the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 還流冷却器、撹拌機および温度計を備えた容量100 
mlのガラス製反応器の内部を窒素ガスにて置換した後
、溶媒としてドデシルベンゼン50m1および錯体触媒
としてヒドリドカルボニルトリス(トリフェニルホスフ
ィン)ロジウム(llRh (Co)(r’Ph5) 
3)0.2ミリモルを導入し、油浴にて撹拌下、110
℃に加熱した。
Example 1 Capacity 100 with reflux condenser, stirrer and thermometer
After purging the inside of a ml glass reactor with nitrogen gas, 50 ml of dodecylbenzene was used as a solvent and hydridocarbonyl tris(triphenylphosphine) rhodium (llRh (Co) (r'Ph5)) was used as a complex catalyst.
3) Introduce 0.2 mmol and stir in an oil bath at 110
heated to ℃.

反応器の内部温度を110℃に保ったまま、反応器の底
部から、窒素ガスとモノシランガス(Sl14) 1 
: 1の混合気体を常温・常圧にて8 m17分の供給
速度にて、激しい撹拌下に、吹きこんだ。反応ガスは、
還流冷却器を通して連続的に反応系外に取り出した。混
合気体の吹きこみ15FJ始から4時間経過後の反応ガ
スを、ガスクロマトグラフィーにより分析した。その結
果、モノシランの転化率が15モル%であり、ジシラン
およびトリシランの選択率が95モル%であり、ジシラ
ンとトリシランの生成比(モル比)が6;1であること
が判明した。
While maintaining the internal temperature of the reactor at 110°C, nitrogen gas and monosilane gas (Sl14) 1 were added from the bottom of the reactor.
: The mixed gas of Step 1 was blown into the reactor at room temperature and pressure at a feed rate of 8 ml/17 minutes with vigorous stirring. The reaction gas is
It was continuously taken out of the reaction system through a reflux condenser. The reaction gas 4 hours after the start of blowing the mixed gas at 15FJ was analyzed by gas chromatography. As a result, it was found that the conversion rate of monosilane was 15 mol %, the selectivity of disilane and trisilane was 95 mol %, and the production ratio (molar ratio) of disilane and trisilane was 6:1.

実施例2〜3 錯体触媒の種類を、表1に示すように代えた以外は、実
施例1と同様にしてモノシランの脱水素縮合反応を行な
った。混合気体の吹きこみ開始から4時間経過後の、反
応ガスのがスクロマトグラフ分析結果を表1に示す。
Examples 2 to 3 A dehydrogenation condensation reaction of monosilane was carried out in the same manner as in Example 1, except that the type of complex catalyst was changed as shown in Table 1. Table 1 shows the results of chromatographic analysis of the reaction gas 4 hours after the start of blowing the mixed gas.

表1 比較例1 触媒として、ジーμmクロロテトラ力ルポニルジロジウ
ム([Rh (μm047 )(GO) 2 ] 2 
) 0. 1 ミリモルを用いた以外は、実施例1と同
様に12で脱水素縮合反応を行なったが、ジシランおよ
び/またはトリシランは生成しなかった。
Table 1 Comparative Example 1 As a catalyst, diμm chlorotetratonyl dirhodium ([Rh (μm047 ) (GO) 2 ] 2
) 0. A dehydrogenation condensation reaction was carried out in Example 12 in the same manner as in Example 1 except that 1 mmol was used, but disilane and/or trisilane were not produced.

比較例2 触媒として、塩化白金酸(II  PtCIJ  −8
11□0)0.2ミリモルを用いた以外は、実施例1と
同様にして脱水素縮合反応を行なったが、ジシランおよ
び/またはトリシランは生成しながった。
Comparative Example 2 As a catalyst, chloroplatinic acid (II PtCIJ-8
A dehydrogenation condensation reaction was carried out in the same manner as in Example 1 except that 0.2 mmol of 11□0) was used, but disilane and/or trisilane were not produced.

比較例3 触媒として、三塩化ルテニウム(RuCN 3 )0.
2ミリモルを用いた以外は、実施例1と同様にして脱水
素縮合反応を行なったが、ジシランおよび/またはトリ
シランは生成しながった。
Comparative Example 3 Ruthenium trichloride (RuCN 3 ) was used as a catalyst.
A dehydrogenation condensation reaction was carried out in the same manner as in Example 1 except that 2 mmol was used, but disilane and/or trisilane were not produced.

実施例4〜10 溶媒として、1.1−ジフェニルブタン50m1を用い
、そして触媒として、白金化合物、ロジウム化合物また
はルテニウム化合物と配位子とを表2に示す割合で混合
したものを用いた以外は、実施例1と同様にしてモノシ
ランの脱水素縮合反応を行なった。混合気体の吹きこみ
開始がら4時間経過後の、反応ガスのガスクロマトグラ
フ分析結果を表2に示す。
Examples 4 to 10 50 ml of 1,1-diphenylbutane was used as the solvent, and a mixture of a platinum compound, rhodium compound, or ruthenium compound and a ligand in the proportions shown in Table 2 was used as the catalyst. A dehydrogenation condensation reaction of monosilane was carried out in the same manner as in Example 1. Table 2 shows the results of gas chromatography analysis of the reaction gas 4 hours after the start of blowing the mixed gas.

実施例11 錯体触媒として、ヒドリドカルボニルトリス(トリフェ
ニルアンチモン)ロジウム(11旧+(CO)(SbP
bs ) 3 ) 0. 2ミリモルをトルエン50m
1に溶解し、得られた溶液にヤシガラ活性炭1.0 m
lを入れ、−晩装置した後、エバポレーターにてトルエ
ンを除去することにより、活性炭に錯体触媒を担持した
。得られた担持触媒全量を内径1印のパイレックス製反
応管に充填し、反応温度を130℃に保ちながら、反応
管上部より窒素10%含有モノシランガスを常温・常圧
にて4ml/分の1j−給速度にて導入した。反応器下
部より、冷却器を通して反応ガスを連続的に反応系外に
取り出した。
Example 11 As a complex catalyst, hydridocarbonyltris(triphenylantimony)rhodium (11O+(CO)(SbP
bs) 3) 0. 2 mmol to 50 m of toluene
1, and 1.0 m of coconut shell activated carbon was added to the resulting solution.
The complex catalyst was supported on activated carbon by removing toluene with an evaporator. The entire amount of the obtained supported catalyst was packed into a Pyrex reaction tube with an inner diameter of 1 mark, and while the reaction temperature was kept at 130°C, monosilane gas containing 10% nitrogen was added from the top of the reaction tube at 4 ml/min at room temperature and pressure. It was introduced at the feeding speed. Reaction gas was continuously taken out of the reaction system from the bottom of the reactor through a cooler.

混合気体の導入開始から4時間経過後の反応ガスを、ガ
スクロマトグラフィーにより分析した。
The reaction gas 4 hours after the start of introduction of the mixed gas was analyzed by gas chromatography.

その結果、モノシランの転化率が20モル%であり、ジ
シランおよびトリシランの選択率が96モル%であり、
ジシランとトリシランの生成比(モル比)が8:1であ
ることが判明した。
As a result, the conversion rate of monosilane was 20 mol%, the selectivity of disilane and trisilane was 96 mol%,
It was found that the production ratio (molar ratio) of disilane and trisilane was 8:1.

実施例12 錯体触媒としてテトラキス(トリフェニルホスフィン)
白金(PL(PP113) 4) 0. 2ミリモルを
用いて実施例11と同様にして活性炭担持触媒を調製し
た。得られた担持、触媒全量を用いて、反応温度を11
0’Cとした以外は、実施例11と同様にl−で脱水素
縮合反応を行なった。
Example 12 Tetrakis (triphenylphosphine) as a complex catalyst
Platinum (PL (PP113) 4) 0. An activated carbon supported catalyst was prepared in the same manner as in Example 11 using 2 mmol. Using the obtained support and the total amount of catalyst, the reaction temperature was increased to 11
The dehydrogenation condensation reaction was carried out in the same manner as in Example 11 except that the temperature was 0'C.

混合ガス導入開始から4時間経過後の反応ガスを、ガス
クロマトグラフ分析した結果、モノシランの転化率は1
8モル%であり、ジシランおよびトリシランの選択率は
94モル%であり、ジシランとトリシランの生成比(モ
ル比)は6:1であった。
As a result of gas chromatography analysis of the reaction gas 4 hours after the start of the mixed gas introduction, the conversion rate of monosilane was 1.
The selectivity of disilane and trisilane was 94 mol%, and the production ratio (molar ratio) of disilane and trisilane was 6:1.

実施例13 錯体触媒としてトリス(トリフェニルホスフィン)ジク
ooルテニウム(RuCN 2(PPh3) 3 )0
.2ミリモルを用い、そして反応温度を150℃とした
以外は、実施例11と同様にして担持触媒の調製および
モノシランの脱水素縮合反応を行なった。
Example 13 Tris(triphenylphosphine)dicoo ruthenium (RuCN 2 (PPh3) 3 ) 0 as a complex catalyst
.. A supported catalyst was prepared and a dehydrogenation condensation reaction of monosilane was carried out in the same manner as in Example 11, except that 2 mmol was used and the reaction temperature was 150°C.

混合ガス導入開始から4時間紅過後の反応ガスを、ガス
クロマトグラフ分析した結果、モノシランの転化率は1
7モル%であり、ジシランおよびトリシランの選択率は
92モル%であり、ジシランとトリシランの生成比(モ
ル比)は7:1であった。
As a result of gas chromatography analysis of the reaction gas that had been filtered for 4 hours from the start of the mixed gas introduction, the conversion rate of monosilane was 1.
The selectivity of disilane and trisilane was 92 mol%, and the production ratio (molar ratio) of disilane and trisilane was 7:1.

実施例14 スチレン−ジビニルベンゼン共重合体からなる多孔性ビ
ーズを臭素化した後、LIPPb。を用いて多孔性ビー
ズに有機リンを導入した担体10m1に、三塩化ロジウ
ム(RhCi) 3) 0. 2 ミリモルをトルエン
50m1中に溶解させた溶液を吸着担持させて、触媒を
調製した。上記のようにして調製した触媒を用いた以外
は、実施例1と同様にして脱水素縮合反応を行なった。
Example 14 LIPPb after bromination of porous beads consisting of styrene-divinylbenzene copolymer. Rhodium trichloride (RhCi) 3)0. A catalyst was prepared by adsorbing and supporting a solution of 2 mmol dissolved in 50 ml of toluene. A dehydrogenation condensation reaction was carried out in the same manner as in Example 1, except that the catalyst prepared as described above was used.

混合気体の吹きこみ開始から4時IHJ紅過後の反応ガ
スをガスクロマトグラフ分析した結果、モノシランの転
化率は18モル%であり、ジシランおよびトリシランの
選択率は94モル%であり、ジシランとトリシランの生
成比(モル比)は6:1であった。
As a result of gas chromatography analysis of the reaction gas after IHJ filtration at 4 hours from the start of blowing the mixed gas, the conversion rate of monosilane was 18 mol%, the selectivity of disilane and trisilane was 94 mol%, and the The production ratio (molar ratio) was 6:1.

Claims (1)

【特許請求の範囲】[Claims] (1)モノシランを脱水素縮合して、ジシランおよびト
リシランを製造するに際して、(i)白金、ロジウム、
ルテニウムから選ばれる少なくとも1種の金属または化
合物に(ii)有機リン化合物、有機砒素化合物、有機
アンチモン化合物から選ばれる少なくとも1種の配位子
が配位してなる錯体触媒の存在下に、モノシランの脱水
素縮合反応を行なうことを特徴とするジシランおよびト
リシランの製造方法。
(1) When producing disilane and trisilane by dehydrogenating monosilane, (i) platinum, rhodium,
In the presence of a complex catalyst comprising at least one metal or compound selected from ruthenium and (ii) at least one ligand selected from an organic phosphorus compound, an organic arsenic compound, and an organic antimony compound, monosilane 1. A method for producing disilane and trisilane, which comprises carrying out a dehydrogenation condensation reaction.
JP390689A 1989-01-11 1989-01-11 Production of disilane and trisilane Pending JPH02184513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP390689A JPH02184513A (en) 1989-01-11 1989-01-11 Production of disilane and trisilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP390689A JPH02184513A (en) 1989-01-11 1989-01-11 Production of disilane and trisilane

Publications (1)

Publication Number Publication Date
JPH02184513A true JPH02184513A (en) 1990-07-19

Family

ID=11570232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP390689A Pending JPH02184513A (en) 1989-01-11 1989-01-11 Production of disilane and trisilane

Country Status (1)

Country Link
JP (1) JPH02184513A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027705A (en) * 1998-01-08 2000-02-22 Showa Denko K.K. Method for producing a higher silane
US6858196B2 (en) 2001-07-19 2005-02-22 Asm America, Inc. Method and apparatus for chemical synthesis
EP2135844A1 (en) 2008-06-17 2009-12-23 Evonik Degussa GmbH Method for manufacturing higher hydridosilanes
DE102009053804B3 (en) * 2009-11-18 2011-03-17 Evonik Degussa Gmbh Process for the preparation of hydridosilanes
DE102009048087A1 (en) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Process for the preparation of higher hydridosilanes
EP2069368A4 (en) * 2006-10-06 2011-06-22 Kovio Inc Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
WO2011122959A1 (en) * 2010-03-30 2011-10-06 Polysilane As Process for the production of disilane
DE102010062984A1 (en) 2010-12-14 2012-06-14 Evonik Degussa Gmbh Process for the preparation of higher halogen and hydridosilanes
DE102010063823A1 (en) 2010-12-22 2012-06-28 Evonik Degussa Gmbh Process for the preparation of hydridosilanes
WO2014095278A1 (en) 2012-12-21 2014-06-26 Evonik Industries Ag Method for hydrogenating higher halogen-containing silane compounds
DE102013207442A1 (en) 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the production of silanes
DE102013207443A1 (en) 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the production of polysilanes
KR20170035953A (en) 2014-08-20 2017-03-31 쇼와 덴코 가부시키가이샤 Method for producing oligosilane
KR20190004322A (en) 2016-06-10 2019-01-11 쇼와 덴코 가부시키가이샤 Preparation method of oligosilane
KR20190041512A (en) 2016-09-23 2019-04-22 쇼와 덴코 가부시키가이샤 Preparation method of oligosilane
KR20190052711A (en) 2016-10-27 2019-05-16 쇼와 덴코 가부시키가이샤 Process for producing oligosilane and apparatus for producing oligosilane
DE102020211833A1 (en) 2020-09-22 2022-03-24 Evonik Operations Gmbh Process for the production of oligomeric hydridosilanes from SiH4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027705A (en) * 1998-01-08 2000-02-22 Showa Denko K.K. Method for producing a higher silane
US6858196B2 (en) 2001-07-19 2005-02-22 Asm America, Inc. Method and apparatus for chemical synthesis
US8461284B2 (en) 2006-10-06 2013-06-11 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8846507B2 (en) 2006-10-06 2014-09-30 Thin Film Electronics Asa Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US8092867B2 (en) 2006-10-06 2012-01-10 Kovio, Inc. Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
EP2069368A4 (en) * 2006-10-06 2011-06-22 Kovio Inc Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
JP2011524329A (en) * 2008-06-17 2011-09-01 エボニック デグサ ゲーエムベーハー Method for producing high-grade hydridosilane
EP2135844A1 (en) 2008-06-17 2009-12-23 Evonik Degussa GmbH Method for manufacturing higher hydridosilanes
DE102009048087A1 (en) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Process for the preparation of higher hydridosilanes
WO2011038977A1 (en) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Method for producing higher hydridosilane
WO2011061088A1 (en) 2009-11-18 2011-05-26 Evonik Degussa Gmbh Method for producing hydridosilanes
JP2013511459A (en) * 2009-11-18 2013-04-04 エボニック デグサ ゲーエムベーハー Method for producing hydridosilane
DE102009053804B3 (en) * 2009-11-18 2011-03-17 Evonik Degussa Gmbh Process for the preparation of hydridosilanes
WO2011122959A1 (en) * 2010-03-30 2011-10-06 Polysilane As Process for the production of disilane
NO334627B1 (en) * 2010-03-30 2014-04-28 Polysilane As Process for the production of disilane
DE102010062984A1 (en) 2010-12-14 2012-06-14 Evonik Degussa Gmbh Process for the preparation of higher halogen and hydridosilanes
WO2012080003A1 (en) 2010-12-14 2012-06-21 Evonik Degussa Gmbh Process for preparing higher halosilanes and hydridosilanes
WO2012084897A1 (en) 2010-12-22 2012-06-28 Evonik Degussa Gmbh Process for preparing hydridosilanes
DE102010063823A1 (en) 2010-12-22 2012-06-28 Evonik Degussa Gmbh Process for the preparation of hydridosilanes
WO2014095278A1 (en) 2012-12-21 2014-06-26 Evonik Industries Ag Method for hydrogenating higher halogen-containing silane compounds
DE102012224202A1 (en) 2012-12-21 2014-07-10 Evonik Industries Ag Process for hydrogenating higher halogen-containing silane compounds
DE102013207442A1 (en) 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the production of silanes
DE102013207443A1 (en) 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the production of polysilanes
KR20170035953A (en) 2014-08-20 2017-03-31 쇼와 덴코 가부시키가이샤 Method for producing oligosilane
KR20190004322A (en) 2016-06-10 2019-01-11 쇼와 덴코 가부시키가이샤 Preparation method of oligosilane
KR20190041512A (en) 2016-09-23 2019-04-22 쇼와 덴코 가부시키가이샤 Preparation method of oligosilane
KR20190052711A (en) 2016-10-27 2019-05-16 쇼와 덴코 가부시키가이샤 Process for producing oligosilane and apparatus for producing oligosilane
DE102020211833A1 (en) 2020-09-22 2022-03-24 Evonik Operations Gmbh Process for the production of oligomeric hydridosilanes from SiH4
WO2022063680A1 (en) 2020-09-22 2022-03-31 Evonik Operations Gmbh Process for preparing oligomeric hydridosilanes from sih4

Similar Documents

Publication Publication Date Title
JPH02184513A (en) Production of disilane and trisilane
Seki et al. Single-operation synthesis of vinylsilanes from alkenes and hydrosilanes with the aid of Ru3 (CO) 12
JP2606924B2 (en) Method for producing aminopropylsilane compound
JPH0796555B2 (en) Method for producing aminopropylsilyl compound
JPH08208667A (en) Production of 3-halogen-or-pseudohalogenalkylsilane ester
US4593112A (en) Method for the preparation of a tert-hydrocarbyl silyl compound
JPH08208838A (en) Method of hydrosilylation by using unsaturated ketone as accelerator
CN110799458A (en) Triphenylgermylsilyl and trichlorosilyl-trichlorogermyl for producing germanium-silicon layers and method for producing the same from trichlorosilyl-triphenylgermyl
TWI755148B (en) Process for removing an impurity from a chlorosilane mixture
JP2960522B2 (en) Purification method of silane mixture
JPH0640965B2 (en) Supported catalysts for producing monocarboxylic acid anhydrides
KR20110107349A (en) Process for producing organohalohydrosilanes
JPS5856532B2 (en) Rhodium complex compound*its manufacture* rhodium polymer complex compound*its manufacture* rhodium compound adhered to carrier*its manufacture and method of carrying out chemical reaction
CN101970447B (en) Process for the preparation of haloalkylalkoxysilancs and haloalkylhalosilanes
JPH0331290A (en) Production of tertiary hydrocarbon silyl compound
JPS6327351B2 (en)
US5248802A (en) Ruthenim catalyzed process for preparation of β-cyanoalkylsilanes
JP3122358B2 (en) Method for producing 3-chloropropylsilanes
Okazaki et al. Quantitative transfer of a methyl group from a methyl (hydrido) iridium complex to SiRH3 (R= n-butyl, pentyl or hexyl) to give SiR (Me) H2 and a dihydridoiridium complex
JPH05202073A (en) Production of tertiary hydrocarbon silyl compound
JP3766475B2 (en) Monosilane production method
JP4120034B2 (en) Method for producing haloorganosilane compound
JP3821922B2 (en) Method for producing silicon tetrachloride
JPH0291084A (en) Sylylation
JP2795086B2 (en) Method for producing dimethylchlorosilane