JPH0218357A - Carbon fiber-carbon composite material and production thereof - Google Patents

Carbon fiber-carbon composite material and production thereof

Info

Publication number
JPH0218357A
JPH0218357A JP63168276A JP16827688A JPH0218357A JP H0218357 A JPH0218357 A JP H0218357A JP 63168276 A JP63168276 A JP 63168276A JP 16827688 A JP16827688 A JP 16827688A JP H0218357 A JPH0218357 A JP H0218357A
Authority
JP
Japan
Prior art keywords
carbon
vapor
pitch
molding
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63168276A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Hitoshi Inoue
斉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63168276A priority Critical patent/JPH0218357A/en
Publication of JPH0218357A publication Critical patent/JPH0218357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high apparent density and isotropic property to the above material and to improve the tensile strength, thermal impact resistance, electrical conductivity, and thermal conductivity thereof by molding vapor-phase method carbon fibers contg. a slight amt. of org. matter, then impregnating pitch or thermosetting resin therein and carbonizing the molding. CONSTITUTION:The org. matter (e.g.: phenolic resin) is added at 1-3wt.% to the vapor-phase method carbon fibers having 0.1-0.5mum diameter and 20mum-1mm length and after the mixture is press-molded, the mixture is cured by heating to obtain the molding having 0.03-0.5g/cm<3> apparent density. The pitch or the thermosetting resin is then impregnated in this molding and is calcined and carbonized at 800-1,200 deg.C in a nonoxidative atmosphere. The carbon fiber-carbon composite material consisting of the fine vapor-phase method carbon fibers as fillers and the carbon as matrix and having >=1.8g/cm<3> apparent density, <=1.2 anisotropic ratio, and 5-25wt.% filler content is obtd. by repeating the above-mentioned process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、見掛密度が大きく、等方性で、引張り強度が
高く、耐熱衝撃性、電気伝導性、熱伝導性に優れた炭素
繊維−炭素複合材およびその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides carbon fibers that have a large apparent density, isotropy, high tensile strength, excellent thermal shock resistance, electrical conductivity, and thermal conductivity. -Regarding a carbon composite material and its manufacturing method.

(従来の技術) 従来、炭素繊H(以下CFという)−炭素(以下Cとい
う)複合材をつくるには、■PΔNまたはピッチ系CF
をフィラーとして、樹脂或いはビッヂを含浸させ焼成炭
化する操作を繰返してつくる方法、■気相法CFをピッ
チ等と混合し、成形炭化する方法、等がある。
(Prior art) Conventionally, in order to make carbon fiber H (hereinafter referred to as CF)-carbon (hereinafter referred to as C) composite material, ■PΔN or pitch-based CF
There are two methods: a method in which the process of impregnating resin or bitge with a filler and firing and carbonizing is repeated, and a method in which gas-phase CF is mixed with pitch and the like and molded and carbonized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記PANやピッチ系CFを用いた炭素繊維−
炭素複合材(以下CF/Cという)は曲げ強度の比で表
わされる異方比が大きく、使用目的が制限され、また、
PANやピッチのCFは気相法CFに較べて、CF自体
の見掛密度(以下BDという)が低いため、これを用い
たOF/Cは、高い80のものは得られにくい。
However, carbon fiber using the above-mentioned PAN or pitch-based CF
Carbon composite materials (hereinafter referred to as CF/C) have a large anisotropy ratio expressed by the bending strength ratio, which limits the purpose of use, and
PAN or pitch CF has a lower apparent density (hereinafter referred to as BD) of the CF itself than vapor phase CF, so it is difficult to obtain a high OF/C of 80 using this.

異方比を小さくして1に近づけ、等方性とする炭素材料
のつくり方に冷間静水圧プレス(CIP)による方法が
ある。この方法は、コークス等の微粉にピッチ等のバイ
ンダーを加え、混和後に、粉砕した顆粒状のものを冷間
静水圧プレスにより成形し、炭化するものである。この
方法では強度は高くなるが電気伝導性、熱伝導性は低い
等の欠点がある。
There is a method using cold isostatic pressing (CIP) to create a carbon material that reduces the anisotropy ratio to approach 1 and makes it isotropic. In this method, a binder such as pitch is added to fine powder such as coke, and after mixing, the pulverized granules are formed by cold isostatic pressing and carbonized. Although this method increases strength, it has drawbacks such as low electrical conductivity and low thermal conductivity.

また、気相法CFを用いる方法でも、BDが小さく、強
度が低い等の欠点があった。
Further, the method using vapor phase CF also had drawbacks such as small BD and low strength.

一般にCF/Cにおいて、強度などの械的特性は[3D
が大きくなる程よくなる。また、電気的、熱的特性は、
ピッチ等の易黒鉛化素材の含有量を増加すればよくなる
。しかし、単にピッチを炭化したのでは大きなボアが無
数に形成され、BDも低いものしか得られない。さらに
、等方性のC[/Cを得るには、押出し、加圧などの方
向性をもった成形力は採用しない方がよい等、それぞれ
の物性に対する拘束条件が存在することが知られている
In general, in CF/C, mechanical properties such as strength [3D
The larger the value, the better. In addition, the electrical and thermal characteristics are
This can be achieved by increasing the content of easily graphitizable materials such as pitch. However, if the pitch is simply carbonized, countless large bores will be formed and only a low BD will be obtained. Furthermore, it is known that in order to obtain isotropic C There is.

本発明者等は、上記拘束条件を勘案して、フィラー、マ
トリックスの原料素材、操作条件を選択して成形し、こ
れを炭化すれば、上記欠点のない、物性の優れたCF/
Cが得られると考えた。
The present inventors have found that if the filler, matrix raw materials, and operating conditions are selected in consideration of the above-mentioned constraint conditions, and the molded material is carbonized, a CF/
I thought I could get C.

本発明は上記の考えに基づいてなされたもので、BDが
大きく、強度、耐熱衝撃性等の特性に優れたCF/C,
およびその製造方法を提供することを目的とする。
The present invention has been made based on the above idea, and is based on CF/C which has a large BD and excellent properties such as strength and thermal shock resistance.
The purpose is to provide a method for producing the same.

(課題を解決するための手段〕 上記の目的を達成するため、本発明のCF/Cは、微細
な気相法CFをフィラー、Cをマトリックスとし、BD
が1.89/cd以上、異方比が1゜2以下、フィラー
のmが5〜25vo1%である。
(Means for Solving the Problems) In order to achieve the above object, the CF/C of the present invention uses fine gas-phase CF as a filler and C as a matrix, and BD
is 1.89/cd or more, the anisotropy ratio is 1°2 or less, and m of the filler is 5 to 25 vol%.

この場合BDの上限は2.1ff/cd程度まで可能で
ある。
In this case, the upper limit of BD can be about 2.1ff/cd.

またその製造方法においては、気相法CFに少かの有機
物を含有させ、加圧成形、熱硬化して賦形体を形成した
後、これにピッチまたは熱硬化性樹脂を含浸し、炭化す
る操作を繰返す。
In addition, in the manufacturing method, a small amount of organic matter is added to vapor phase CF, pressure molded and thermoset to form a shaped body, and then impregnated with pitch or thermosetting resin and carbonized. Repeat.

本発明に用いる気相法CFとしては、径が0゜1〜0.
5mμ、長さが1077Lμ〜1#l#lのものが好ま
しく、CFに有機物が1〜3wt%残留している場合は
そのまま、有機物が残留していない場合は、フェノール
樹脂8等の熱硬化性樹脂を1〜3wt%含有させて、圧
縮成形し、圧縮した状態で加熱硬化させ、BDが0.0
3〜0.55?/cmの賦形体とする。この賦形体には
、径の近似した多数の小さいボアが形成されている。
The gas phase CF used in the present invention has a diameter of 0°1 to 0.
5 mμ and a length of 1077 Lμ to 1#l#l is preferable. If CF has 1 to 3 wt% of organic matter remaining, use it as is. If no organic matter remains, use thermosetting resin such as phenolic resin 8. Containing 1 to 3 wt% of resin, compression molding, heating and curing in the compressed state, and BD of 0.0
3-0.55? /cm. A large number of small bores with similar diameters are formed in this shaped body.

上記賦形体にピッチ或いはフェノール樹脂、フラン樹脂
などの熱可塑性樹脂を含浸させ、N2等の非酸化性雰囲
気下、800〜1200℃で焼成炭化する。さらに20
00℃以上に熱処理することもできる。この際、ピッチ
或いは熱硬化性樹脂の炭化率は50%前後であるので、
−回では上記賦形体のボアが埋められず、ピッチ等の含
浸、炭化を繰返した後、高温に焼成すると、熱収縮して
、BDが1.89/cd以上のCF/Cが得られる。
The above-mentioned shaped body is impregnated with pitch or a thermoplastic resin such as a phenol resin or a furan resin, and then fired and carbonized at 800 to 1200°C in a non-oxidizing atmosphere such as N2. 20 more
Heat treatment can also be carried out at a temperature of 00°C or higher. At this time, since the carbonization rate of pitch or thermosetting resin is around 50%,
- times, the bore of the shaped body is not filled, and after repeating impregnation with pitch and carbonization and firing at a high temperature, it undergoes heat shrinkage and a CF/C with a BD of 1.89/cd or more is obtained.

この際CF/C中のCFの聞は5wt%以上必要であり
、上限は25wt%位まで可能である。
At this time, the content of CF in CF/C is required to be 5 wt% or more, and the upper limit can be about 25 wt%.

上記使用する気相法CFの径、長さが大きいとボアが大
きくなり過ぎる。
If the diameter and length of the gas-phase CF used above are large, the bore will become too large.

賦形体のBDが0.039/cl以下では、CF/Cの
強度が低くなり、0.59/aiを越えると、CF/C
の異方比が大きくなる。それは、BDを高めるためには
圧縮を大とけねばならず、そのためにCFが特定の方向
に並ぶ傾向があるからである。またCFのMが5wt%
未満では強度が低く、25wt%を越えるものはつくる
のが容易でない。
When the BD of the excipient is 0.039/cl or less, the strength of CF/C becomes low, and when it exceeds 0.59/ai, the CF/C
The anisotropic ratio of becomes larger. This is because in order to increase the BD, compression must be increased, and for this reason, the CFs tend to line up in a particular direction. Also, M in CF is 5wt%
If it is less than 25 wt%, the strength is low, and if it is more than 25 wt%, it is not easy to produce.

本発明のCF/Cの各物性が優れているのは次の理由に
よると考えられる。
The reason why the physical properties of the CF/C of the present invention are excellent is considered to be as follows.

すなわち、微細な気相法CFを圧縮成形した賦形体およ
びPAN−CFの圧縮成形した賦形体のボアの分布を測
定すると、第1図に示すように気相法CFの賦形体は近
似した小径のボアが集中しているのに対し、PAN−C
Fの賦形体は大小の径のボアが広く分布している。
In other words, when we measure the bore distribution of fine compression-molded bodies made of vapor-phase CF and PAN-CF, we find that the bodies of vapor-phase CF have similar small diameters, as shown in Figure 1. While the bores of PAN-C are concentrated,
The shaped body of F has bores of large and small diameters widely distributed.

そのため、これら賦形体にピッチを含浸、炭化すると、
本発明のものにおいては、含浸されたピッチの50〜6
0%が炭素となって固定されるのに対し、PAN−CF
では、大径のボアに含浸したピッチが炭化過程で流出す
るため、30〜40%の固定にとどまる。したがって、
ビッヂ含浸炭化を繰返えした場合の8Dの変化を測定す
ると、第2図に示すように、PAN−CFではBDがあ
まり上昇しない。
Therefore, when these excipients are impregnated with pitch and carbonized,
In the present invention, 50 to 6 of the impregnated pitch
0% is fixed as carbon, whereas PAN-CF
In this case, since the pitch impregnated into the large diameter bore flows out during the carbonization process, the pitch remains fixed at 30 to 40%. therefore,
When the change in 8D is measured when the bidge impregnation and carbonization is repeated, as shown in FIG. 2, BD does not increase much in PAN-CF.

実施例1〜3 径0.2mμ〜0.5TrLμ、長さ107FLμ〜1
00mμ気相法CFを用いてフェノール樹脂2wt%と
なるように添加し、BDが0.1.0.3゜0.5g/
cdの3秤の賦形体をつくり、これらにそれぞれピッチ
(新日本製鉄化学株式会社製、IP−90)の含浸、1
000℃焼成を4回繰返えした後、2800℃以上で熱
処理して実施例の資料をつくり、各物性を測定し第1表
に示した。
Examples 1 to 3 Diameter 0.2 mμ to 0.5TrLμ, length 107FLμ to 1
Phenol resin was added to 2wt% using 00mμ vapor phase method CF, and BD was 0.1.0.3°0.5g/
Three scale excipients of CD were prepared, each of which was impregnated with pitch (manufactured by Nippon Steel Chemical Co., Ltd., IP-90).
After repeating the firing at 000°C four times, the samples were heat-treated at 2800°C or higher to prepare materials for examples, and their physical properties were measured and shown in Table 1.

第1表より明らかなように本発明のCF/Cは各物性が
平均してよく、特に耐熱衝撃性が優れていることがわか
る。
As is clear from Table 1, the CF/C of the present invention has good average physical properties, and is particularly excellent in thermal shock resistance.

また、CF/CのBDは熱処理時に熱収縮が大きいので
高い密度のものを容易に製造することができる。
Furthermore, since CF/C BDs have large thermal shrinkage during heat treatment, high-density BDs can be easily manufactured.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明のCF/Cは、容易に製造出
来、しかも平均して物性がよく、特に耐熱衝撃性に優れ
ているので、従来のCF/Cでは使用不可能な苛酷な条
件下での材料として好適で、核融合炉内壁材、摺動材、
発熱体、放ffi電柱、鋳型、半導体治具等広い用途が
期待される。
As described above, the CF/C of the present invention can be easily produced, has good physical properties on average, and is particularly excellent in thermal shock resistance, so it can be used under harsh conditions that conventional CF/C cannot be used. Suitable as a material for fusion reactor inner walls, sliding materials,
It is expected to have a wide range of uses, including heating elements, radiator poles, molds, and semiconductor jigs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、PAN−CFおよび気相法CF賦形体のボア
径と累積%の関係を示す図、第2図は上記賦形体にピッ
チを含浸、炭化する操作を繰返えした際のBDの変化を
示す図である。
Fig. 1 shows the relationship between the bore diameter and cumulative percentage of PAN-CF and vapor-phase CF excipients, and Fig. 2 shows the relationship between the bore diameter and cumulative percentage of PAN-CF and gas phase CF excipients, and Fig. 2 shows the BD when the operations of impregnating the excipients with pitch and carbonizing them are repeated. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)微細な気相法炭素繊維をフィラー、炭素をマトリ
ックスとし、見掛密度が1.8g/cm^2以上、異方
比が1.2以下、フィラーの量が5〜25wt%である
ことを特徴とする炭素繊維−炭素複合材。
(1) Fine vapor-grown carbon fiber is used as filler and carbon is used as matrix, apparent density is 1.8 g/cm^2 or more, anisotropy ratio is 1.2 or less, and filler amount is 5 to 25 wt%. A carbon fiber-carbon composite material characterized by:
(2)気相法炭素繊維に少量の有機物を含有させ、加圧
成形、加熱硬化して賦形体を形成した後、これにピッチ
または熱硬化樹脂を含浸、炭化する操作を繰返すことを
特徴とする炭素繊維−炭素複合材の製造方法。
(2) The feature is that a small amount of organic material is added to vapor-grown carbon fiber, pressure molded and heat cured to form a shaped body, and then the operations of impregnating pitch or thermosetting resin and carbonizing the body are repeated. A method for producing a carbon fiber-carbon composite material.
JP63168276A 1988-07-06 1988-07-06 Carbon fiber-carbon composite material and production thereof Pending JPH0218357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168276A JPH0218357A (en) 1988-07-06 1988-07-06 Carbon fiber-carbon composite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168276A JPH0218357A (en) 1988-07-06 1988-07-06 Carbon fiber-carbon composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH0218357A true JPH0218357A (en) 1990-01-22

Family

ID=15865018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168276A Pending JPH0218357A (en) 1988-07-06 1988-07-06 Carbon fiber-carbon composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH0218357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325946A (en) * 1992-05-25 1993-12-10 Yazaki Corp Electrode for battery, its manufacuture and battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325946A (en) * 1992-05-25 1993-12-10 Yazaki Corp Electrode for battery, its manufacuture and battery

Similar Documents

Publication Publication Date Title
KR101618736B1 (en) Isotropic graphite article and and method of manufacturing the same
US4671907A (en) Method of manufacturing carbon materials
US3201330A (en) Process of forming a carbon article from furfural alcohol and carbon particles
US3993738A (en) High strength graphite and method for preparing same
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JPH0218357A (en) Carbon fiber-carbon composite material and production thereof
JPH069270A (en) Preparation of carbon/carbon composite material part using mesophase powder
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
RU2135854C1 (en) Friction composite material and method of its manufacture
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPH07315931A (en) Carbon material for ion implantation member and production thereof
JPS61122162A (en) Manufacture of carbon fiber reinforced carbon material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
JPH0597549A (en) Graphite crucible for metal evaporation
JP2633107B2 (en) Method for producing boron / carbon composite neutron shielding material
JPS63112464A (en) Manufacture of carbon fiber reinforced carbon material
Overholser et al. High strength graphite and method for preparing same
JPH0553190B2 (en)
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JPS63151677A (en) Carbon fiber reinforced carbon composite material
KR101672292B1 (en) Fiber reinforced composite using carbonized catalyst and manufacturing method
JPS5957975A (en) Non-permeable carbon material manufacture