JPH02182804A - Method for degreasing powder molding body - Google Patents

Method for degreasing powder molding body

Info

Publication number
JPH02182804A
JPH02182804A JP64000611A JP61189A JPH02182804A JP H02182804 A JPH02182804 A JP H02182804A JP 64000611 A JP64000611 A JP 64000611A JP 61189 A JP61189 A JP 61189A JP H02182804 A JPH02182804 A JP H02182804A
Authority
JP
Japan
Prior art keywords
water
degreasing
soluble
powder
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP64000611A
Other languages
Japanese (ja)
Other versions
JPH0689372B2 (en
Inventor
Hiroshi Kihara
宏 木原
Hideki Arai
英樹 荒井
Shigeaki Ogata
緒方 茂昭
Yoshio Katagiri
片桐 義雄
Katsuyuki Fujita
勝幸 藤田
Tadahiko Wakechigai
輪違 忠彦
Hiroyoshi Hiratsuka
平塚 浩義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Seiko Electronic Components Ltd
Seiko Instruments Inc
Original Assignee
Sumitomo Cement Co Ltd
Seiko Electronic Components Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd, Seiko Electronic Components Ltd, Seiko Instruments Inc filed Critical Sumitomo Cement Co Ltd
Priority to JP64000611A priority Critical patent/JPH0689372B2/en
Priority to US07/417,198 priority patent/US5059388A/en
Priority to KR1019890014358A priority patent/KR930006005B1/en
Priority to EP89118587A priority patent/EP0362866B1/en
Priority to DE68914379T priority patent/DE68914379T2/en
Publication of JPH02182804A publication Critical patent/JPH02182804A/en
Publication of JPH0689372B2 publication Critical patent/JPH0689372B2/en
Priority to HK102095A priority patent/HK102095A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To elute and remove a water-soluble thermoplastic polymer at a high speed in a short time without deforming the molding body by bringing the powder molding body contg. an org. binder consisting of water-soluble and water-insoluble thermoplastic polymers into contact with fluidized water. CONSTITUTION:A powder compact consisting of powder (metal, etc.,) and an org. binder consisting of a water-soluble thermoplastic polymer (polyethylene oxide, etc.,) and a water-insoluble thermoplastic polymer (polystyrene, etc.,) is degreased, and sintered to produce a sintered body. At this time, plural molding bodies are dipped in the water 3 in an elution tank 2, and placed on a holder 4. The water 3 is fluidized by an agitator 5 to rapidly elute the water-soluble polymer from the compact 1. The body is heated in a heating furnace to remove the residual org. binder, and sintered. By this method, the water-soluble polymer is eluted at a high speed, and a high elution rate is obtained even in a large-sized molding body.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、金属やセラミックス等の粉末を可塑成形によ
って成形し、これより焼結晶を得るための方法に係わり
、特に成形体から有機バインダーを除去するための脱脂
方法に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for forming powders of metals, ceramics, etc. by plastic molding and obtaining sintered crystals from the powder, and particularly relates to a method for forming powders of metals, ceramics, etc. by plastic molding, and obtaining sintered crystals from this. The present invention relates to a degreasing method for removing oil.

「従来の技術」 従来、金属粉末やセラミックス粉末から焼結晶を製造す
る方法として、上記粉末に有機バインダーを配合して混
練し、粉末に流動性を付与してこれを可塑成形し、得ら
れた成形体を脱脂・焼結することによって焼結晶を製造
する方法が知られている。9こでいう可塑成形とは、射
出成形、トランスファー成形および熱間押出し成形を意
味する。
``Prior art'' Conventionally, as a method for manufacturing sintered crystals from metal powders or ceramic powders, an organic binder is blended with the powder, kneaded, and the powder is given fluidity and then plastically formed. A method of producing sintered crystals by degreasing and sintering a compact is known. 9. Plastic molding here means injection molding, transfer molding, and hot extrusion molding.

これらの成形法によって得られた成形体の脱脂の方法と
しては、 (イ)成形体を加熱することによって有機バインダーを
蒸発・分解させる方法、 (ロ)溶媒を用いて成形体から有機バインダーを溶出す
る方法がある。
Methods for degreasing molded bodies obtained by these molding methods include (a) evaporating and decomposing the organic binder by heating the molded body, and (b) eluting the organic binder from the molded body using a solvent. There is a way to do it.

(イ)の方法においては、成形体を変形させることなく
、また、欠陥を生じさせることなく脱脂するには、非常
に長い時間を要するという問題がある。すなわち上記の
可塑成形法では、混練物が加熱されることによって軟化
し、流動性を呈するという現象を利用するものであるた
め、成形体が脱脂時の加熱によって軟化し変形すること
が当然予想される。したがって、これを防止するために
は、変形温度に達する前に成形体中に含まれる有機バイ
ンダーの一部を除去すれば良いと考えられるが、変形温
度以下で有機バインダーを蒸発あるいは分解して除去す
るのでは長時間が必要になる。逆に変形温度以下で有機
バインダーが簡単に蒸発・分解出来るような有機バイン
ダー組成、例えば、低揮発物質や昇華物質等を添加した
組成では、成形時の流動性が不安定となって成形体に欠
陥が生じ易くなり、加えて、射出成形、トランスファー
成形において成形後に発生するランナ一部やスプル一部
等の再生使用が困難となる。また、加熱時の軟化の程度
を抑えることにより、脱脂時の変形を防止方法として、
熱可塑性樹脂等の添加も考えられるが、この場合も成形
時の流動性が不安定となり、成形体に欠陥が生じ易くな
り、加えて、射出成形後に発生するランナ一部やスプル
一部等の再生使用が不可能となる。また、上記のように
加熱により有機バインダーを除去する方法では、脱脂初
期に急激な有機バインダーの蒸発や分解が生じると、成
形体に膨れや亀裂等の欠陥が生じる場合が多い。したが
って、脱脂時間を長くしたり、脱脂雰囲気を加圧にした
りしなければならないといった問題があった。
The method (a) has the problem that it takes a very long time to degrease the molded product without deforming it or creating defects. In other words, since the above-mentioned plastic molding method utilizes the phenomenon that the kneaded material softens and exhibits fluidity when heated, it is naturally expected that the molded product will soften and deform due to heating during degreasing. Ru. Therefore, in order to prevent this, it is thought that it is sufficient to remove part of the organic binder contained in the molded product before the deformation temperature is reached, but the organic binder can be removed by evaporating or decomposing below the deformation temperature. That would require a long time. On the other hand, if the organic binder has a composition that easily evaporates or decomposes below the deformation temperature, for example, a composition in which low-volatile substances or sublimation substances are added, the fluidity during molding will become unstable and the molded product will not be formed properly. Defects are likely to occur, and in addition, it becomes difficult to recycle parts of the runner, sprue, etc. that are generated after molding in injection molding and transfer molding. In addition, as a method to prevent deformation during degreasing by suppressing the degree of softening during heating,
Addition of thermoplastic resin, etc. may also be considered, but in this case too, the fluidity during molding becomes unstable and defects are likely to occur in the molded product. Recycling becomes impossible. Furthermore, in the method of removing the organic binder by heating as described above, if rapid evaporation or decomposition of the organic binder occurs in the initial stage of degreasing, defects such as blisters and cracks often occur in the molded product. Therefore, there are problems in that the degreasing time must be increased or the degreasing atmosphere must be pressurized.

そこで、(ロ)の方法により、変形温度以下の低温にお
いて溶媒で、何機バインダーの一部を溶出除去すれば、
後の加熱によっても変形が起きず除去された有機バイン
ダーの部分が道となって、残りの有機バインダーの蒸発
・分解ガスが抜は易くなり、膨れや亀裂が生じ難くなる
。また、熱的に不安定な成分を添加する必要がないこと
から、ランナ一部等の再生利用も可能である。しかしな
がら、(ロ)の方法では、従来使用されている有機バイ
ンダーを溶出させるためには有機溶剤を使用する必要が
あるが、有機溶剤は高価であり、また、有機溶剤の取扱
によっては危険を伴うといった問題があった。
Therefore, by method (b), if a part of the binder is eluted and removed with a solvent at a low temperature below the deformation temperature,
The portion of the organic binder that was removed without deformation during subsequent heating becomes a channel, making it easier for the remaining organic binder to evaporate and decompose gas, making it difficult for blisters and cracks to occur. Furthermore, since there is no need to add thermally unstable components, it is possible to recycle a portion of the runner. However, in method (b), it is necessary to use an organic solvent to elute the conventionally used organic binder, but organic solvents are expensive and can be dangerous depending on the handling of the organic solvent. There was such a problem.

このような問題を解決するため、本発明者等は鋭意研究
の結果、有機バインダーとして水溶性の熱可塑性ポリマ
ーと水に不溶の熱可塑性ポリマーとを含むバインダーを
使用し、射出成形体を水に浸漬することによって水溶性
の熱可塑性のポリマーを溶出除去する方法を開発した。
In order to solve these problems, the inventors of the present invention have conducted intensive research and have used a binder containing a water-soluble thermoplastic polymer and a water-insoluble thermoplastic polymer as an organic binder, and immersed the injection molded article in water. We have developed a method for eluting and removing water-soluble thermoplastic polymers by immersion.

この方法によれば、脱脂時の変形が少なく、また欠陥が
発生することもなく、しかも比較的に短時間で脱脂する
ことが可能となる。
According to this method, there is little deformation during degreasing, no defects occur, and it is possible to degrease in a relatively short time.

「発明が解決しようとする課題」 しかしながら上記の方法においては、水溶性熱可塑性ポ
リマーの溶出速度が溶出時間の経過ととしに低下するた
め、目的とする溶出率を得るためには未だ十分短時間で
行えるには至っておらず、また大きな成形体から水溶性
の熱可塑性のポリマーを溶出する場合には目的とする溶
出率が十分得られないという問題がある。
"Problem to be Solved by the Invention" However, in the above method, the elution rate of the water-soluble thermoplastic polymer decreases as the elution time elapses, so it is still necessary to obtain the desired elution rate in a sufficiently short time. However, there is a problem in that when a water-soluble thermoplastic polymer is eluted from a large molded body, the desired elution rate cannot be obtained sufficiently.

この発明は上記事情に鑑みてなされたもので、その目的
とするところは、粉末の可塑成形法の脱脂工程において
、変形や膨れ、亀裂を生じさせることなく、しかも大き
な成形体をも十分短時間で脱脂可能にすることにある。
This invention was made in view of the above circumstances, and its purpose is to produce large molded products in a sufficiently short time without causing deformation, blistering, or cracking in the degreasing process of powder plastic molding. The purpose is to make it possible to remove fat.

「課題を解決するための手段」 この発明の方法では、粉末と有機バインダーを混合しこ
れを可塑成形して成形体とした後、脱脂・焼結の各処理
を行って焼結体を製造する工程において、上記脱脂処理
として成形体を水と接触せしめて水溶性の熱可塑性ポリ
マーを溶出するに際し、上記成形体と接触する水を流動
化せしめ、上記水溶性の熱可塑性ポリマーを急速に溶出
せしめることを上記課題の解決手段とした。
"Means for Solving the Problems" In the method of the present invention, a powder and an organic binder are mixed, this is plastically molded to form a molded body, and then a sintered body is manufactured by performing degreasing and sintering processes. In the process, when the molded body is brought into contact with water to elute the water-soluble thermoplastic polymer as the degreasing treatment, the water in contact with the molded body is fluidized and the water-soluble thermoplastic polymer is rapidly eluted. This was the solution to the above problem.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

まず粉末と有機バインダーを混合し、これを可塑成形し
て成形体とする。ここで粉末としては、金属粉末、セラ
ミックス粉末などが用いられる。
First, a powder and an organic binder are mixed, and this is plastically molded to form a molded body. Here, as the powder, metal powder, ceramic powder, etc. are used.

また有機バインダーとしては、少なくとも1種の水溶性
熱可塑性有機ポリマー(以下、水溶性ポリマーと略称す
る)と、少なくとも1種の水に不溶の熱可塑性有機ポリ
マー(以下、非水溶性ポリマーと略称する)とを含む有
機バインダーが用いられる。これら有機バインダーの配
合量としては、配合される粉末の特性によっても異なる
が、通常は5〜25重量部程度とされ、体積比率に換算
すると40〜60vo1%程度とされる。上記水溶性の
熱可塑性有機ポリマーとしては、ポリエチレンオキサイ
ド、ポリエチレングリコール、メチルセルロース、カル
ボキシルメチルセルロース、ポリアクリルアミド、ポリ
ビニルエーテル、ポリアクリル酸、ポリメタクリル酸な
どが用いられ、中でもポリエチレンオキサイドが好適に
用いられる。
The organic binder includes at least one water-soluble thermoplastic organic polymer (hereinafter referred to as water-soluble polymer) and at least one water-insoluble thermoplastic organic polymer (hereinafter referred to as water-insoluble polymer). ) is used. The blending amount of these organic binders varies depending on the characteristics of the powder to be blended, but is usually about 5 to 25 parts by weight, or about 40 to 60 vol% when converted to a volume ratio. As the water-soluble thermoplastic organic polymer, polyethylene oxide, polyethylene glycol, methyl cellulose, carboxyl methyl cellulose, polyacrylamide, polyvinyl ether, polyacrylic acid, polymethacrylic acid, etc. are used, and among them, polyethylene oxide is preferably used.

すなわちポリエチレンオキサイドは、射出成形性に優れ
、他の水溶性ポリマーとの相溶性が良好であるばかりで
なく、水に不溶の熱可塑性ポリマー例えばポリスチレン
、ポリエチレン、ポリメタクリル酸エステル、エチレン
酢酸ビニル共重合体などとの相溶性も良好であり、さら
には熱分解性も良好であるからである。上記水に不溶の
熱可塑性有機ポリマーとしては、上述したポリスチレン
、ポリエチレン、ポリメタクリル酸エステル、エチレン
酢酸ビニル共重合体などの、通常の金属粉末やセラミッ
クス粉末の可塑成形に使用される熱可塑性ポリマーが用
いられる。
In other words, polyethylene oxide not only has excellent injection moldability and good compatibility with other water-soluble polymers, but also has excellent compatibility with water-insoluble thermoplastic polymers such as polystyrene, polyethylene, polymethacrylate, and ethylene-vinyl acetate copolymer. This is because it has good compatibility with coalescence, etc., and also has good thermal decomposability. Examples of the water-insoluble thermoplastic organic polymers include thermoplastic polymers used for plastic molding of ordinary metal powders and ceramic powders, such as the above-mentioned polystyrene, polyethylene, polymethacrylate, and ethylene-vinyl acetate copolymer. used.

次に、この成形体に脱脂処理を行って脱脂体とする。脱
脂処理としては、まず成形体を水(常温水および加熱水
を含む。以下同様)に接触させ、この接触した水を流動
化することによって上記水溶性ポリマーを急速に溶出せ
しめる。この場合に接触した水を流動化するのは以下の
理由による。
Next, this molded body is subjected to a degreasing treatment to obtain a degreased body. In the degreasing treatment, the molded body is first brought into contact with water (including room temperature water and heated water; the same applies hereinafter), and the water-soluble polymer is rapidly eluted by fluidizing the contacted water. The reason why the contact water is fluidized in this case is as follows.

水溶性ポリマーを除去するために成形体を水に浸漬する
と、成形体表面部の水溶性ポリマーは溶出して水中に拡
散する。そして、この溶出した水溶性ポリマーが存在し
た空隙を通り道として水が成形体中に浸入し、これによ
り上記空隙周辺の水溶性ポリマーが浸入した水へ新たに
溶出し、さらにこの溶出した水溶性ポリマーが成形体外
の水中に拡散する。このような拡散が繰り返されること
により、水溶性ポリマーは成形体内から逐次除去される
When the molded body is immersed in water to remove the water-soluble polymer, the water-soluble polymer on the surface of the molded body is eluted and diffused into the water. Then, water enters the molded body through the voids where the eluted water-soluble polymer existed, and as a result, the water-soluble polymer around the voids is newly eluted into the infiltrated water, and the eluted water-soluble polymer diffuses into the water outside the molded body. By repeating such diffusion, the water-soluble polymer is successively removed from the molded body.

しかしながら、上記のように成形体を単に水に浸漬した
ときの水溶性ポリマーの溶出速度は、例えば成形体がス
テンレス粉末の射出成形体である場合、第6図に示すよ
うに時間が経過するにしたがって遅くなり、また成形体
の寸法が大きくなるほど水溶性ポリマーの溶出率が威少
する。この現象は、溶出した水溶性ポリマーの物質移動
速度に起因するものであり、成形体内部から表面への拡
散、および表面から水中への拡散が律速になることによ
って生じるものと考えられる。そこで、成形体を水に浸
漬させた後、溶出速度が小さくなった時点での成形体近
傍における溶出した水溶性ポリマー濃度を測定した。そ
の結果を第7図に示す。
However, when the molded body is simply immersed in water as described above, the elution rate of the water-soluble polymer is, for example, when the molded body is an injection molded body of stainless steel powder, as shown in Fig. 6. Therefore, the dissolution rate becomes slower, and the larger the size of the molded body, the lower the dissolution rate of the water-soluble polymer. This phenomenon is caused by the mass transfer rate of the eluted water-soluble polymer, and is thought to occur because diffusion from the inside of the molded body to the surface and diffusion from the surface into water become rate-limiting. Therefore, after the molded body was immersed in water, the concentration of the eluted water-soluble polymer near the molded body was measured at the time when the elution rate became low. The results are shown in FIG.

第7図に示した結果より、溶出した水溶性ポリマー濃度
は成形体表面側で高く、離れるにしたがって低くなって
おり、溶出した水溶性ポリマーの水中での拡散が水溶性
ポリマーの溶出速度に影響を与えていることが確認され
た。
From the results shown in Figure 7, the concentration of the eluted water-soluble polymer is high on the surface side of the compact and decreases as it moves away from the molded body, and the diffusion of the eluted water-soluble polymer in water affects the elution rate of the water-soluble polymer. It was confirmed that it was given.

なお、第6図および第7図に示した測定において溶出す
るための水の温度は50℃とした。また、第6図に示し
た溶出率は次式によって求めたものである。(以下に述
べる他の図の溶出率も同様とする ) 〔溶出率〕=〔溶出した水溶性ポリマーの重量〕/〔成
形体中の水溶性ポリマーの重量)xlooこのような結
果より、成形体から水中への水溶性ポリマーの移動(溶
出)の推進力は、濃度差に比例するものと考えられ、そ
の速度は次式で与えられる。
In addition, the temperature of the water for elution in the measurements shown in FIGS. 6 and 7 was 50°C. Moreover, the elution rate shown in FIG. 6 was determined by the following formula. (The same applies to the elution rates in other figures described below.) [Elution rate] = [Weight of eluted water-soluble polymer] / [Weight of water-soluble polymer in the molded article] The driving force for the movement (elution) of a water-soluble polymer from water into water is considered to be proportional to the concentration difference, and its speed is given by the following equation.

(溶出速度)=Ka−A(X−Xi) Ka:水溶性ポリマーの移動速度係数 A :接触面積 X :界面での水溶性ポリマー濃度 Xi:水中での水溶性ポリマー濃度 したがって、Kaを大きくすれば水溶性ポリマーの溶出
速度を大きくすることができ、そのためには、成形体表
面部に存在する境膜の厚さを薄くすればよいことが分か
る。そこで、成形体と接している水を流動化させ、これ
により上記水溶性ポリマーを急速に溶出せしめ得るよう
にした。
(Elution rate) = Ka - A (X - Xi) Ka: Transfer rate coefficient of water-soluble polymer A: Contact area X: Water-soluble polymer concentration at the interface Xi: Water-soluble polymer concentration in water Therefore, increase Ka It can be seen that the elution rate of the water-soluble polymer can be increased if the thickness of the film present on the surface of the molded article is made thinner. Therefore, the water in contact with the molded body was fluidized so that the water-soluble polymer could be rapidly eluted.

ここで、水を流動化させて脱指する方法を具体的に説明
する。
Here, a method for fluidizing and removing water will be specifically explained.

まず、水溶性ポリマーおよび非水溶性ポリマーを含む有
機バインダーと、ステンレス粉末からなり、寸法20+
amX 2 (1+mX I OOmmの角棒状の成形
体iを複数個用意し、これらを第1図に示すように溶出
槽2の水3中に浸漬して支持台4上に載置した。この場
合に水3の温度は50℃とした。
First, it consists of an organic binder containing a water-soluble polymer and a water-insoluble polymer, and stainless steel powder, and has a size of 20+.
A plurality of rectangular rod-shaped molded bodies i of am The temperature of water 3 was 50°C.

次に、溶出槽2に備えた攪拌器5を駆動して水3を流動
化した。このような操作を攪拌器の回転速度80 r−
p−tas 40 r−p−m、20 r−p−mにて
それぞれ行い、に水溶性ポリマーの溶出率と溶出時間と
の関係を調べてその結果を第2図に示した。また比較例
として、攪拌することなく単に浸漬したのみの状態での
関係ら調べ、その結果も第2図に示した。
Next, the agitator 5 provided in the elution tank 2 was driven to fluidize the water 3. This operation is carried out at a rotational speed of the stirrer of 80 r-
p-tas was carried out at 40 rpm and 20 rpm, respectively, and the relationship between the elution rate of the water-soluble polymer and the elution time was investigated, and the results are shown in FIG. In addition, as a comparative example, the relationship was investigated in a state where the sample was simply immersed without stirring, and the results are also shown in FIG.

第2図に示した結果より、回転速度を大きくすると溶出
時間が短縮することが判明した。また寸法の大きい成形
体であっても高い溶出率が得られることが確認された。
From the results shown in FIG. 2, it was found that increasing the rotation speed shortened the elution time. It was also confirmed that a high dissolution rate could be obtained even with large-sized molded bodies.

なお、配合した有機バインダーが水溶性ポリマー単独の
場合では、溶出率が増加するにしたがって成形体強度が
劣下するため、溶出の途中で成形体が破損する恐れがあ
る。−力木発明で使用している有機バインダーでは、水
溶性ポリマーの他に非水溶性ポリマーが配合されている
ため、水溶性ポリマーが溶出してら非水溶性ポリマーが
残留していることから成形体強度が維持され、したがっ
て溶出中の成形体破損が防止されている。しかし、攪拌
器の回転速度を上げ過ぎると成形体自身も流動し、これ
により成形体に破損の生ずる恐れがあるので、攪拌器の
回転速度を適宜に設定する必要がある。
In addition, when the blended organic binder is a water-soluble polymer alone, the strength of the molded article decreases as the elution rate increases, so there is a risk that the molded article will be damaged during elution. -The organic binder used in the strength wood invention contains a water-insoluble polymer in addition to a water-soluble polymer, so when the water-soluble polymer is eluted, the water-insoluble polymer remains. Strength is maintained and compact breakage during elution is therefore prevented. However, if the rotational speed of the stirrer is increased too much, the molded body itself may flow, which may cause damage to the molded body, so it is necessary to set the rotational speed of the stirrer appropriately.

また、水を流動化させるにあたり、攪拌機に代わって送
水ポンプを用いることもできる。第3図は送水ポンプを
用いた一例を示すもので、第3図中符号6は送水ポンプ
である。第3図において送水ポンプ6は、溶出槽2の底
部に配管された吸弓管7と、溶出槽2の水3中に送水口
8a・・・を有した送水管8とにそれぞれ接続されたも
ので、吸弓管7を介して溶出槽2内の水を吸引し、この
吸弓した水を送水管8を介して送水口8a・・・から溶
出槽2内に循環供給し、これにより溶出槽2内の水3を
流動せしめるものである。この場合、送水口8a・・・
を成形品l・・に対向するようにして配設し、成形品l
・・近傍の水を強制的に流動せしめるのが好ましい。
Further, in fluidizing the water, a water pump can be used instead of the stirrer. FIG. 3 shows an example using a water pump, and reference numeral 6 in FIG. 3 is the water pump. In FIG. 3, the water pump 6 is connected to a suction pipe 7 piped to the bottom of the elution tank 2 and a water pipe 8 having a water supply port 8a in the water 3 of the elution tank 2. The water in the elution tank 2 is sucked through the suction pipe 7, and the sucked water is circulated and supplied into the elution tank 2 through the water supply pipe 8 from the water supply port 8a. This is to make the water 3 in the elution tank 2 flow. In this case, the water supply port 8a...
is arranged so as to face the molded product l..., and the molded product l...
...It is preferable to force the water in the vicinity to flow.

さらに、水を流動化させるにあたり、第4図に示すよう
に超音波を用いることもできる。第4図において符号9
はパワーユニット、lOは超音波発振子である。超音波
発振子lOは、溶出槽2の水3中の成形体1・・・近傍
に配置されたもので、パワーユニット9が入力されてこ
れに制御されることにより超音波を発振するものである
。この超音波発振子10により超音波を発振照射したと
ころ、水3中に無数のキャビテーションが発生し、これ
により水3が流動した。このような操作をパワーユニシ
ト9の出力を60W、30Wとしてそれぞれ行い、水溶
性ポリマーの溶出率と溶出時間との関係を調べてその結
果を第5図に示した。この場合も水3の温度は50℃と
した。また比較例として、超音波を発振することなく単
に浸漬したのみの状態での関係も調べ、その結果ら第5
図に示した。なお、使用した成形品1はFe−8%Ni
合金粉末の射出成形体とし、その寸法・形状は第1図に
示した例で用いた成形品と同一とした。
Furthermore, ultrasonic waves can also be used to fluidize the water, as shown in FIG. Reference numeral 9 in Figure 4
is a power unit, and lO is an ultrasonic oscillator. The ultrasonic oscillator IO is placed near the molded body 1 in the water 3 of the elution tank 2, and oscillates ultrasonic waves when the power unit 9 is input and controlled by the power unit 9. . When this ultrasonic oscillator 10 oscillated and irradiated ultrasonic waves, countless cavitations were generated in the water 3, and the water 3 was caused to flow. Such operations were carried out with the output of the Power Unit 9 being 60 W and 30 W, respectively, and the relationship between the elution rate of the water-soluble polymer and the elution time was investigated, and the results are shown in FIG. In this case as well, the temperature of water 3 was 50°C. As a comparative example, we also investigated the relationship in a state where the ultrasound was simply immersed without oscillating, and based on the results, the fifth
Shown in the figure. The molded product 1 used was Fe-8%Ni.
An injection molded body of alloy powder was made, and its dimensions and shape were the same as those of the molded article used in the example shown in FIG.

第5図に示した結果より、この超音波による流動法では
先に示した攪拌による流動法よりも水溶性ポリマーの溶
出速度が大きく、溶出効果が大きいことが判明した。ま
た、送水ポンプによる流動法に比較してもその効果が大
きいことが確認された。これは、超音波法では水3ばか
りでなく成形体lをら超音波により振動し得るため、水
溶性ボリマーの成形体!内部から成形体1表面への拡散
が促進されるためと考えられる。またこの超音波法では
、成形体lを構成している粉末の粒子径が小さい程その
効果が顕著に認められたが、これも前述のように成形体
!内部の拡散に関係し、溶出速度が粒子径の二乗に逆比
例するからであると考えられる。溶出速度は超音波出力
が大きいほど効果が大きいが、超音波出力を上げ過ぎる
と成形体を破損するので、パワーを適宜に選択する必要
がある。
From the results shown in FIG. 5, it was found that the flow method using ultrasonic waves had a higher dissolution rate of the water-soluble polymer and had a greater elution effect than the flow method using stirring described above. It was also confirmed that this method is more effective than the flow method using a water pump. This is because in the ultrasonic method, not only the water 3 but also the molded body L can be vibrated by ultrasonic waves, so this is a molded body of a water-soluble polymer! This is thought to be because diffusion from the inside to the surface of the molded body 1 is promoted. In addition, in this ultrasonic method, the smaller the particle size of the powder constituting the compact l, the more pronounced the effect was, but as mentioned above, this is also a compact! This is thought to be because the elution rate is inversely proportional to the square of the particle diameter, which is related to internal diffusion. The higher the ultrasonic output, the greater the elution rate effect, but if the ultrasonic output is increased too much, the molded body will be damaged, so it is necessary to select the power appropriately.

これらの方法にあっては、溶出槽2内に成形体!を数多
く入れて水溶性ポリマーを溶出すると、溶出槽2中の水
溶性ポリマー濃度が増加して溶出率が飽和してしまう恐
れがあるが、水溶性ポリマーの溶出型が総バインダー量
の20〜30%以上であれば後の加熱処理時間を大幅に
短縮でき、よって全体の脱脂時間を十分短縮することが
できる。
In these methods, a molded body is placed in the elution tank 2! If a large number of water-soluble polymers are added to elute the water-soluble polymer, the concentration of the water-soluble polymer in the elution tank 2 may increase and the elution rate may become saturated. % or more, the subsequent heat treatment time can be significantly shortened, and the entire degreasing time can therefore be sufficiently shortened.

なお、第1図、第3図および第4図に示した流動法によ
る効果は、金属粉末を用いてなる成形品ばかりでなくセ
ラミックス粉末を用いてなる成形品においても十分に奏
されるものである。
Note that the effects of the flow method shown in Figures 1, 3, and 4 can be sufficiently achieved not only in molded products made using metal powder but also in molded products made using ceramic powder. be.

このようにして成形体lから水溶性ポリマーを溶出した
後、加熱炉で加熱脱脂を施して水に非水溶性ポリマーな
どの残りの有機バインダーを除去し、金属、セラミック
スなどからなる焼結体を得る。ここで加熱脱脂を行うに
あたっては、常圧で加熱脱脂しても良いが、減圧下にて
行うのがより有機バインダーの除去時間を短縮し得るこ
とから好適とされ、特に真空脱脂を行うのが望ましい。
After the water-soluble polymer is eluted from the molded body l in this way, the remaining organic binder such as the water-insoluble polymer is removed by heating and degreasing in a heating furnace, and the sintered body made of metal, ceramics, etc. obtain. When performing heat degreasing here, it is possible to perform heat degreasing at normal pressure, but it is preferable to perform degreasing under reduced pressure because it can shorten the time required to remove the organic binder, and vacuum degreasing is particularly recommended. desirable.

「作用 j この発明によれば、金属あるいはセラミックスの粉末と
水溶性ポリマーおよび非水溶性ポリマーを含む有機バイ
ンダーからなる成形体を水と接触させ、さらに接触して
いる水を流動化させることにより、従来の方法に比べて
高速で水溶性ポリマーが溶出し、さらに寸法の大きい成
形体からでも短時間で高い溶出率が得られる。
According to the present invention, a molded body made of a metal or ceramic powder and an organic binder containing a water-soluble polymer and a water-insoluble polymer is brought into contact with water, and the water in contact is fluidized. Water-soluble polymers are eluted at a faster rate than conventional methods, and a high leaching rate can be obtained in a short time even from large molded bodies.

「実施例」 以下、実施例によりこの発明をさらに具体的に説明する
"Examples" The present invention will be explained in more detail below using Examples.

(実施例1) SOS−316L粉末(平均粒子径約8μm)100重
徹部に水溶性ポリマーとしてポリエチレンオキサイド5
重量部、非水溶性ポリマーとしてポリエチレン3重量部
、潤滑剤としてステアリン酸1重量部を配合し、これら
を混練機によって150℃で45分間混練した。次に、
得られた混練物を粉砕し、スクリュー式の射出成形機に
よって寸法が [イ]7IIII11×7ml11×7011I11[
0月 4mmX1 4mI!lX l  00+nm。
(Example 1) Polyethylene oxide 5 was added as a water-soluble polymer to a 100-ton SOS-316L powder (average particle size of about 8 μm).
3 parts by weight of polyethylene as a water-insoluble polymer and 1 part by weight of stearic acid as a lubricant were blended, and these were kneaded at 150° C. for 45 minutes using a kneader. next,
The obtained kneaded material is crushed and molded using a screw injection molding machine to obtain a size of [A]7III11×7ml11×7011I11[
October 4mmX1 4mI! lX l 00+nm.

[ハ]20mmX 20mmX 100wm。[C] 20mmX 20mmX 100wm.

の棒状部品3種類を射出成形した。この場合に射出成形
温度は165℃、射出圧力はl000Kg/cIIlf
fiとした。
Three types of rod-shaped parts were injection molded. In this case, the injection molding temperature is 165℃ and the injection pressure is 1000Kg/cIIlf
I made it fi.

次いで、これら成形体を第1図に示した装置により、水
温50℃、攪拌器の回転速度40 r、p、mの条件で
4時間溶出処理した。このときの溶出率は、第2図に一
部示すように〔イ〕が93%、〔口〕h(82%、〔ハ
〕が62%であった。次いで、これら成形体を真空乾燥
した後、大気雰囲気下にて常温から100℃まで0.5
時間、100℃から300℃まで3時間で昇温し、30
0℃で0.5時間保持した。得られた脱脂体を調べたと
ころ、いずれの部品も膨れや亀裂の発生が見られず、9
5%から98%のバインダー除去が認められた。
Next, these molded bodies were subjected to elution treatment for 4 hours using the apparatus shown in FIG. 1 at a water temperature of 50° C. and a stirrer rotation speed of 40 r, p, m. The dissolution rate at this time was 93% for [A], 82% for [H], and 62% for [C], as partially shown in Figure 2.Next, these molded bodies were vacuum dried. After that, the temperature is 0.5 from normal temperature to 100℃ in the air atmosphere.
The temperature was raised from 100℃ to 300℃ in 3 hours, and 30℃
It was held at 0°C for 0.5 hours. When the obtained degreased body was examined, no blisters or cracks were observed in any of the parts.
Binder removal from 5% to 98% was observed.

その後、これら脱脂体を真空雰囲気にて1350℃で2
時間焼結し、その焼結体密度を測定したところ、〔イ〕
が7 、88 g/ am”1(ロ)が7.85g/c
@3.[ハ]が7.81 g/cm’となり、高い焼結
体密度を有するものであることが確認された。
Thereafter, these degreased bodies were heated at 1350°C for 2 hours in a vacuum atmosphere.
After sintering for a time and measuring the density of the sintered body, [a]
is 7,88 g/am”1 (b) is 7.85 g/c
@3. [C] was 7.81 g/cm', and it was confirmed that the sintered body had a high density.

(実施例2 ) Fe−8%Ni合金粉末(平均粒子径8μ―)100重
量部に水溶性ポリマーとしてポリエチレンオキサイド6
重量部、非水溶性ポリマーとしてポリエチレン3重量部
、さらに可塑剤と潤滑剤2重量部を配合し、上記実施例
1と同様に混練・射出を行って同一寸法・形状の成形体
を得た。
(Example 2) Polyethylene oxide 6 was added as a water-soluble polymer to 100 parts by weight of Fe-8%Ni alloy powder (average particle size 8μ).
Parts by weight, 3 parts by weight of polyethylene as a water-insoluble polymer, and 2 parts by weight of a plasticizer and a lubricant were blended, and kneading and injection were performed in the same manner as in Example 1 to obtain a molded article having the same size and shape.

次に、得られた成形体を第4図に示した装置により、超
音波出力30Wの条件下で3時間溶出を行った。このと
きの溶出率は、第5図に一部示すように〔イ〕が96%
、〔口〕が86%、〔ハ〕が74%であった。次いで、
これら成形体を真空乾燥した後、上記実施例1と同様に
加熱脱脂を行ったところ、いずれの脱脂体にも欠陥が認
められなかった。
Next, the obtained molded body was subjected to elution for 3 hours under the condition of an ultrasonic output of 30 W using the apparatus shown in FIG. The elution rate at this time was 96% as shown in Figure 5.
, [mouth] accounted for 86%, and [c] accounted for 74%. Then,
After drying these molded bodies in vacuum, they were heated and degreased in the same manner as in Example 1, and no defects were found in any of the degreased bodies.

その後、上記脱脂体を水素雰囲気下にて1350℃で2
時間焼結し、その焼結体密度を測定したところ、〔イ〕
が7.69g/am3、〔口〕が7.66g7ccm’
、〔ハ〕が7.64g/cm’となり、高い焼結体密度
を有するものであることが確認された。
Thereafter, the degreased body was heated at 1350°C for 2 hours in a hydrogen atmosphere.
After sintering for a time and measuring the density of the sintered body, [a]
is 7.69g/am3, [mouth] is 7.66g7ccm'
, [c] was 7.64 g/cm', and it was confirmed that the sintered body had a high density.

(実施例3 ) 平均粒子径0.64μm1比表面積6.80m”7gで
あるY to s 3 mo1%の部分安定下ジルコニ
ア100重量部に、水溶性ポリマーとしてポリエチレン
オキサイド8重量部およびポリエチレングリコール2重
量部、非水溶性ポリマーとしてポリエチレン6重量部、
さらにステアリン酸2重量部を配合し、これらを混練機
にて150℃、45分間混練した。次に、得られた混練
物を粉砕し、スクリュー式の射出成形機によって射出温
度165℃、射出圧力950Kg/cm”の射出成形条
件で上記実施例1の棒状部品と同一寸法・形状のものを
それぞれ射出成形した。次に、得られた成形体を上記実
施例2と同様の条件にて4時間溶出処理した。このとき
の溶出率は〔イ〕が90%、〔口〕が72%、〔ハ)/
+<60%であった。
(Example 3) 8 parts by weight of polyethylene oxide and 2 parts by weight of polyethylene glycol as water-soluble polymers were added to 100 parts by weight of partially stabilized 1% Y to S 3 mo zirconia having an average particle diameter of 0.64 μm and a specific surface area of 6.80 m''7g. parts, 6 parts by weight of polyethylene as a water-insoluble polymer,
Further, 2 parts by weight of stearic acid was added, and the mixture was kneaded at 150° C. for 45 minutes using a kneader. Next, the obtained kneaded material was pulverized and molded using a screw type injection molding machine under injection molding conditions of 165° C. injection temperature and 950 kg/cm'' injection pressure to produce rod-like parts of the same size and shape as the rod-shaped parts of Example 1 above. Each was injection molded. Next, the obtained molded bodies were subjected to elution treatment for 4 hours under the same conditions as in Example 2. At this time, the elution rate was 90% for [A], 72% for [C], [c)/
+<60%.

次いで、これら成形体を真空乾燥した後大気雰囲気下に
て、常温から100℃まで05時間、100℃から40
0℃まで6時間で昇温し、400℃で0.5時間保持し
た。得られた脱脂体の脱脂率は94%から98%であり
、いずれのらのにも欠陥が認められなかった。また、ト
ータルしたバインダーの除去時間は14時間であり、従
来のバインダー除去時間に比べてかなり短縮されていた
Next, after drying these molded bodies under vacuum, they were heated from room temperature to 100°C for 05 hours and from 100°C to 40°C in an air atmosphere.
The temperature was raised to 0°C over 6 hours and held at 400°C for 0.5 hours. The degreasing rate of the obtained degreased bodies was 94% to 98%, and no defects were observed in any of them. Further, the total binder removal time was 14 hours, which was considerably shorter than the conventional binder removal time.

さらに、得られた各脱脂体を大気雰囲気下にて1450
℃で4時間焼結し、その焼結体密度を測定したところ、
それぞれ6.00g/cm’から6.03g/c113
となり、欠陥のない焼結体が得られた。
Furthermore, each of the obtained degreased bodies was heated to 1450°C under atmospheric conditions.
After sintering at ℃ for 4 hours and measuring the density of the sintered body,
6.00g/cm' to 6.03g/c113 respectively
A defect-free sintered body was obtained.

「発明の効果」 以上説明したように、本発明における請求項1に記載し
た発明は、粉末と水溶性ポリマーおよび非水溶性ポリマ
ーを含む有機バインダーからなる成形体を脱脂処理する
に際し、成形体に水を接触させ、さらにこの水を流動化
せしめるしのであるので、従来の方法に比べ極めて高速
で水溶性ポリマーを溶出することができ、さらに寸法の
大きい射出成形体からでも短時間で高い溶出率を得るこ
とができる。また、このように水溶性ポリマーの除去時
間が短縮されて十分な水溶性ポリマーの除去が可能にな
ることから、その後の加熱処理による非水溶性のバイン
ダーの除去において急速加熱が可能となり、したがって
トータルの脱脂時間を従来に比較して大幅に短縮するこ
とができる。
"Effects of the Invention" As explained above, the invention described in claim 1 of the present invention provides a method for degreasing a molded product made of powder and an organic binder containing a water-soluble polymer and a water-insoluble polymer. Since this method brings water into contact and further fluidizes the water, it is possible to elute water-soluble polymers at an extremely high speed compared to conventional methods, and also has a high elution rate in a short time even from large injection molded objects. can be obtained. In addition, since the water-soluble polymer removal time is shortened in this way and sufficient water-soluble polymer can be removed, rapid heating is possible in the subsequent heat treatment to remove the water-insoluble binder, and therefore the total The degreasing time can be significantly reduced compared to conventional methods.

また、本発明の請求項2に記載した発明は、水を流動化
する手段として攪拌器を使用するものであるので、その
攪拌速度を容易に制御でき、よって溶出時間を十分正確
に管理することができる。
Furthermore, since the invention described in claim 2 of the present invention uses a stirrer as a means for fluidizing water, the stirring speed can be easily controlled, and therefore the elution time can be managed with sufficient accuracy. Can be done.

本発明の請求項3に記載した発明は水を流動化する手段
として送水ポンプを使用するものであり、この発明にあ
っても請求項2の発明と同様の効果を得ることができる
The invention described in claim 3 of the present invention uses a water pump as a means for fluidizing water, and even in this invention, the same effect as the invention of claim 2 can be obtained.

本発明の請求項4に記載した発明は、水を流動化する手
段として超音波を使用する乙のであるので、水と同時に
成形体をら振動し得ることからより大きな溶出効果を得
ることができる。
Since the invention described in claim 4 of the present invention uses ultrasonic waves as a means for fluidizing water, it is possible to vibrate the molded body at the same time as the water, so that a greater elution effect can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明に係わる図であって、第1
図は請求項1に記載した方法を具体的に説明するための
装置の概略構成図、第2図は第1図に示した装置を用い
て脱脂したときの時間と溶出率との関係を示すグラフ、
第3図は請求項2に記載した方法を具体的に説明するた
めの装置の概略構成図、第4図は請求項3に記載した方
法を具体的に説明するための装置の概略構成図、第5図
は第4図に示した装置を用いて脱脂したときの時間と溶
出率との関係を示すグラフ、第6図および第7図は本発
明の方法に至るまでの分析結果に関する乙ので、第6図
は寸法の異なる成形体を溶出したときの時間と溶出率と
の関係を示すグラフ、第7図は溶出速度が小さくなった
時点での成形体外部における、溶出した水溶性ポリマー
の濃度分布を示すグラフである。 1・・・・・成形体、2・・・・・・溶出槽、3・・・
・・・水、5・・・・・攪拌器、6・・・・・送水ポン
プ、9・・・・・・パワーユニット、10・・・・・・
超音波発信子。
1 to 5 are diagrams related to the present invention, and the first
The figure is a schematic configuration diagram of an apparatus for specifically explaining the method described in claim 1, and Figure 2 shows the relationship between time and elution rate when degreasing using the apparatus shown in Figure 1. graph,
3 is a schematic configuration diagram of an apparatus for specifically explaining the method described in claim 2, FIG. 4 is a schematic configuration diagram of an apparatus for specifically explaining the method described in claim 3, Figure 5 is a graph showing the relationship between time and elution rate when degreasing using the apparatus shown in Figure 4, and Figures 6 and 7 are graphs showing the analysis results up to the method of the present invention. , Figure 6 is a graph showing the relationship between elution time and elution rate when molded bodies of different sizes are eluted, and Figure 7 is a graph showing the relationship between elution rate and time when molded bodies of different sizes are eluted. It is a graph showing concentration distribution. 1... Molded body, 2... Elution tank, 3...
... Water, 5 ... Stirrer, 6 ... Water pump, 9 ... Power unit, 10 ...
Ultrasonic transmitter.

Claims (4)

【特許請求の範囲】[Claims] (1)粉末と水溶性の熱可塑性ポリマーおよび水に不溶
の熱可塑性ポリマーを含む有機バインダーとを混合し、
これを可塑成形して成形体とした後、脱脂・焼結の各処
理を行って焼結体を製造する方法において、 上記脱脂処理として成形体を水と接触せしめて上記水溶
性の熱可塑性ポリマーを溶出した後加熱炉において残り
の有機バインダーを加熱除去する方法であって、 上記成形体と接触する水を流動化せしめ、上記水溶性の
熱可塑性ポリマーを急速に溶出せしめることを特徴とす
る粉末の成形体の脱脂方法。
(1) Mixing the powder with an organic binder containing a water-soluble thermoplastic polymer and a water-insoluble thermoplastic polymer,
In the method of manufacturing a sintered body by plastically molding this into a molded body and then performing degreasing and sintering treatments, the molded body is brought into contact with water as the degreasing treatment, and the water-soluble thermoplastic polymer is A method of heating and removing the remaining organic binder in a heating furnace after eluting the powder, the method comprising: fluidizing the water that comes into contact with the molded body, and rapidly eluting the water-soluble thermoplastic polymer. A method for degreasing molded objects.
(2)請求項1に記載した方法において、攪拌機を用い
て水を流動化することを特徴とする粉末の成形体の脱脂
方法。
(2) A method for degreasing a powder compact according to claim 1, characterized in that the water is fluidized using a stirrer.
(3)請求項1に記載した方法において、送水ポンプに
よる流水を用いて水を流動化することを特徴とする粉末
の成形体の脱脂方法。
(3) A method for degreasing a powder compact according to claim 1, characterized in that the water is fluidized using flowing water from a water pump.
(4)請求項1に記載した方法において、超音波を用い
て水を流動化することを特徴とする粉末の成形体の脱脂
方法。
(4) A method for degreasing a powder compact according to claim 1, characterized in that the water is fluidized using ultrasonic waves.
JP64000611A 1988-10-06 1989-01-05 Degreasing method for powder compact Expired - Fee Related JPH0689372B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP64000611A JPH0689372B2 (en) 1989-01-05 1989-01-05 Degreasing method for powder compact
US07/417,198 US5059388A (en) 1988-10-06 1989-10-04 Process for manufacturing sintered bodies
KR1019890014358A KR930006005B1 (en) 1988-10-06 1989-10-06 Process for manufacturing sintered bodies
EP89118587A EP0362866B1 (en) 1988-10-06 1989-10-06 Process for manufacturing sintered bodies
DE68914379T DE68914379T2 (en) 1988-10-06 1989-10-06 Process for the production of sintered bodies.
HK102095A HK102095A (en) 1988-10-06 1995-06-22 Process for manufacturing sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64000611A JPH0689372B2 (en) 1989-01-05 1989-01-05 Degreasing method for powder compact

Publications (2)

Publication Number Publication Date
JPH02182804A true JPH02182804A (en) 1990-07-17
JPH0689372B2 JPH0689372B2 (en) 1994-11-09

Family

ID=11478526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64000611A Expired - Fee Related JPH0689372B2 (en) 1988-10-06 1989-01-05 Degreasing method for powder compact

Country Status (1)

Country Link
JP (1) JPH0689372B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305903A (en) * 1989-05-22 1990-12-19 Sumitomo Cement Co Ltd Manufacture of sintered product by plastic-forming of powder
WO1998014293A1 (en) * 1996-10-03 1998-04-09 Komatsu Ltd. Dewaxing method, dewaxed product obtained therefrom and sintered product
US5877270A (en) * 1994-03-14 1999-03-02 Kabushiki Kaisha Komatsu Seisakusho Water solvent extraction degreasing method and molded products produced therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101101A (en) * 1988-10-06 1990-04-12 Sumitomo Cement Co Ltd Method for removing binder from powder injection molding body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101101A (en) * 1988-10-06 1990-04-12 Sumitomo Cement Co Ltd Method for removing binder from powder injection molding body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305903A (en) * 1989-05-22 1990-12-19 Sumitomo Cement Co Ltd Manufacture of sintered product by plastic-forming of powder
US5877270A (en) * 1994-03-14 1999-03-02 Kabushiki Kaisha Komatsu Seisakusho Water solvent extraction degreasing method and molded products produced therewith
WO1998014293A1 (en) * 1996-10-03 1998-04-09 Komatsu Ltd. Dewaxing method, dewaxed product obtained therefrom and sintered product

Also Published As

Publication number Publication date
JPH0689372B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP2016523799A (en) Binder for injection molding composition
JPH02182804A (en) Method for degreasing powder molding body
PT115469B (en) BINDER FOR INJECTION MOLDING COMPOSITIONS
JPS63403A (en) Composition for plastic molding useful as stock for industrial art works and its production
JPH02101101A (en) Method for removing binder from powder injection molding body
JPH04329801A (en) Production of sintered parts
JP7029555B2 (en) Binder for injection molding composition
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPS61101447A (en) Manufacture of ceramic formed body
JP4115022B2 (en) Water solvent extraction method for powder injection molding
JPH0625709A (en) Production of sintered hard alloy parts
JP3804108B2 (en) Manufacturing method of ceramic sintered body
JPH0820803A (en) Production of sintered compact
JPH02275748A (en) Molding method for powder injection-molding component
JP3165165B2 (en) Extraction degreasing method using methanol
JP2012223920A (en) Method for drying, heating and straightening thick ceramic extrusion molded body
JPH02182803A (en) Method for degreasing powder molding body
JPS59193201A (en) Treatment of molded article made of metal powder
JPH0741368A (en) Power-kneaded material for molding and kneading method therefor
JP2799064B2 (en) Manufacturing method of sintered body
JPS6121960A (en) Ceramic injection moldings
JP2994071B2 (en) Method for removing binder from powder injection molded body
JPH0825178B2 (en) Method of manufacturing injection molded body
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees