JPH02182045A - Spread spectrum receiver - Google Patents

Spread spectrum receiver

Info

Publication number
JPH02182045A
JPH02182045A JP1001333A JP133389A JPH02182045A JP H02182045 A JPH02182045 A JP H02182045A JP 1001333 A JP1001333 A JP 1001333A JP 133389 A JP133389 A JP 133389A JP H02182045 A JPH02182045 A JP H02182045A
Authority
JP
Japan
Prior art keywords
signal
wave
continuous wave
output
intermediate frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001333A
Other languages
Japanese (ja)
Inventor
Haruo Sakata
坂田 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP1001333A priority Critical patent/JPH02182045A/en
Publication of JPH02182045A publication Critical patent/JPH02182045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Noise Elimination (AREA)

Abstract

PURPOSE:To eliminate a narrow band disturbing signal mixed on the way of a transmission system by generating a continuous wave whose phase is intersected orthogonally with that of a carrier from an intermediate frequency signal, applying synchronization detection to the intermediate frequency signal and controlling a narrow band filter interposed between the intermediate frequency signal and the output in response to the output of the detector. CONSTITUTION:An IF signal is given to an IF carrier oscillator 5, a synchronization detector 7 and a variable trap filter 8, and the oscillator 5 generates a continuous wave cosomegact. The continuous wave is shifted by 90 deg. at a phase shifter 6 and a continuous wave sinomegact whose phase is intersected orthogonally with that of the carrier is obtained. The output voltage (v) of a converter 10 is given to the variable trap filter 8 and the trap frequency is varied. When the capacitance of variable capacitors c1, c2 is controlled by a voltage corresponding to frequencies fc+DELTAf and fc-DELTAf, the frequency f1 of a disturbing wave and a component of a side band conjugated and opposite thereto are eliminated from the IF signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスペクトラム拡散受信装置、特にこの受信装置
における狭帯域妨害波の除去方式の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spread spectrum receiver, and particularly to an improvement in a method for eliminating narrowband interference waves in this receiver.

[発明の概要コ スペクトラム拡散受信装置において、搬送波に位相が直
交した連続波を発生させ、この連続波で受信信号を同期
検波し、その出力で狭帯域フィルタの制御を行って、こ
のフィルタを介して中間周波信号を出力させることによ
り妨害波を除去するものである。
[Summary of the Invention In a co-spread spectrum receiver, a continuous wave whose phase is orthogonal to a carrier wave is generated, a received signal is synchronously detected using this continuous wave, and the output is used to control a narrowband filter. Interfering waves are removed by outputting an intermediate frequency signal.

[従来の技術] 伝達したい情報は種々の変調形態(AM、PM。[Conventional technology] The information you want to convey can be transmitted in various modulation formats (AM, PM, etc.).

FM、PC:M、SSCなど)をとって伝送するが、受
信機にはそのまま到達するのではなく、妨害波が加わっ
ている。妨害波は大別してその分布が広帯にまたがるラ
ンダム雑音と特定の周波数に集中した干渉波とがある。
FM, PC:M, SSC, etc.), but the signal does not reach the receiver as it is, but instead contains interference waves. Interfering waves can be roughly divided into random noise whose distribution spans a wide band and interference waves concentrated at a specific frequency.

本発明で対象とするのは後者の干渉波であり、希望する
変調信号に対して他局の変調信号などが該当する。
The subject of the present invention is the latter interference wave, which corresponds to a modulated signal of another station with respect to a desired modulated signal.

第5図は種々の狭帯域通信と妨害波との関係を示す周波
数スペクトラム図で、同図(a)は従来多く用いられて
いるAM(振幅変調)やFM、(周波数変調)の場合で
あり、妨害波(干渉波)が存在しても、第1図(b)に
示すようにキャリア周波数fcを中心周波数とするフィ
ルタFiを用いて伝送チャンネルの帯域を狭くすること
により妨害波f工を除去するか(AM)、あるいは第5
図(c)のようにフィルタF2を用いて帯域内に妨害波
f4が存在しても上側帯波か下側帯波か妨害波f□のな
い側帯波を使用することにより妨害波f2を除去する方
式がとられている。
Figure 5 is a frequency spectrum diagram showing the relationship between various narrowband communications and interference waves. Figure (a) shows the case of AM (amplitude modulation), FM (frequency modulation), which are commonly used in the past. Even if there is a disturbance wave (interference wave), the interference wave f can be suppressed by narrowing the band of the transmission channel using a filter Fi whose center frequency is the carrier frequency fc, as shown in Fig. 1(b). (AM) or the fifth
As shown in figure (c), even if there is interference wave f4 in the band using filter F2, interference wave f2 is removed by using the upper sideband, lower sideband, or sideband without interference wave f□. A method is being adopted.

[発明が解決しようとする課題] しかしスペクトラム拡散通信(SSC)では帯域が著し
く広く、第6図に示すようにその帯域内に他局の搬送波
が位置する場合がない。勿論、SSCの受信機では妨害
波を排除する能力を備えている場合もあるが、大レベル
の妨害波であると、伝送情報の伝達を阻害する。しかも
第5図(b)及び(c)のように受信帯域を狭くしたり
、側帯波の片側だけを用いることはSSCの性質上不都
合である。
[Problems to be Solved by the Invention] However, in spread spectrum communication (SSC), the band is extremely wide, and as shown in FIG. 6, carrier waves of other stations are never located within the band. Of course, the SSC receiver may have the ability to eliminate interference waves, but if the interference waves are at a large level, it will inhibit the transmission of transmitted information. Moreover, narrowing the reception band or using only one side of the sideband as shown in FIGS. 5(b) and 5(c) is inconvenient due to the nature of SSC.

[発明の目的] 本発明の目的は、SSCのような広帯域通信方式の受信
装置において、伝送系の途中で混入する狭帯域妨害信号
を除去して通信情報を確保する方式を提供することにあ
る。
[Object of the Invention] An object of the present invention is to provide a method for securing communication information by removing narrowband interference signals mixed in the transmission system in a wideband communication system receiving device such as SSC. .

[課題を解決するための手段] 本発明は上記目的を達成するため、スペクトラム拡散受
信装置において、中間周波信号から搬送波と位相が直交
した連続波を発生する手段と、上記中間周波信号を上記
連続波で同期検波する検波器と、上記中間周波信号と出
力との間に介装された狭帯域フィルタと、上記検波器の
出力に応じて上記フィルタを制御する手段とを備えたこ
とを要旨とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a spread spectrum receiver that includes means for generating a continuous wave whose phase is orthogonal to a carrier wave from an intermediate frequency signal; The object of the present invention is to include a detector for synchronously detecting waves, a narrow band filter interposed between the intermediate frequency signal and the output, and means for controlling the filter in accordance with the output of the detector. do.

[作用] 第1図に本発明の基本的動作原理を示す。同図(a)は
周波数fcの搬送波(cosωct)を変調した変調波
と、その帯域内にある妨害波1 cosωItが共存し
ていることを表している。而して第1図(a)は搬送波
cosωCtと同相分の同図(b)と直交分の同図(C
)(搬送波5inc+yct)に分解できる。
[Operation] FIG. 1 shows the basic operating principle of the present invention. FIG. 5A shows that a modulated wave obtained by modulating a carrier wave (cosωct) of frequency fc and an interference wave 1 cosωIt within the band coexist. Therefore, FIG. 1(a) is the same diagram for the in-phase component of the carrier wave cosωCt, and the same diagram for the orthogonal component (C
) (carrier wave 5 inc + yct).

第1図(b)において妨害波Iは搬送波cosωctの
上側帯波成分工、と下側帯波成分工2に分解される。ま
た妨害波の直交成分がこれに加わって元の妨害波I c
osωItとなる。このことは下記(1)式で表される
In FIG. 1(b), the interference wave I is decomposed into an upper band component and a lower band component 2 of the carrier wave cosωct. Also, the orthogonal component of the interference wave is added to the original interference wave I c
It becomes osωIt. This is expressed by the following equation (1).

(1)式の後の2項が妨害波の直交成分である。The second term after equation (1) is the orthogonal component of the interference wave.

この成分をIQとし、これを搬送波cosωctで変調
すると、第1図(d)となる。この(d)より明らかな
如く、fc±(fI fc)=fl、2fc−fIの可
変帯域の狭帯域フィルタを用いれば妨害波を除去できる
ことが分かる。
If this component is defined as IQ and it is modulated by the carrier wave cosωct, the result is shown in FIG. 1(d). As is clear from this (d), it can be seen that the interference waves can be removed by using a narrow band filter with a variable band of fc±(fI fc)=fl, 2fc-fI.

但し、この場合、変調信号は搬送波cosωCtと同一
位相成分(cosωctと−cosωatのみ)のみか
ら成っている必要があり、従ってSSCに好適である。
However, in this case, the modulation signal needs to consist only of the same phase components as the carrier wave cosωCt (only cosωct and -cosωat), and is therefore suitable for SSC.

[実施例] 以下図面に示す実施例を参照して本発明を説明すると、
第1図は上述した原理をSSC受信機に適用した一実施
例を示す。
[Examples] The present invention will be described below with reference to examples shown in the drawings.
FIG. 1 shows an embodiment in which the above-described principle is applied to an SSC receiver.

同図において、1はアンテナ、2は高周波増幅器、3は
周波数コンバータ、4は局部発振器、5は同相IF搬送
波発振器、6は90°移相器、7は同期検波器、8は可
変トラップフィルタ、9はリミッタ、10は周波数/電
圧変換器、11は出力端子である。
In the figure, 1 is an antenna, 2 is a high frequency amplifier, 3 is a frequency converter, 4 is a local oscillator, 5 is an in-phase IF carrier wave oscillator, 6 is a 90° phase shifter, 7 is a synchronous detector, 8 is a variable trap filter, 9 is a limiter, 10 is a frequency/voltage converter, and 11 is an output terminal.

次に上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

入力アンテナ1からの受信信号(スペクトラム拡散信号
)は高周波増幅器2を介して周波数コンバータ3に与え
られ、該コンバータにより局部発振器4の局部発振周波
数との差の周波数を有するIF(中間周波)信号を得る
A received signal (spread spectrum signal) from an input antenna 1 is given to a frequency converter 3 via a high frequency amplifier 2, and the converter converts an IF (intermediate frequency) signal having a frequency different from the local oscillation frequency of a local oscillator 4. obtain.

上記IF倍信号同相IF搬送波発振器5、同期検波器7
及び可変トラップフィルタ8に与えられ、該発振器5は
連続波COJωctを発生する。
The above IF multiplied signal in-phase IF carrier wave oscillator 5, synchronous detector 7
and a variable trap filter 8, and the oscillator 5 generates a continuous wave COJωct.

この連続波は移相器6により90°移相され、搬送波と
は位相が直交した連続波sinωCtとなる。
This continuous wave is phase-shifted by 90 degrees by the phase shifter 6, and becomes a continuous wave sinωCt whose phase is orthogonal to the carrier wave.

この連続波sinωatによって同期検波器7は駆動さ
れ、前記IF倍信号同期検波することにより前記(1)
式の2項に対応する出力を発生する。
The synchronous detector 7 is driven by this continuous wave sinωat, and by synchronously detecting the IF multiplied signal, the above (1)
Generates an output corresponding to the second term in Eq.

即ち、  ω工=ωC十Δω     ・・・(2)と
すると、(1)式の2項は式のようになる。
That is, ω = ωC + Δω (2) If it is assumed that the second term of formula (1) becomes as shown in the following formula.

−(cosω1t−cos(2ωC−ωr)t)=−(
cos (<110+Δω)  t −008((11
0+Δω)t)=−sinωct 1lsinΔc、+
t           −(3)(3)式をsinω
ctで同期検波すると、sinΔωt −5inωct I sinΔωt X5inc+Jc
t=−(cos 2 ωct−1)・・・(4) (4)式の低周波成分、即ち、 一−sinΔωt            ・・・ (
5)が同期検波器7の出力となる。
−(cosω1t−cos(2ωC−ωr)t)=−(
cos (<110+Δω) t −008((11
0+Δω)t)=-sinωct 1l sinΔc, +
t - (3) Expression (3) as sinω
When synchronously detecting with ct, sinΔωt −5inωct I sinΔωt X5inc+Jc
t=-(cos 2 ωct-1)...(4) The low frequency component of equation (4), that is, 1-sinΔωt... (
5) becomes the output of the synchronous detector 7.

この出力はリミッタ9を介して周波数/電圧変換器10
に与えられ、その周波数Δfに対応した電圧■、即ち周
波数検出が行われる。
This output is passed through a limiter 9 to a frequency/voltage converter 10.
, and a voltage (2) corresponding to the frequency Δf, that is, frequency detection is performed.

上記変換器10としては1例えば、FM復調器と同様の
回路を用いうる。変換器10の出力電圧Vは可変トラッ
プフィルタ8に与えられ、そのトラップ周波数を変化さ
せる。
As the converter 10, for example, a circuit similar to an FM demodulator can be used. The output voltage V of the converter 10 is applied to a variable trap filter 8 to change its trap frequency.

第3図は可変トラップフィルタの一例を示す。FIG. 3 shows an example of a variable trap filter.

同図で、Cユl Q2は電圧で容量が変化する素子。In the same figure, Q2 is an element whose capacitance changes with voltage.

例えばバリキャップ、L、、L2はインダクタンス素子
であり、上記出力電圧■は第4図(a)のようにΔfに
比例しているので、この電圧を上記バリキャップに加え
、その容量Cを変化させる。この場合、電圧■の上昇で
、上側帯波成分では容量Cが減少し、下側帯波成分では
容量Cが増加するように、上記バリキャップを選定する
。このようにしてバリキャップct+ 02の容量をf
c+Δfとfc−Δfに相当する電圧で制御すると、第
1図(e)の特性即ち妨害波の周波数fIとそれに共軛
な反対の側帯波の成分が前記IF倍信号ら除去される。
For example, the varicaps L, L2 are inductance elements, and the above output voltage ■ is proportional to Δf as shown in Figure 4 (a), so by applying this voltage to the varicap, its capacitance C is changed. let In this case, the above-mentioned varicap is selected so that as the voltage (2) increases, the capacitance C decreases in the upper sideband component and increases in the lower sideband component. In this way, the capacity of Varicap ct+ 02 is set to f
When controlled using voltages corresponding to c+Δf and fc-Δf, the characteristics shown in FIG. 1(e), that is, the frequency fI of the interference wave and the component of the opposite sideband that is mutually exclusive thereto are removed from the IF multiplied signal.

なお、第3図は片側の側帯波のみに対応しており、実際
には他方の側帯波に対応するものも必要となる。また第
3図はあくまでも一例であり1通常の共振回路を用いて
もよい。
Note that FIG. 3 corresponds to only one sideband wave, and in reality, a device corresponding to the other sideband wave is also required. Further, FIG. 3 is just an example, and a normal resonant circuit may also be used.

更に、電圧の増大に対して容量が上昇する素子と、下降
する素子が得られない場合、例えば電圧の増大に対して
容量が減少する素子しか得られない場合には下側帯波用
にはこの素子をそのまま使用し、下側帯波用の素子に対
しては電圧Vの代りに(vo−v)を制御電圧(voは
固定電圧)として用いればよい。
Furthermore, if you cannot obtain an element whose capacitance increases and an element whose capacitance decreases with increasing voltage, for example, if you can only obtain an element whose capacitance decreases with increasing voltage, this method is recommended for lower sideband use. The element may be used as it is, and (vo-v) may be used as the control voltage (vo is a fixed voltage) instead of the voltage V for the lower sideband element.

かくして可変トラップフィルタ8の出力は所望の妨害波
抑制の信号となり、この信号は図示していないSSC受
信回路に送られる。
In this way, the output of the variable trap filter 8 becomes a signal for desired interference wave suppression, and this signal is sent to an SSC receiving circuit (not shown).

なお、上述の動作において同期検波器7の出力がリミッ
タ9であるレベル以下の場合は、可変トラップフィルタ
8に制御電圧を与えず、動作させない。
In addition, in the above-described operation, if the output of the synchronous detector 7 is below a certain level of the limiter 9, the control voltage is not applied to the variable trap filter 8 and the variable trap filter 8 is not operated.

[発明の効果] 以上説明したように本発明によれば、SSC通信におい
て妨害波があっても、 これを抑制してSSC信号の復
調を良好にすることができる。
[Effects of the Invention] As described above, according to the present invention, even if there is an interference wave in SSC communication, it can be suppressed and demodulation of the SSC signal can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的動作原理の説明図、第2図は本
発明の一実施例を示すブロック図、第3図は上記実施例
における可変トラップフィルタの一例を示す回路図、第
4図はその動作説明図、第5図は狭帯域通信と妨害波と
の関係を示す図、第6図はSSCと妨害波との関係を示
す図である。 5・・・・・・・・・同相IF搬送波発振器、6・・・
・・・・・・90°移相器、7・・・・・・・・・同期
検波器、8・・・・・・・・可変トラップフィルタ、1
0・・・・・・・・・周波数/電圧変換塁。 特許出願人    クラリオン株式会社代理人 弁理士
  永 1)武 三 部第1図 fc−Δf 茫◆Δf 第2図 第 図 い 第4図 V
FIG. 1 is an explanatory diagram of the basic operating principle of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, FIG. 3 is a circuit diagram showing an example of a variable trap filter in the above embodiment, and FIG. FIG. 5 is a diagram illustrating the operation, FIG. 5 is a diagram showing the relationship between narrowband communication and interference waves, and FIG. 6 is a diagram showing the relationship between SSC and interference waves. 5...In-phase IF carrier wave oscillator, 6...
90° phase shifter, 7... Synchronous detector, 8... Variable trap filter, 1
0... Frequency/voltage conversion base. Patent Applicant Clarion Co., Ltd. Agent Patent Attorney Nagai 1) Take 3 Part 1 Figure 1 fc-Δf 茫◆Δf Figure 2 Figure 4 Figure 4 V

Claims (1)

【特許請求の範囲】 中間周波信号から搬送波と位相が直交した連続波を発生
する手段と、 上記中間周波信号を上記連続波で同期検波する検波器と
、 上記中間周波信号と出力との間に介装された狭帯域フィ
ルタと、 上記検波器の出力に応じて上記フィルタを制御する手段
と、 を備えたことを特徴とするスペクトラム拡散受信装置。
[Scope of Claims] Means for generating a continuous wave whose phase is orthogonal to a carrier wave from an intermediate frequency signal, a detector for synchronously detecting the intermediate frequency signal with the continuous wave, and between the intermediate frequency signal and the output. A spread spectrum receiver comprising: an interposed narrowband filter; and means for controlling the filter according to the output of the detector.
JP1001333A 1989-01-09 1989-01-09 Spread spectrum receiver Pending JPH02182045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001333A JPH02182045A (en) 1989-01-09 1989-01-09 Spread spectrum receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001333A JPH02182045A (en) 1989-01-09 1989-01-09 Spread spectrum receiver

Publications (1)

Publication Number Publication Date
JPH02182045A true JPH02182045A (en) 1990-07-16

Family

ID=11498573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001333A Pending JPH02182045A (en) 1989-01-09 1989-01-09 Spread spectrum receiver

Country Status (1)

Country Link
JP (1) JPH02182045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730515A (en) * 1993-06-24 1995-01-31 Sharp Corp Direct spread spectrum communication equipment
JPH0779176A (en) * 1993-06-30 1995-03-20 Mitsubishi Electric Corp Spread spectrum radio equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730515A (en) * 1993-06-24 1995-01-31 Sharp Corp Direct spread spectrum communication equipment
JPH0779176A (en) * 1993-06-30 1995-03-20 Mitsubishi Electric Corp Spread spectrum radio equipment

Similar Documents

Publication Publication Date Title
KR960003786B1 (en) Baseband phase modulator employing digital technique
KR100363760B1 (en) Local oscillator phase noise cancelling modulation technique
RU2115222C1 (en) Phase-angle corrector for power amplifier feedback circuit (options)
US4852123A (en) Nearly DC IF phase locked transceiver
KR930002067B1 (en) Fsk data receiver
US6073000A (en) Direct conversion receiving circuit and direct conversion receiver
US6104745A (en) Transceiver for performing time division full duplex spread spectrum communication
WO2002009270A2 (en) System and apparatus for a direct conversion receiver and transmitter
JPH1065566A (en) Small sized radio equipment
US6833755B2 (en) Modulator and demodulator
US3873931A (en) FM demodulator circuits
JPS5997233A (en) Direct mixing synchronous receiver
JPH02182045A (en) Spread spectrum receiver
GB2351623A (en) Quadricorrelator for a demodulator for frequency-modulated signals
JPS5827699B2 (en) Signal transmission/reception method
JPH08307396A (en) Ss type radio equipment
JP3368936B2 (en) Direct conversion FSK receiver
JPH11341086A (en) Transmitter and receiver for multicarrier weak radio wave
JPS60200656A (en) Automatic frequency control system
JPH1132260A (en) Video signal transmission-reception system through fm radio wave
US6963735B2 (en) Method and arrangement for receiving a frequency modulated signal
JPS63155932A (en) Interference wave extracting circuit
JPH0464217B2 (en)
GB2149987A (en) Frequency modulation detectors
JPH07177051A (en) Fm radio telephone equipment