JPH02180772A - Perforated fiber ceramic body and exhaust gas filter with this utilized therefor - Google Patents

Perforated fiber ceramic body and exhaust gas filter with this utilized therefor

Info

Publication number
JPH02180772A
JPH02180772A JP21403388A JP21403388A JPH02180772A JP H02180772 A JPH02180772 A JP H02180772A JP 21403388 A JP21403388 A JP 21403388A JP 21403388 A JP21403388 A JP 21403388A JP H02180772 A JPH02180772 A JP H02180772A
Authority
JP
Japan
Prior art keywords
fiber
filter
pts
exhaust gas
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21403388A
Other languages
Japanese (ja)
Inventor
Masaaki Yonemura
米村 正明
Takao Kusuda
楠田 隆男
Hisanori Shimoda
下田 久則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21403388A priority Critical patent/JPH02180772A/en
Publication of JPH02180772A publication Critical patent/JPH02180772A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2086Other inorganic materials, e.g. ceramics the material being filamentary or fibrous sintered or bonded by inorganic agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high strength product such as the above-mentioned one by sintering a mixture of aluminosilicate fiber, alumina fiber and a raw material powder of ceramic. CONSTITUTION:Fiber suspension is obtained by mixing about 12 pts.wt. aluminosilicate fiber having about 3mum mean fiber diameter and 0.1-10mm length, about 3 pts.wt. alumina fiber having about 3mum diameter and 0.1-10mm length and 1000 pts.wt. water. Then clay suspension wherein about 10 pts.wt. petalite clay as a raw material powder of ceramic and about 50 pts.wt. water are mixed is added to this fiber suspension and this mixture is mixed. Then flocculating liquid is obtained by adding about 1 pts.wt. organic binder such as a vinyl acetate-acryl copolymerized emulsion soln. and mixing the mixture and thereafter adding NaOH, etc. A perforated fiber ceramic body is obtained by diluting this flocculating liquid with about 3000 pts.wt. water and thereafter molding a sheet manufactured by a paper-making process into a required shape and sintering this sheet at about 1250 deg.C in an electric oven. Then an exhaust gas filter such as a filter 1 made of cells 2, plugs 3 and cells 4 is produced by alternately closing the end parts of the cells of this perforated body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は排ガスを浄化するフィルタ、特にディーゼル排
ガス中に含まれるパーティキュレート(スス)を除去し
、フィルタの再生を繰り返し安全に行い得るディーゼル
排ガスフィルタ用の繊維セラミックス多孔体とそれを用
いた排ガスフィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a filter for purifying exhaust gas, particularly for a diesel exhaust gas filter that removes particulates (soot) contained in diesel exhaust gas and allows safe repeated filter regeneration. This invention relates to a fiber ceramic porous body and an exhaust gas filter using the same.

従来の技術 ディーゼルエンジンの排ガスフィルタとして、無機質繊
維であるアルミノシリケート繊維をセラミック原料粉末
で焼結させた繊維セラミックをハニカム形状のフィルタ
として用いるものが特公昭62−56771号公報で知
られている。この従来技術では、無機質繊維としてアル
ミノシリケート繊維、セラミック原料粉末として本節粘
土、ペタライト粉末から抄紙法によって得られるシート
をハニカムフィルタ形状に成型して焼成することで無機
質繊維とセラミック原料粉末を焼結し、複合化している
BACKGROUND OF THE INVENTION As an exhaust gas filter for a diesel engine, a honeycomb-shaped filter using a fiber ceramic obtained by sintering inorganic aluminosilicate fibers with ceramic raw material powder is known from Japanese Patent Publication No. 56771/1983. In this conventional technology, a sheet obtained by a papermaking method from aluminosilicate fiber as the inorganic fiber, Honbushi clay as the ceramic raw material powder, and petalite powder is formed into a honeycomb filter shape and fired, thereby sintering the inorganic fiber and the ceramic raw material powder. , has become complex.

発明が解決しようとする課題 ディーゼルエンジンに含まれるパーティキュレートを一
定量濾過したフィルタは、フィルタ上でパーティキュレ
ートを焼却して再生(リジェネレーション)される。こ
のリジェネレーションには最近、バーナの燃焼ガスを用
いてフィルタ上のパーティキュレートを加熱し、焼却す
る方法が検討されている。この燃焼ガスでフィルタを加
熱した場合、フィルタの横断面内の燃焼ガスが十分に流
れる部分はほぼ均一な温度を示すが、ガスが流れに(い
部分、特に外周部分で急激に低くなる温度勾配が生じる
。その結果、最外周に大きな熱応力が発生してクラック
を生じ、フィルタを破壊する場合があった。
Problems to be Solved by the Invention A filter that has filtered a certain amount of particulates contained in a diesel engine is regenerated by incinerating the particulates on the filter. Recently, a method of heating and incinerating particulates on a filter using combustion gas from a burner has been considered for this regeneration. When a filter is heated with this combustion gas, the temperature is almost uniform in the cross section of the filter where the combustion gas flows sufficiently, but the temperature gradient drops sharply in the areas where the gas does not flow, especially in the outer periphery. As a result, large thermal stress occurs on the outermost periphery, causing cracks and sometimes destroying the filter.

即ち、リジェネレーション時にフィルタの外周付近に発
生する温度勾配によって発生する熱応力が、外周壁で最
大となり、外周壁の強度を上まわるためクラックを生じ
ているのである。
That is, the thermal stress generated by the temperature gradient generated near the outer periphery of the filter during regeneration reaches its maximum at the outer peripheral wall, and exceeds the strength of the outer peripheral wall, resulting in cracks.

アルミノシリケート繊維は、初期のアモルファス状態を
保っているときには100kg/mm2を超える引っ張
り強度を有しているが、1000℃以上の加熱によって
ムライト結晶を晶出するにともなって強度は低下する。
Aluminosilicate fibers have a tensile strength of more than 100 kg/mm 2 when maintained in their initial amorphous state, but the strength decreases as mullite crystals are crystallized by heating to 1000° C. or higher.

このアルミノシリケート繊維と、セラミック原料粉末を
焼結させて得られる繊維セラミックも同様の挙動を示す
。この強度の低下によって、フィルタはりジェネレーシ
ョン時の熱応力に耐えられずにクラックを発生していた
A fiber ceramic obtained by sintering this aluminosilicate fiber and ceramic raw material powder also exhibits similar behavior. Due to this decrease in strength, the filter beam could not withstand the thermal stress during generation and cracks occurred.

本発明はこの問題点を、加熱によって強度の変化しない
セラミック繊維を複合させることで、材料の強度向上を
図って解決することを目的とする。
The present invention aims to solve this problem by improving the strength of the material by combining ceramic fibers whose strength does not change with heating.

課題を解決するための手段 アルミノシリケート繊維と、アルミナ繊維と、セラミッ
ク原料粉末とを互いに焼結させて繊維セラミック多孔体
とする。
Means for Solving the Problems Aluminosilicate fibers, alumina fibers, and ceramic raw material powder are sintered together to form a fiber ceramic porous body.

作用 上記の構成によれば、アルミノシリケート繊維に加えて
、加熱後も強度の変化しないアルミナ繊維を用いてとも
に焼結させ無機質繊維の複合化することにより、多孔性
を保ちつつ強度を向上させることができる。これによっ
て、例えば排ガスフィルタを構成した場合、リジェネレ
ーション時にフィルタ内に発生する温度勾配で生じる熱
応力に十分耐え、クラックの発生を防止することができ
る。
Effect According to the above structure, in addition to aluminosilicate fibers, alumina fibers whose strength does not change even after heating are used and are sintered together to form a composite of inorganic fibers, thereby improving strength while maintaining porosity. Can be done. As a result, when an exhaust gas filter is configured, for example, it is possible to sufficiently withstand thermal stress caused by a temperature gradient generated within the filter during regeneration, and to prevent the occurrence of cracks.

実施例 以下に本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

実施例1 平均繊維径が約3μmで、0.1〜10m5の長さにチ
ョップしたアルミノシリケート繊維と、同様に、繊維径
約3μmで長さ0.1〜10聰のアルミナ繊維を用いた
。このアルミノシリケート繊維12重量部、アルミナ繊
維3重量部を水1000重量部に、十分に分散させて懸
濁させた。
Example 1 Aluminosilicate fibers having an average fiber diameter of about 3 μm and chopped into a length of 0.1 to 10 m5 and alumina fibers having a fiber diameter of about 3 μm and a length of 0.1 to 10 m were similarly used. 12 parts by weight of this aluminosilicate fiber and 3 parts by weight of alumina fiber were sufficiently dispersed and suspended in 1000 parts by weight of water.

一方、セラミック原料粉末としてセリサイト粘土10重
量部を水50重量部に懸濁させた。この繊維懸濁液とベ
タライト粘土懸濁液を撹拌しつつ混合した。次に有機質
結合剤として酢酸ビニル−アクリル共重合エマルジョン
溶液を1重量部加えて十分に撹拌混合させたのち、塩化
アルミニウム溶液を添加して水酸化ナトリウム溶液で中
和して水酸化アルミニウムコロイドを生成させた。この
コロイドでアルミノシリケート繊維、アルミナ繊維、粘
土、有機質結合剤を互いに凝集させた。次に、高分子凝
集剤を添加して凝集を完結させた。
On the other hand, 10 parts by weight of sericite clay as a ceramic raw material powder was suspended in 50 parts by weight of water. This fiber suspension and Betalite clay suspension were mixed with stirring. Next, 1 part by weight of vinyl acetate-acrylic copolymer emulsion solution was added as an organic binder and stirred and mixed thoroughly. After that, aluminum chloride solution was added and neutralized with sodium hydroxide solution to produce aluminum hydroxide colloid. I let it happen. This colloid coagulated the aluminosilicate fibers, alumina fibers, clay, and organic binder with each other. Next, a polymer flocculant was added to complete the flocculation.

こうして得られた凝集懸濁液を水で3000重量部に希
釈したのち、通常の抄紙機で抄造してシートを作成した
The agglomerated suspension thus obtained was diluted with water to 3000 parts by weight, and then made into a sheet using an ordinary paper machine.

このシートを所定の形状に成形して、電気炉中1250
℃で焼成してフィルタ材料が得られる。
This sheet was molded into a predetermined shape and placed in an electric furnace for 1250 min.
A filter material is obtained by firing at ℃.

また、別に準備した鋳込み成形型に、上記の凝集懸濁液
を注入して得られる成形品を同様に1250℃で焼成す
る方法でも、任意のフィルタ材料が得られる。
Alternatively, any filter material can be obtained by similarly firing the molded product obtained by injecting the above-mentioned agglomerated suspension into a separately prepared casting mold at 1250°C.

このフィルタ材料の引っ張り強度は、アルミノシリケー
ト繊維のみを用いた場合の5倍を有していた。また、気
孔率、空気の通過抵抗ともに従来のものとほぼ同じであ
った。
The tensile strength of this filter material was five times that of aluminosilicate fibers alone. Furthermore, both the porosity and the air passage resistance were almost the same as those of the conventional one.

実施例2 実施例1で得られたシートを部分し、一方を歯車形状の
二本のロールをもつコルゲートマシンを用い、コルゲー
ト状に成形するとともに、粉砕したアルミノシリケート
繊維と、アルミナ繊維と、セリサイト粘土をポリビニル
アルコールでペースト状にしたプラグ原料をコルゲート
の一端に注入しつつ、粉砕したアルミノシリケート繊維
と、アルミナ繊維と、セリサイト粘土を澱粉糊とポリビ
ニルアルコールで混練して得られる接着剤をコルゲート
頂部に塗布して他方の平板状シートを貼付ける。ここで
得られた段ポール形状の成形体のコルゲート頂部に上記
接着剤を塗布するとともに、上記プラグ原料をもう一方
の端部に注入して円筒状に巻き上げてハニカム形状の成
形体を得た。この成形体はハニカムセルの一端がプラグ
原料で封止され他端で開放し、隣接するセルでは他端が
同じくプラグ原料で封止された構造を持つ。これを電気
炉中1250℃に昇温して2時間加熱焼成すると有機物
は焼失し、アルミノシリケート繊維、アルミナ繊維、セ
リサイト粘土は互いに焼結してセラミック°化した繊維
セラミックハニカム構造のフィルタが得られた。
Example 2 The sheet obtained in Example 1 was cut into parts, one of which was formed into a corrugate shape using a corrugate machine with two gear-shaped rolls, and crushed aluminosilicate fibers, alumina fibers, and seri While injecting a plug material made of site clay into a paste form with polyvinyl alcohol into one end of the corrugate, an adhesive obtained by kneading crushed aluminosilicate fibers, alumina fibers, and sericite clay with starch paste and polyvinyl alcohol is added. Apply it to the top of the corrugated gate and attach the other flat sheet. The above adhesive was applied to the top of the corrugate of the thus obtained corrugated pole-shaped molded body, and the plug raw material was injected into the other end and rolled up into a cylindrical shape to obtain a honeycomb-shaped molded body. This formed body has a structure in which one end of the honeycomb cell is sealed with a plug material and the other end is open, and the other end of an adjacent cell is also sealed with a plug material. When this is heated to 1250°C in an electric furnace and fired for 2 hours, the organic matter is burnt out, and the aluminosilicate fiber, alumina fiber, and sericite clay are sintered together to form a ceramic filter with a fiber-ceramic honeycomb structure. It was done.

本実施例で得られたフィルタ1を第1図に示す。2は出
口側がプラグ3で封止されたセルで、4は入口側がプラ
グ3で封止され出口側に開口したセルである。
A filter 1 obtained in this example is shown in FIG. 2 is a cell whose outlet side is sealed with a plug 3, and 4 is a cell whose inlet side is sealed with a plug 3 and opened to the outlet side.

得られたフィルタ1をディーゼルエンジンの排気系に第
2図に示すような構成で配設した。エンジン倒の排気管
5に三方バルブ6を設け、バルブ6の出口を一方はフィ
ルタ1に、他方はフィルタ1を迂回してフィルタ1後方
の排気管7に接続されたバイパス8に連通させている。
The obtained filter 1 was installed in the exhaust system of a diesel engine in the configuration shown in FIG. A three-way valve 6 is provided in the exhaust pipe 5 on the side of the engine, and one outlet of the valve 6 communicates with the filter 1 and the other outlet communicates with a bypass 8 that bypasses the filter 1 and is connected to the exhaust pipe 7 behind the filter 1. .

また、フィルタ1は外周を断熱性に優れたクツション材
9で覆ってケース10に収納されている。ケース10の
フィルタ1前方には燃焼室11を有するバーナ12が取
り付けられている。まず、排気管5がフィルタ1に連通
するようにバルブ6をセットしディーゼルエンジンを運
転してフィルタ1にパーティキュレートを一定量堆積さ
せた。次にバルブ6を切り替えて排ガスをバイパス8に
流し、バーナ12に点火して得られる高温度のガスを過
剰の空気とともにフィルタ1に送ってフィルタ1を加熱
してパーティキュレートを酸化焼却した。この時のフィ
ルタ1内部の温度分布を測定した結果を第3図に示す。
Further, the filter 1 is housed in a case 10 with its outer periphery covered with a cushion material 9 having excellent heat insulation properties. A burner 12 having a combustion chamber 11 is attached to the front of the filter 1 of the case 10. First, the valve 6 was set so that the exhaust pipe 5 communicated with the filter 1, and the diesel engine was operated to deposit a certain amount of particulates on the filter 1. Next, the valve 6 was switched to allow the exhaust gas to flow through the bypass 8, and the burner 12 was ignited to send the resulting high-temperature gas together with excess air to the filter 1 to heat the filter 1 and oxidize and incinerate the particulates. The results of measuring the temperature distribution inside the filter 1 at this time are shown in FIG.

この図で明らかなように、フィルタ外周で温度が急激に
低下し、温度勾配が著しく大きいことが判かる。この著
しい温度勾配のためにフィルタ内部には熱応力が発生し
、フィルタ外周で最大となって外周部にクラックを発生
する場合があった。
As is clear from this figure, the temperature rapidly decreases around the outer periphery of the filter, and it can be seen that the temperature gradient is extremely large. This significant temperature gradient generates thermal stress inside the filter, which reaches its maximum at the outer periphery of the filter and may cause cracks at the outer periphery.

しかるに、本発明のアルミナ繊維を複合したフィルタを
用いた場合、リジェネレーションの繰り返し、また、第
3図に示したより大きな温度勾配を実験として加えても
クラックはまったく観察されなかった。これは、アルミ
ナ繊維を複合したことによって本フィルタ材料の引っ張
り強度が、外周にかかる熱応力に十分に耐え得るものと
なったためである。即ち、アルミノシリケート繊維がア
モルファス状態で高強度を有し、加熱によって結晶化す
るに従って強度の著しい低下を招いていたのに対して、
アルミナ繊維は当初から結晶した状態で高強度を有して
おり、焼結させるための加熱に対しても強度の低下を生
じることはないのである。
However, when the alumina fiber composite filter of the present invention was used, no cracks were observed even after repeated regeneration and when a larger temperature gradient as shown in FIG. 3 was applied as an experiment. This is because the tensile strength of the present filter material is sufficient to withstand thermal stress applied to the outer periphery due to the composite of alumina fibers. In other words, aluminosilicate fibers have high strength in an amorphous state, but as they crystallize by heating, their strength significantly decreases.
Alumina fibers have high strength from the beginning in their crystallized state, and their strength does not decrease even when heated for sintering.

一方、従来のアルミノシリケート繊維のみからなるフィ
ルタにもクラックを発生しないものがあることから、ア
ルミノシリケート繊維からなる材料の強度と発生する熱
応力がほぼ等しい状態にあることがわかる。従って、ア
ルミナ繊維を複合した本発明の材料を用いて構成したフ
ィルタは、引っ張り強度が5倍になっていることがら、
クラックを生じさせる熱応力に対して5倍の安全率を有
していることがわかる。
On the other hand, since some conventional filters made only of aluminosilicate fibers do not generate cracks, it can be seen that the strength of the material made of aluminosilicate fibers and the generated thermal stress are approximately equal. Therefore, a filter constructed using the material of the present invention, which is a composite of alumina fibers, has five times the tensile strength.
It can be seen that it has a safety factor of 5 times against thermal stress that causes cracks.

アルミナ繊維はアルミノシリケート繊維、セラミック原
料粉末と反応して一部ムライトに変化して焼結すること
でアルミノシリケート繊維の接合を補強しているのであ
る。
Alumina fibers react with aluminosilicate fibers and ceramic raw material powder, partially converting into mullite and sintering, thereby reinforcing the bond of aluminosilicate fibers.

発明の効果 本発明によれば、アルミノシリケート繊維と、アルミナ
繊維と、セラミック原料粉末とを焼結結合させて複合化
することにより、高強度とすることができ、フィルタと
して用いたときに発生する温度勾配による熱応力に抗す
ることかでき、その結果、クラックによるフィルタの破
壊を未然に防ぐ効果を有する。
Effects of the Invention According to the present invention, by sintering and combining aluminosilicate fibers, alumina fibers, and ceramic raw material powder, it is possible to obtain high strength, which reduces the problem that occurs when used as a filter. It can withstand thermal stress caused by temperature gradients, and as a result, it has the effect of preventing damage to the filter due to cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の°フィルタ材料を用いて構成した排ガ
スフィルタの一実施例を示す斜視図、第2図は第1図の
排ガスフィルタをディーゼルエンジンの排ガス系に設置
した装置の概略構成図、第3図は第2図に示した装置で
リジェネレーションを行ったときのフィルタ内部の温度
分布を示した図である。 1・・・フィルタ、2.4・・・セル。 代理人の氏名 弁理士 粟野重孝 ほか1名第 2図 12バーナ hIpJ3図 1事件の表示 昭和63年特許願第214033号 発明の名称 繊維セラばツク多孔体及びそれを用いた排ガスフィルタ
補正をする者 事件との関係      特  許   出  願  
大佐 所  大阪府門真市大字門真1006番地名 称
 (582)松下電器産業株式会社代表者    谷 
 井  昭  雄
Fig. 1 is a perspective view showing an embodiment of an exhaust gas filter constructed using the filter material of the present invention, and Fig. 2 is a schematic configuration diagram of a device in which the exhaust gas filter of Fig. 1 is installed in the exhaust gas system of a diesel engine. , FIG. 3 is a diagram showing the temperature distribution inside the filter when regeneration is performed with the apparatus shown in FIG. 2. 1...filter, 2.4...cell. Name of agent: Patent attorney Shigetaka Awano and one other person Fig. 2 12 Burner hIpJ 3 Fig. 1 Display of the case Patent application No. 214033 of 1988 Name of the invention Fiber ceramic porous body and person who corrects exhaust gas filter using the same Relationship to incident Patent application
Colonel Tokoro 1006 Oaza Kadoma, Kadoma City, Osaka Name (582) Matsushita Electric Industrial Co., Ltd. Representative Tani
Akio I

Claims (3)

【特許請求の範囲】[Claims] (1)アルミノシリケート繊維と、アルミナ繊維と、セ
ラミック原料粉末とを互いに焼結させて構成したことを
特徴とする繊維セラミック多孔体。
(1) A fiber ceramic porous body characterized by being constructed by sintering aluminosilicate fibers, alumina fibers, and ceramic raw material powder.
(2)アルミノシリケート繊維と、アルミナ繊維と、セ
ラミック原料粉末とを互いに焼結させて構成してなる繊
維セラミック多孔体からなり、ハニカム形状であって、
セル端部を交互に閉塞してなる排ガスフィルタ。
(2) A fiber ceramic porous body formed by mutually sintering aluminosilicate fibers, alumina fibers, and ceramic raw material powder, and having a honeycomb shape,
An exhaust gas filter with alternately closed cell ends.
(3)少なくともフィルタの外周をアルミナ繊維を焼結
させて複合化した繊維セラミック多孔体で構成した特許
請求の範囲第2項記載の排ガスフィルタ。
(3) The exhaust gas filter according to claim 2, wherein at least the outer periphery of the filter is made of a fiber ceramic porous body made of a composite material made by sintering alumina fibers.
JP21403388A 1988-08-29 1988-08-29 Perforated fiber ceramic body and exhaust gas filter with this utilized therefor Pending JPH02180772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21403388A JPH02180772A (en) 1988-08-29 1988-08-29 Perforated fiber ceramic body and exhaust gas filter with this utilized therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21403388A JPH02180772A (en) 1988-08-29 1988-08-29 Perforated fiber ceramic body and exhaust gas filter with this utilized therefor

Publications (1)

Publication Number Publication Date
JPH02180772A true JPH02180772A (en) 1990-07-13

Family

ID=16649164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21403388A Pending JPH02180772A (en) 1988-08-29 1988-08-29 Perforated fiber ceramic body and exhaust gas filter with this utilized therefor

Country Status (1)

Country Link
JP (1) JPH02180772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306614A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof
KR100733918B1 (en) * 2004-12-30 2007-07-02 주식회사 엘지화학 Method for preparing of ceramic paper and ceramic paper using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111153A (en) * 1984-06-26 1986-01-18 Matsushita Electric Ind Co Ltd Structural body for depositing catalyst
JPS61164823A (en) * 1985-01-18 1986-07-25 松下電器産業株式会社 Manufacture of fiber ceramic honeycomb structure
JPS62132524A (en) * 1985-12-03 1987-06-15 Matsushita Electric Ind Co Ltd Exhaust gas filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111153A (en) * 1984-06-26 1986-01-18 Matsushita Electric Ind Co Ltd Structural body for depositing catalyst
JPS61164823A (en) * 1985-01-18 1986-07-25 松下電器産業株式会社 Manufacture of fiber ceramic honeycomb structure
JPS62132524A (en) * 1985-12-03 1987-06-15 Matsushita Electric Ind Co Ltd Exhaust gas filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306614A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof
KR100733918B1 (en) * 2004-12-30 2007-07-02 주식회사 엘지화학 Method for preparing of ceramic paper and ceramic paper using the same

Similar Documents

Publication Publication Date Title
US5846276A (en) Exhaust gas filter
US5194078A (en) Exhaust filter element and exhaust gas-treating apparatus
CN1969073B (en) Inorganic fiber aggregate, method for producing inorganic fiber aggregate, honeycomb structure and method for producing honeycomb structure
JP4174474B2 (en) Inorganic short fiber aggregate for holding material, method for producing the same, and holding material
JPH05306614A (en) Exhaust gas filter and manufacture thereof
JPH05503250A (en) Filters and means for their regeneration
JPH043244B2 (en)
EP0443625B1 (en) Exhaust filter element and exhaust gas-treating apparatus
JPH02180772A (en) Perforated fiber ceramic body and exhaust gas filter with this utilized therefor
JPH01252588A (en) Cellular fiber ceramic body and waste gas filter using said body
JPH0264073A (en) Porous fiber-ceramics material and exhaust gas filter composed thereof
JPH0929024A (en) Exhaust gas filter
CN1200910C (en) Porous fiber ceramic forming method and apparatus
JPS61129017A (en) Exhaust gas filter
JPH07204431A (en) Filter for exhaust gas from diesel engine
JPH045412A (en) Fibrous ceramics and exhaust gas filter using it
JP3477940B2 (en) Method of manufacturing exhaust gas filter
JP3800143B2 (en) Exhaust gas filter
JPH07241422A (en) Fibrous waste gas filter
JP2002349230A (en) Exhaust emission control device
JPS6257624A (en) Production of plug for waste gas filter
JPS61205315A (en) Exhaust gas filter
EP1204813A1 (en) Diesel exhaust particulate filter system
JP3769818B2 (en) Exhaust gas filter
JP2003201823A (en) Filter for exhaust emission control device