JPH02180244A - Heart magnetism measuring device - Google Patents

Heart magnetism measuring device

Info

Publication number
JPH02180244A
JPH02180244A JP63335591A JP33559188A JPH02180244A JP H02180244 A JPH02180244 A JP H02180244A JP 63335591 A JP63335591 A JP 63335591A JP 33559188 A JP33559188 A JP 33559188A JP H02180244 A JPH02180244 A JP H02180244A
Authority
JP
Japan
Prior art keywords
subject
control device
top plate
light source
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63335591A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
芝田 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63335591A priority Critical patent/JPH02180244A/en
Publication of JPH02180244A publication Critical patent/JPH02180244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To correctly obtain the position relationship of a measuring point to a test object by fixing a superconductive quantum interference device(SQUID) sensor and moving a bed top plate using the position as reference by a control device. CONSTITUTION:A top plate scanning device 21 is installed on a base 3, and the top plate scanning device 21 is controlled by a control device 22. A test object 1 is moved to sequentially position the base of a Dewar 5 in the predetermined measuring points of the test object 1. Thus, magnetism measurement in the respective measuring points of the test object 1 is made by SQUID sensor, and the measurement data is recorded in a recording device 8. Position information on measuring points from the control device 22 is recorded together with the above measurement data in the recording device 8. Thus, the position of the measuring point to the test object 1 can be obtained correctly, and the position relationship between the measuring point and a lot of MR tomographic image (three-dimensional MR data) can be correctly corresponded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、SQUIDセンサを使用した心磁針測装置
に関する。
The present invention relates to a magnetocardial needle measuring device using a SQUID sensor.

【従来の技術】[Conventional technology]

生体内の磁気を計測する装置として、近年、5QLII
D  (Superconducting Quant
um  InterferenceDevice:超電
導量子干渉型デバイス)を用いたものが開発され、生体
内の微小な磁界の計測が容易になってきている(トリガ
ー別冊p155−163.1987゜12月、パリティ
別冊No、 1. p26−38.1986.メディカ
ルシステムニュースvo1.9 No、4第100号ρ
26−27.1988)。 このSQU I Dは超電導状態を維持するため液体ヘ
リウムで冷却する必要がある。そのため通常、SQU 
I Dセンサの検出コイルとSQU I Dユニットと
が、デユワ−と呼ばれる容器中に満たされた液体ヘリウ
ム中に浸されている。 心臓の磁気を計測する場合、被検者の胸の部分にこのデ
ユワ−の底部(底部に検出コイルが配置されている)を
接近させて計測を行なう、これにより、心磁図(心臓の
等磁界図)などを作成して、心臓の疾患の診断を行なう
In recent years, 5QLII has been used as a device to measure magnetism in living organisms.
D (Superconducting Quant
um Interference Device (Superconducting Quantum Interference Device) has been developed, making it easier to measure minute magnetic fields inside living organisms (Trigger Special Issue p155-163. December 1987, Parity Special Issue No. 1. p26-38.1986. Medical System News vol. 1.9 No. 4 No. 100 ρ
26-27.1988). This SQUID needs to be cooled with liquid helium to maintain its superconducting state. Therefore, usually SQU
The detection coil of the ID sensor and the SQU ID unit are immersed in liquid helium filled in a container called a dewar. When measuring the magnetic field of the heart, the bottom of the dewar (the detection coil is placed at the bottom) is brought close to the subject's chest. Diagnosis of heart disease is performed by creating images such as (Figure).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来では被検者に対する測定点(デユワ
−位置)の位置関係を正確に把握することが難しく、異
常部位の位置の正確な推定ができないという問題があっ
た。 すなわち、心筋梗塞などを持つ心疾患者と正常者との心
臓の等磁界図のパターン比較のような場合は被検者に対
する測定点の位置関係の精密な測定は必ずしも必要でな
いが、W P W (Wojff−Parkinson
−White) g候群と呼ばれる心臓内伝導系異常部
位の位置推定などの場合は、測定点と被検者との位置関
係の正確な把握ができていないと等磁界図から異常部位
の正確な位置推定ができない。 この発明は、被検者に対する測定点の位置関係を正確に
求めることができる、心磁針測装置を提供することを目
的とする。
However, in the past, it was difficult to accurately grasp the positional relationship of the measurement point (dewar position) with respect to the subject, and there was a problem that the position of the abnormal region could not be accurately estimated. In other words, in cases such as comparing patterns of cardiac isomagnetic field diagrams between patients with heart disease such as myocardial infarction and normal subjects, precise measurement of the positional relationship of measurement points with respect to the subject is not necessarily required, but W P W (Wojff-Parkinson
-White) When estimating the location of an abnormal site in the cardiac conduction system called the G cluster, if the positional relationship between the measurement point and the subject is not accurately understood, it is difficult to accurately determine the abnormal site from the isomagnetic field map. Unable to estimate location. SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetocardiographic measuring device that can accurately determine the positional relationship of measurement points with respect to a subject.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明による心磁針測装置
においては、被検者が横たえられるベッド天板と、該ベ
ッド天板を移動させる移動装置と、該ベッド天板の上方
において退避可能に配置される、位置決め用の光ビーム
を発生する光源と、この光源が退避した後その光源が位
置していた位置に固定されるSQU IDセンサと、上
記移動装置を制御して所定の位置に次々にベッド天板を
位置させる制御装置と、上記SQUIDセンサから得ら
れるデータを上記制御装置からの位置情報とともに収集
する装置とが備えられる。
In order to achieve the above object, the magnetocardiographic measuring device according to the present invention includes a bed top on which a subject lies, a moving device for moving the bed top, and a retractable arrangement above the bed top. a light source that generates a light beam for positioning; a SQU ID sensor that is fixed at the position where the light source was located after the light source has retreated; A control device for positioning the bed top plate and a device for collecting data obtained from the SQUID sensor together with position information from the control device are provided.

【作  用】[For production]

光源からの光ビームが被検者に取り付けられたマーカ等
の指標に一致するように、被検者が横たわっているベッ
ド天板を移動させる。その後、この光源は退避させられ
、代わりにその位置にSQUIDセンサが固定される。 そして、制御装置によって、この位置を基準にしてベッ
ド天板を移動させれば、被検者について予め定めた測定
点において5QUI Dセンサによる磁気測定を行なう
ことができる。こうして取得したデータは制御装置から
の各測定点を表わす位置情報とともに収集される。 したがって、こうして磁気データとその測定点の位置情
報とが収集されることになり、その位置情報は光源から
の光ビームによって実際に被検者との対応間係がとられ
ているため、正確なものとなる。 その結果、SQUIDセンサによる測定点と被検者との
位置関係が正確に把握されることになるので、これら磁
気データ及び測定点の位置情報より作成した等磁界図か
ら、心臓内伝導系異常部位の位置推定などを正確に行な
うことができる。
The bed top on which the subject is lying is moved so that the light beam from the light source matches an index such as a marker attached to the subject. This light source is then retracted and the SQUID sensor is fixed in its place. Then, by moving the bed top using this position as a reference using the control device, magnetic measurements can be performed using the 5QUID sensor at predetermined measurement points for the subject. The data thus obtained is collected together with position information representing each measurement point from the control device. Therefore, magnetic data and position information of the measurement point are collected in this way, and the position information is accurate because it is actually connected to the subject using the light beam from the light source. Become something. As a result, the positional relationship between the measurement point by the SQUID sensor and the subject can be accurately grasped, and from the isomagnetic field map created from these magnetic data and the position information of the measurement point, the abnormal site of the intracardiac conduction system can be determined. It is possible to accurately estimate the position of

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。第1図において、被検者1はベッド天板2上
に横たえられる。このベッド天板2は天板走査装置、2
1によってX方向(被検者1の左右方向)、Y方向(被
検者1の身長方向)及びZ方向(上下方向)に天板2が
移動させられる。 この天板走査装置21は制御装置22によって制御され
る。 この天板走査装置21は基台3上に設置されており、こ
の基台3には光源4を退避可能に保持するフレーム31
が固定されている。この光源4は、Z方向の細いペンシ
ル状の光ビーム(ペンシルビーム)41と、X−Y平面
内で扇型に広がる薄い光ビーム(スリットビーム)42
とを照射する。 また、基台3にはスタンド32が固定されており、この
スタンド32に上下に昇降するアーム33が取り付けら
れ、このアーム33によりデユワ−5が保持される。こ
のデユワ−5内にはSQU I Dセンサの検出コイル
とSQU I Dユニットとが納められており、検出コ
イルはその底部に配置される。光源4が退避させられた
後、その光源4のもとの位置にデユワ−5の底面が位置
するようにアーム33が降りてくる。 そして、制御装置22によって天板走査装置21が制御
され、被検者1が移動させられてデユワ−5の底面が被
検者1の予め決められている測定点に次々に位置決めさ
れる。こうしてSQU I Dセンサにより被検者1の
各測定点での磁気計測が行なわれ、その測定データはデ
ータ収集袋f6及びデータ処理装置7を経て記録装f8
に記録される。この測定データとともに制御装置22か
らの測定点の位置情報が記録装R8に記録される。っぎ
にデータ処理装置7がこの記録されたデータを読み出し
、処理を加えることにより等磁界図等が作成され、これ
が表示装置9に表示される。また、MRI装!(核磁気
共鳴を利用したイメージング装置)10によって撮像し
た同じ被検者1に間する断層像がデータ処理装置7に送
られ、このデータ処理装置7によって断層像上で異常部
位等の推定等が行なわれ、その位置を表わす断層像の表
示等も表示袋W9により行なわれる。 実際の操作を1つの測定例について説明すると、まず、
第2図に示すように被検者1の心臓輪郭が1点鎖線12
で示されるようであるとして、それをカバーする範囲を
断層撮像範囲13とし、その範囲13内でMRI装置1
0により多数の適当な厚さの断層像(X−Z平面に平行
な断層面での像)の撮像を心電同期により予め行なって
おく、そして、この断層面の1つ、たとえば撮像範囲1
3の端に位置する1つの断層面上において被検者1の体
表面に指標となるマーカ11をいくつか貼りつけておい
て、この断層面での断層像にこれらのマーカ11が写る
ようにしておく。 その後、光源4のペンシルビーム41のX−Y座標とデ
ユワ−5内の検出コイル中心軸とが一致し、且つ検出コ
イル中心軸がZ軸に一致するようにデユワ−5を保持す
るアーム33を調整する。 次に、天板2(及び被検者l)をX方向及びY方向に移
動させて、光源4からのスリットビーム42が被検者1
の複数のマーカ11を照射するようにする。このときの
光源4のX、Y座標が天板走査装置21により天板2の
位置から読み取られる。 また、光源4のZ座標(被検者1との間の距M)はマニ
ュアル測定により得る。こうして基準位置のX、Y、Z
座標が制御装置22に入力される。 つぎに、予め定まっている測定点を被検者1の体表面に
描き、その各測定点をペンシルビーム41が照射するよ
うに天板2を移動させる。この測定点はたとえば第3図
の格子点として定められる。 この第3図に示す測定点は、内角他「正常、異常者の心
磁図の5QUARE  MAP表示」 (マグネティッ
クス研究会資料、MAG−83−34,1983年2月
11日)によっている。こうして全測定点のそれぞれの
X、Y位置情報(上記基準位置からのX、Y距離)が制
御袋!22に取り込まれる。 これにより、測定点の被検者1に対する位置が正確に得
られ、且つ測定点と多数のMR断層像(3次元MRデー
タ)との位置関係も正確に対応できることになる。 その後、光源4はデユワ−5の下から退避させられ、デ
ユワ−5が降りてきて光源4が位置していた位置にデユ
ワ−5の底部(検出コイルが配置された部分)が位置さ
せられる。こうした状態で、制御装置22により、デユ
ワ−5の底部がさきに入力された測定点の各々に位置す
るよう天板操作袋221の制御が行なわれ、各測定点に
おけるSQU I Dセンサによる磁気測定が次々に行
なわれる。得られた磁気データとその測定点の位置情報
とが順次記録装置11f8に記録されていき、すべての
測定点でのデータの記録が終了した後、データ処理装置
7がこのデータを読み出して処理を行い、第4図に示す
ような等磁界図が作成され、この画像が表示装置9によ
り表示される。この第4図の等磁界図において、+は紙
面に対し垂直に裏面方向に向かう磁界の極値を、−は紙
面に対し垂直に裏面から表面側に向かう磁界の極値をそ
れぞれ示し、矢印→が示された位置に電流双極子が存在
しているものと推定される。さらにMHI装210から
の3次元MRデータをデータ処理装置7に入力し、上記
の等磁界図より推定した異常部位の位置をMR断層像上
において表示するとたとえば第5図のようになる。この
第5図でx印が異常部位の位置であり、中心から左方向
(X方向)に距離aで、検出コイル面から下方(Z方向
)に距xbとなっている。これが表示装置9において表
示される。 なお、上記では被検者1の内部組織の3次元データをM
R1装置10から得ているが、X線CT装置からの3次
元CTデータを用いることもできる。
Next, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a subject 1 is lying on a bed top 2. This bed top plate 2 includes a top plate scanning device, 2
1, the top plate 2 is moved in the X direction (horizontal direction of the subject 1), Y direction (height direction of the subject 1), and Z direction (vertical direction). This top scanning device 21 is controlled by a control device 22. This top plate scanning device 21 is installed on a base 3, and a frame 31 that holds the light source 4 in a retractable manner is mounted on the base 3.
is fixed. This light source 4 includes a thin pencil-shaped light beam (pencil beam) 41 in the Z direction and a thin light beam (slit beam) 42 that spreads fan-shaped in the X-Y plane.
irradiate with. Further, a stand 32 is fixed to the base 3, and an arm 33 that moves up and down is attached to this stand 32, and the dewar 5 is held by this arm 33. A detection coil of a SQU ID sensor and a SQU ID unit are housed in this dewar 5, and the detection coil is arranged at the bottom thereof. After the light source 4 is evacuated, the arm 33 descends so that the bottom surface of the dewar 5 is located at the original position of the light source 4. The top plate scanning device 21 is then controlled by the control device 22, the subject 1 is moved, and the bottom surface of the dewar 5 is successively positioned at predetermined measurement points on the subject 1. In this way, the SQU I D sensor performs magnetic measurement at each measurement point of the subject 1, and the measurement data is sent to the recording device f8 via the data collection bag f6 and the data processing device 7.
recorded in Along with this measurement data, the position information of the measurement point from the control device 22 is recorded in the recording device R8. Then, the data processing device 7 reads out this recorded data and processes it to create an equal magnetic field diagram, etc., which is displayed on the display device 9. Also, MRI equipment! (Imaging device using nuclear magnetic resonance) A tomographic image of the same subject 1 imaged by 10 is sent to data processing device 7, and this data processing device 7 estimates abnormal areas etc. on the tomographic image. The display bag W9 also displays a tomographic image representing the position. To explain the actual operation using one measurement example, first,
As shown in FIG. 2, the heart contour of subject 1 is
, the range that covers it is defined as the tomographic imaging range 13, and within that range 13, the MRI apparatus 1
0, a large number of tomographic images (images on tomographic planes parallel to the
Several markers 11 serving as indicators are pasted on the body surface of the subject 1 on one tomographic plane located at the edge of 3, and these markers 11 are made to appear in the tomographic image on this tomographic plane. I'll keep it. After that, the arm 33 that holds the dewar 5 is moved so that the X-Y coordinates of the pencil beam 41 of the light source 4 and the central axis of the detection coil in the dewar 5 coincide with each other, and the central axis of the detection coil coincides with the Z axis. adjust. Next, the top plate 2 (and the subject 1) is moved in the X direction and the Y direction so that the slit beam 42 from the light source 4
A plurality of markers 11 are irradiated. The X and Y coordinates of the light source 4 at this time are read from the position of the top plate 2 by the top plate scanning device 21. Further, the Z coordinate of the light source 4 (distance M from the subject 1) is obtained by manual measurement. In this way, the reference position X, Y, Z
The coordinates are input to the control device 22. Next, predetermined measurement points are drawn on the body surface of the subject 1, and the top plate 2 is moved so that each measurement point is irradiated with the pencil beam 41. This measurement point is determined, for example, as a grid point in FIG. The measurement points shown in FIG. 3 are based on Uikami et al.'s ``5QUARE MAP display of magnetocardiograms of normal and abnormal subjects'' (Magnetics Study Group material, MAG-83-34, February 11, 1983). In this way, the X, Y position information (X, Y distance from the above reference position) of all measurement points is controlled! 22. As a result, the position of the measurement point relative to the subject 1 can be accurately obtained, and the positional relationship between the measurement point and a large number of MR tomographic images (three-dimensional MR data) can also be accurately matched. Thereafter, the light source 4 is retracted from under the dewar 5, and the dewar 5 is lowered so that the bottom of the dewar 5 (the part where the detection coil is located) is located at the position where the light source 4 was located. In this state, the control device 22 controls the top panel operation bag 221 so that the bottom of the dewar 5 is located at each of the previously input measurement points, and the magnetic measurement by the SQU ID sensor at each measurement point is performed. are carried out one after another. The obtained magnetic data and the position information of the measurement points are sequentially recorded in the recording device 11f8, and after the recording of data at all the measurement points is completed, the data processing device 7 reads out this data and processes it. Then, an equal magnetic field diagram as shown in FIG. 4 is created, and this image is displayed on the display device 9. In the isomagnetic field diagram in Fig. 4, + indicates the extreme value of the magnetic field that goes perpendicular to the paper surface toward the back surface, and - indicates the extreme value of the magnetic field that goes perpendicular to the paper surface from the back surface toward the front surface. It is presumed that a current dipole exists at the position indicated by . Furthermore, the three-dimensional MR data from the MHI system 210 is input to the data processing device 7, and the position of the abnormal region estimated from the above-mentioned isomagnetic field map is displayed on the MR tomographic image as shown in FIG. 5, for example. In FIG. 5, the x mark indicates the position of the abnormal region, which is a distance a from the center to the left (X direction) and a distance xb downward (Z direction) from the detection coil surface. This is displayed on the display device 9. In addition, in the above, the three-dimensional data of the internal tissue of subject 1 is
Although the data is obtained from the R1 device 10, three-dimensional CT data from an X-ray CT device can also be used.

【発明の効果】【Effect of the invention】

この発明の心磁針測装置によれば、SQU I Dセン
サによる測定点と被検者との位置関係が正確に把握され
ることになるので、これら磁気測定データ及び測定点の
位置情報より作成した等磁界図から、心臓内伝導系異常
部位等の疾患の位置を正確に求めることが可能となる。
According to the magnetocardiographic measuring device of the present invention, the positional relationship between the measurement point by the SQU I D sensor and the subject can be accurately grasped. From the isomagnetic field map, it is possible to accurately locate a disease such as an abnormal site of the intracardiac conduction system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のブロック図、第2図は被
検者に取り付けたマーカ位置を示す模式図、第3図は測
定点を例示する模式図、第4図は等磁界図を例示する図
、第5図はMR断層像上で推定された疾患位置を表わす
図である。 1・・・被検者、11・・・マーカ、12・・・心臓輪
郭、13・・・断層撮像範囲、2・・・ベッド天板、2
1・・・天板走査装置、22・・・制御装置、3・・・
基台、31・・・フレーム、32・・・スタンド、33
・・・アーム、4・・・光源、41・・・ペンシルビー
ム、42・・・スリットビーム、5・・・デユワ−16
・・・データ収集装置、7・・・データ処理装置、8・
・・記録装置、9・・・表示装置、10・・・MHI装
置。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram showing the positions of markers attached to the subject, Fig. 3 is a schematic diagram illustrating measurement points, and Fig. 4 is an equal magnetic field diagram. FIG. 5 is a diagram showing a disease position estimated on an MR tomographic image. 1... Subject, 11... Marker, 12... Heart contour, 13... Tomographic imaging range, 2... Bed top plate, 2
1... Top plate scanning device, 22... Control device, 3...
Base, 31... Frame, 32... Stand, 33
...Arm, 4...Light source, 41...Pencil beam, 42...Slit beam, 5...Dewar-16
... data collection device, 7... data processing device, 8.
...Recording device, 9...Display device, 10...MHI device.

Claims (1)

【特許請求の範囲】[Claims] (1)被検者が横たえられるベッド天板と、該ベッド天
板を移動させる移動装置と、該ベッド天板の上方におい
て退避可能に配置される、位置決め用の光ビームを発生
する光源と、この光源が退避した後その光源が位置して
いた位置に固定されるSQUIDセンサと、上記移動装
置を制御して所定の位置に次々にベッド天板を位置させ
る制御装置と、上記SQUIDセンサから得られるデー
タを上記制御装置からの位置情報とともに収集する装置
とを有することを特徴とする心磁計測装置。
(1) A bed top on which a subject lies, a moving device that moves the bed top, and a light source that generates a positioning light beam that is retractably arranged above the bed top; A SQUID sensor that is fixed at the position where the light source was located after the light source has evacuated; a control device that controls the moving device to position the bed tops one after another at predetermined positions; 1. A magnetocardiocardial measuring device comprising: a device for collecting data from the controller along with positional information from the control device.
JP63335591A 1988-12-29 1988-12-29 Heart magnetism measuring device Pending JPH02180244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335591A JPH02180244A (en) 1988-12-29 1988-12-29 Heart magnetism measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335591A JPH02180244A (en) 1988-12-29 1988-12-29 Heart magnetism measuring device

Publications (1)

Publication Number Publication Date
JPH02180244A true JPH02180244A (en) 1990-07-13

Family

ID=18290299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335591A Pending JPH02180244A (en) 1988-12-29 1988-12-29 Heart magnetism measuring device

Country Status (1)

Country Link
JP (1) JPH02180244A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117945A (en) * 1990-09-07 1992-04-17 Daikin Ind Ltd Plane tomography image interpolation display device
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
JP2001299714A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Method for measuring biological magnetic field
JP2001299715A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Biological magnetic field measuring instrument
JP2001321349A (en) * 1999-10-06 2001-11-20 Hitachi Ltd Positioning method of subject for biomagnetism measurement
US6522908B1 (en) 1999-10-06 2003-02-18 Hitachi, Ltd. Biomagnetic field measuring apparatus
JP2008029459A (en) * 2006-07-27 2008-02-14 Hitachi High-Technologies Corp Bio-magnetic field measuring instrument and measurement position setting method for bio-magnetic field measuring instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117945A (en) * 1990-09-07 1992-04-17 Daikin Ind Ltd Plane tomography image interpolation display device
WO1999049781A1 (en) * 1998-03-27 1999-10-07 Hitachi, Ltd. Apparatus for magnetic measurement of living body, and method of positioning person under examination
US6628978B1 (en) 1998-03-27 2003-09-30 Hitachi, Ltd. Biomagnetism measurement device and method of biomagnetism measurement using the device
JP2001299714A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Method for measuring biological magnetic field
JP2001299715A (en) * 1999-10-06 2001-10-30 Hitachi Ltd Biological magnetic field measuring instrument
JP2001321349A (en) * 1999-10-06 2001-11-20 Hitachi Ltd Positioning method of subject for biomagnetism measurement
US6522908B1 (en) 1999-10-06 2003-02-18 Hitachi, Ltd. Biomagnetic field measuring apparatus
JP2008029459A (en) * 2006-07-27 2008-02-14 Hitachi High-Technologies Corp Bio-magnetic field measuring instrument and measurement position setting method for bio-magnetic field measuring instrument

Similar Documents

Publication Publication Date Title
JP3454235B2 (en) Biomagnetic field measurement device
US8111067B1 (en) Positional magnetic resonance imaging
US7433506B2 (en) Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and an apparatus therefor
US20080024127A1 (en) Magnetic Resonance Imaging Apparatus and Method
CN112842344B (en) Magnetic field detection system and method
WO1990005494A1 (en) Process and apparatus particularly for guiding neurosurgical operations
JPH11276502A (en) Frameless stereotaxic operation apparatus
JPH02180244A (en) Heart magnetism measuring device
US6336043B1 (en) Method for processing biomagnetic field data, magnetic field contour mapping, forming their waveforms and a biomagnetic instrument using the same
JP4110108B2 (en) Biomagnetic field measurement device, horizontal position setting method for biomagnetic field measurement
JPH04109932A (en) Living body magnetism measuring device
JP3446317B2 (en) Spatial coordinate setting device for tomographic images
JPH04105641A (en) Medical diagnosis system
JP3546686B2 (en) Biomagnetic field measurement device
JPH04109929A (en) Method for measuring living body magnetism
JPH04109930A (en) Living body magnetism measuring device
WO1992004862A1 (en) Process and device for the anatomically locally correct allocation of the excitation centres of biomagnetic signals
JP3591473B2 (en) Biomagnetic field measurement device
JP3951624B2 (en) Biomagnetic field measurement device
JPH04303416A (en) Device for measuring magnetism of living body
Abraham-Fuchs et al. Fusion of Biomagnetlsm with MR or CT Images by Contour-Fitting
JP3603803B2 (en) Biomagnetic field measurement device
JPH0461842A (en) Measurement of living body magnetism
JPH0628650B2 (en) MRI equipment
JP3591474B2 (en) Biomagnetic field measurement device