JPH02179807A - Smelting reduction method for iron ore - Google Patents

Smelting reduction method for iron ore

Info

Publication number
JPH02179807A
JPH02179807A JP33165788A JP33165788A JPH02179807A JP H02179807 A JPH02179807 A JP H02179807A JP 33165788 A JP33165788 A JP 33165788A JP 33165788 A JP33165788 A JP 33165788A JP H02179807 A JPH02179807 A JP H02179807A
Authority
JP
Japan
Prior art keywords
furnace
gas
blowing
pressure
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33165788A
Other languages
Japanese (ja)
Other versions
JP2869985B2 (en
Inventor
Katsuhiro Iwasaki
克博 岩崎
Masahiro Kawakami
川上 正弘
Hitoshi Kawada
仁 川田
Haruyoshi Tanabe
治良 田辺
Kenji Takahashi
謙治 高橋
Toru Kitagawa
北川 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33165788A priority Critical patent/JP2869985B2/en
Publication of JPH02179807A publication Critical patent/JPH02179807A/en
Application granted granted Critical
Publication of JP2869985B2 publication Critical patent/JP2869985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To prevent explosion caused by unreacted O2 remaining in a furnace at the starting time of blowing and to stabilize OD ratio at high level by making the pressure in the furnace atmospheric pressure during the specific period at the starting time of the blowing in the subject method with iron bath type smelting reduction furnace. CONSTITUTION:Iron ore and carbonaceous material are supplied in the reduction furnace 1, and O2 is blown on slag 8 through a lance 2 inserted in the furnace 1 at low dynamic pressure, and stirring gas of N2, etc., is blown into the iron bath 7 through blowing holes 3 arranged at the bottom and/or side wall of the furnace. Then, C in the molten iron and C in the carbonaceous material are reacted with the blown O2 to change the generated CO into CO2 and the iron ore is reduced and changed into the molten iron. In this case, at the time of starting the blowing, the pressure in the furnace 1 is substantially made to the atmospheric pressure until CO gas is generated sufficiently. By this method, as decarburizing effect in the molten iron with the blown O2 becomes high, the unreacted O2 can hardly exist in the furnace and in this result, the gas explosion in the furnace can be prevented. After that, as the furnace operation is executed while making the pressure in the furnace high, the lowering of the OD ratio does not occur.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、鉄浴式溶融還元炉による鉄鉱石の溶融還元
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for melting and reducing iron ore using an iron bath type melting and reducing furnace.

〔従来の技術] 鉄浴が収容された転炉型の溶融還元炉内に、鉄鉱石およ
び炭材を供給し、ランスを通して酸素を吹き込むことに
より鉄鉱石を溶融還元する、鉄浴式溶融還元炉による鉄
鉱石の溶融還元方法が知られている。
[Prior Art] An iron bath-type smelting-reduction furnace in which iron ore and carbonaceous material are fed into a converter-type smelting-reduction furnace containing an iron bath, and the iron ore is melted and reduced by blowing oxygen through a lance. A method of melting and reducing iron ore is known.

第3図は、鉄浴式溶融還元炉の概略縦断面図である。第
3図に示すように、溶融還元炉は、転炉型の炉体1と、
炉体1の炉口1aを通して炉内に垂直に挿入されるラン
ス2と、炉体1の底壁および/または側壁に設けられた
攪拌用ガス吹込口3と、炉口1aを覆うフード4に設け
られた鉄鉱石供給用シュート5および石炭等の炭材供給
用シュート6とからなっている。
FIG. 3 is a schematic longitudinal sectional view of an iron bath type smelting reduction furnace. As shown in FIG. 3, the melting reduction furnace includes a converter type furnace body 1,
A lance 2 inserted vertically into the furnace through the furnace mouth 1a of the furnace body 1, a stirring gas inlet 3 provided on the bottom wall and/or side wall of the furnace body 1, and a hood 4 covering the furnace mouth 1a. It consists of a chute 5 for supplying iron ore and a chute 6 for supplying carbonaceous materials such as coal.

炉内に所定量の溶鉄を収容し、シュート5を通して鉄鉱
石を、そして、シュート6を通して石炭等の炭材および
フランクスを炉内に供給する。炉口1aから炉体1内に
垂直に挿入されたランス2を通して、炉内のスラグ8上
に酸素ガスを吹き込み、そして、攪拌用ガス吹込口3を
通して、炉内の鉄浴7中に窒素等の攪拌用ガスを吹き込
む。
A predetermined amount of molten iron is stored in the furnace, iron ore is supplied through a chute 5, and carbonaceous materials such as coal and franks are supplied through a chute 6 into the furnace. Oxygen gas is blown into the slag 8 in the furnace through the lance 2 inserted vertically into the furnace body 1 from the furnace mouth 1a, and nitrogen, etc. is injected into the iron bath 7 in the furnace through the stirring gas inlet 3. Blow in stirring gas.

その結果、溶鉄中の炭素および供給された炭材中の炭素
とランス2を通して吹き込まれた酸素ガスとが下記(+
j式のように反応してCOガスが生成する。
As a result, the following (+
The reaction occurs as shown in equation j, and CO gas is generated.

C+−0、= CO−−−・−−−−−−−−−−−−
−(1)上記により生成したCOガスは、ランス2を通
して吹き込まれた酸素ガスと下記(2)式のように反応
してCOz ガスとなり、このときに高い熱量を有する
燃焼熱が発生する。
C+-0, = CO---・----------
-(1) The CO gas generated above reacts with the oxygen gas blown through the lance 2 as shown in equation (2) below to become COz gas, and at this time combustion heat having a high calorific value is generated.

C○+−○z = CO2”’−・−−−−−m−−(
2)このCO□ガスの熱は、スラグ8を介して鉄浴7に
伝達される。従って、鉄浴7中の鉄鉱石は溶融しそして
炭材中の炭素により還元されて溶銑となる。第7図にお
いて、9はフード4にその一端が接続された排ガス排出
用のダクト、10はダクト9の途中に設けられた乾式集
mjmである。
C○+−○z = CO2”'−・−−−−−m−−(
2) The heat of this CO□ gas is transferred to the iron bath 7 via the slag 8. Therefore, the iron ore in the iron bath 7 is melted and reduced by the carbon in the carbon material to become hot metal. In FIG. 7, 9 is a duct for discharging exhaust gas, one end of which is connected to the hood 4, and 10 is a dry collection mjm provided in the middle of the duct 9.

上述の溶融還元方法において重要なことは、還元炉内に
おいて発生するガスの酸化度即ち2次燃焼率(CO2+
 H20/CO+ Co□+)Iz+HtO)  (以
下、rOD比」という)の向上である。
What is important in the above-mentioned melting reduction method is the degree of oxidation of the gas generated in the reduction furnace, that is, the secondary combustion rate (CO2+
This is an improvement in H20/CO+Co□+)Iz+HtO) (hereinafter referred to as "rOD ratio").

OD比を向上させるための方策については、従来から種
々研究されており、還元炉の炉内圧力を高めること、お
よび、ランスから浴上に吹き込まれる酸素の動圧を低く
することによりOD比を向上し得ることが知られている
Various methods have been studied to improve the OD ratio, including increasing the pressure inside the reduction furnace and lowering the dynamic pressure of oxygen blown into the bath from the lance. It is known that it can be improved.

例えば、特開昭63−35719号公報には、還元炉の
炉内圧力を亮め、且つ、スラグ層における炭材の量を少
なくすることによって、スラグのフォーミング、および
、C+CO□→2COの反応を抑制し、これによってO
D比を向上させる方法(以下、先行技術という)が開示
されている。
For example, Japanese Patent Application Laid-Open No. 63-35719 discloses that by increasing the pressure inside the reduction furnace and reducing the amount of carbonaceous material in the slag layer, slag forming and the reaction of C+CO□→2CO are improved. , thereby suppressing O
A method for improving the D ratio (hereinafter referred to as prior art) is disclosed.

また、ランスから浴上に吹き込まれる酸素の動圧を低く
することによって、吹き込まれた酸素が溶鉄中の炭素と
反応することを抑制し、前記酸素を前記(2)弐の反応
によるCO,ガスの生成のために十分に寄与させれば、
OD比を向上し得ることがわかっている。第4図は、炉
内容積がフイの鉄浴式溶融還元炉において、ラバールノ
ズルランス(孔径14.9mmX 3孔)を使用し、動
圧(Pd)を変ええて酸素を吹き込んだときの、動圧(
Pd)とOD比との関係を示すグラフである。なお、炉
内圧力は0.7kgノctA Gとなし、炭材として高
品位石炭(HV coa l )を使用した。第4図か
られかるように、動圧(Pd)を50kg/n(以下に
して操業すれば、OD比を50%以上に高めることがで
きる。
In addition, by lowering the dynamic pressure of the oxygen blown into the bath from the lance, it is possible to suppress the blown oxygen from reacting with carbon in the molten iron, and to convert the oxygen into CO and gas caused by the reaction in (2) 2 above. If it contributes enough to the generation of
It has been found that the OD ratio can be improved. Figure 4 shows the dynamic pressure when oxygen is blown into an iron bath type smelting reduction furnace with an internal volume of F, using a Laval nozzle lance (hole diameter 14.9 mm x 3 holes) and varying the dynamic pressure (Pd). (
It is a graph which shows the relationship between Pd) and OD ratio. The pressure inside the furnace was set to 0.7 kg noctAG, and high-grade coal (HV coal) was used as the carbon material. As can be seen from FIG. 4, if the operation is performed at a dynamic pressure (Pd) of 50 kg/n or less, the OD ratio can be increased to 50% or more.

〔発明が解決しようとする課題1 しかしながら、上述のように、炉内圧力を高めそしてラ
ンスから浴上に吹き込まれる酸素の動圧を低くなして操
業すると、次のような問題が生ずる。即ち、上述のよう
に、炉内圧力を高めた還元炉内に、ラバールノズルラン
スにより低い動圧即ち超ソフトブローで酸素が吹き込ま
れるため、吹き込まれた酸素が浴面に当たる勢いが弱く
、浴内への酸素の侵入距離が小さい結果、酸素による溶
鉄の脱炭効率が低い。
[Problem to be Solved by the Invention 1] However, as described above, when the furnace is operated by increasing the pressure inside the furnace and lowering the dynamic pressure of oxygen blown into the bath from the lance, the following problems occur. That is, as mentioned above, oxygen is blown into the reducing furnace with high internal pressure by the Laval nozzle lance at a low dynamic pressure, that is, at an ultra-soft blow, so the blown oxygen hits the bath surface with a weak force and flows into the bath. As a result of the small penetration distance of oxygen, the decarburization efficiency of molten iron by oxygen is low.

第5図は、前述の還元炉において、孔径16.3mm×
3孔のラバールノズルランス(白丸印)および孔径14
.911111 X 3孔のラバールノズルランス(黒
丸印)を使用し、動圧(Pd)を変え、600〜105
ON+コ/1(rの量の酸素を吹き込んだときの脱炭酸
素効率を示すグラフである。第5図から明らかなように
、動圧(Pd)を低くするほど、脱炭酸素効率は低下す
る。
Figure 5 shows the reduction furnace with a hole diameter of 16.3 mm x
3-hole Laval nozzle lance (white circle) and hole diameter 14
.. Using a 911111 X 3-hole Laval nozzle lance (black circle), change the dynamic pressure (Pd) to 600 to 105.
This is a graph showing the decarburization oxygen efficiency when oxygen is blown in an amount of ON + co/1 (r).As is clear from Figure 5, the lower the dynamic pressure (Pd) is, the lower the decarburization oxygen efficiency is. do.

このため、吹き込まれた酸素と溶鉄中の炭素との、前記
(1)式の反応によるCOガスの発生いわゆる着火が不
十分になり、炉内に未反応の酸素が残る。
For this reason, the generation of CO gas, so-called ignition, due to the reaction of the injected oxygen and the carbon in the molten iron according to the above-mentioned formula (1) becomes insufficient, and unreacted oxygen remains in the furnace.

第6図は、炉内圧力を2 kg / cIaGとなし、
ラバールノズルランスにより炉内に8008m3/Hr
の量の酸素を、動圧100kg/ n(で吹き込んだと
きの吹錬開始時から約4分間における、炉内で生成した
COガスおよびCO□ガスの割合および炉内に残った未
反応の酸素の割合を示すグラフである。
In Fig. 6, the furnace pressure is assumed to be 2 kg/cIaG,
8008m3/Hr inside the furnace with Laval nozzle lance
The ratio of CO gas and CO□ gas generated in the furnace and the unreacted oxygen remaining in the furnace for about 4 minutes from the start of blowing when an amount of oxygen is blown at a dynamic pressure of 100 kg/n ( It is a graph showing the ratio of

第6図に示すように、吹錬開始時から約4分間は、炉内
に未反応の酸素が約2〜6%存在するため、この酸素が
炉内で生成したCOガスと混合し、ガス爆発が生ずる問
題がある。
As shown in Figure 6, for about 4 minutes from the start of blowing, approximately 2 to 6% of unreacted oxygen exists in the furnace, so this oxygen mixes with the CO gas generated in the furnace, causing gas There is a problem with explosions.

従って、この発明の目的は、鉄浴式溶融還元炉内に鉄鉱
石および炭材を供給し、圧力を高めた炉内に挿入された
ランスを通して低い動圧で酸素を吹き込むことにより鉄
鉱石の溶融還元を行なうに当り、吹錬開始時に炉内に残
存する未反応の酸素によってガス爆発が生ずることがな
く、しかもOD比を高位に安定し得る鉄鉱石の溶融還元
法を提供することにある。
Therefore, an object of the present invention is to melt iron ore by supplying iron ore and carbonaceous material into an iron bath type smelting reduction furnace, and blowing oxygen at low dynamic pressure through a lance inserted into the furnace with increased pressure. To provide a method for smelting and reducing iron ore, which does not cause a gas explosion due to unreacted oxygen remaining in a furnace at the start of blowing and can stabilize the OD ratio at a high level when performing reduction.

[課題を解決するための手段〕 本発明者等は、上述した問題を解決すべく鋭意研究を重
ねた。その結果、吹錬開始時における前記(1)式の反
応によるCOガスの発生が十分に行なわれるまでの間は
、炉内圧力を実質的に大気圧にすれば、炉内に吹き込ま
れた酸素による溶鉄の脱炭効率が高くなる結果、炉内に
未反応の酸素が存在しなくなり、これによって、炉内で
のガス爆発を防止し得ることがわかった。
[Means for Solving the Problems] The present inventors have conducted extensive research in order to solve the above-mentioned problems. As a result, until the CO gas is sufficiently generated by the reaction of formula (1) at the start of blowing, if the pressure inside the furnace is made substantially atmospheric pressure, the oxygen blown into the furnace can be It was found that as a result of the increased decarburization efficiency of molten iron, unreacted oxygen no longer exists in the furnace, thereby preventing gas explosions in the furnace.

この発明は、上述の知見に基づいてなされたもので、鉄
浴式溶融還元炉内に鉄鉱石および炭材を供給し、炉内圧
力を高め、前記炉内に挿入されたランスを通し、低い動
圧で酸素を吹き込み、そして、前記炉の底および/また
は側壁に設けられたガス吹込み口を通して攪拌用ガスを
吹き込むことにより吹錬し、前記鉄鉱石を溶融還元する
方法において、 吹錬開始時に、COガスが十分に発生するまでの間は、
前記炉内を実質的に大気圧となして操業することに特徴
を有するものである。
This invention was made based on the above-mentioned knowledge. Iron ore and carbonaceous materials are supplied into an iron bath type smelting reduction furnace, the pressure inside the furnace is increased, and the pressure is lowered through a lance inserted into the furnace. A method for melting and reducing the iron ore by blowing by blowing oxygen under dynamic pressure and blowing a stirring gas through a gas blowing port provided at the bottom and/or side wall of the furnace, comprising: starting blowing; Sometimes, until enough CO gas is generated,
The furnace is characterized in that the inside of the furnace is operated at substantially atmospheric pressure.

この発明においては、上述のように、吹錬開始時に還元
炉内を実質的に大気圧となして操業することにより、ラ
ンスを通して吹き込まれる酸素の動圧が低くても、吹き
込まれた酸素の浴面に当たる勢いが強くなり、浴内への
酸素の侵入距離が大になる。従って、酸素による溶鉄の
脱炭効率が高くなり、前記(1)式によるCOガスの発
生いわゆる着火が早期に安定して行なわれる。この結果
、吹き込まれた酸素が未反応で炉内に残る割合は極めて
少なくなる。
In this invention, as mentioned above, by operating the reduction furnace at substantially atmospheric pressure at the start of blowing, even if the dynamic pressure of the oxygen blown through the lance is low, The force with which it hits the surface increases, and the distance that oxygen penetrates into the bath increases. Therefore, the decarburization efficiency of molten iron by oxygen is increased, and the generation of CO gas according to the above-mentioned formula (1), so-called ignition, is performed quickly and stably. As a result, the proportion of the blown oxygen remaining in the furnace unreacted becomes extremely small.

第1図は、吹錬開始後約4分間は炉内圧力を0.1kg
/cm2G以下となし、ラバールノズルランスにより炉
内に80(lNm)/I(rの酸素を、動圧100kg
/cJで吹き込んだときの吹錬開始時から約4′分間に
おける、炉内で生成したCOガスおよびCO2ガスの割
合および炉内に残存する未反応の酸素の割合を示すグラ
フである。
Figure 1 shows that the furnace pressure is kept at 0.1 kg for about 4 minutes after the start of blowing.
/cm2G or less, oxygen of 80 (lNm)/I (r) was injected into the furnace using a Laval nozzle lance at a dynamic pressure of 100 kg.
2 is a graph showing the proportion of CO gas and CO2 gas generated in the furnace and the proportion of unreacted oxygen remaining in the furnace for about 4' minutes from the start of blowing when blowing at /cJ.

第1図に示すように、この発明の方法によれば、吹錬開
始直後からCOガスが活発に発生し、未反応の酸素はほ
とんど炉内に残存せず、従って、未反応の酸素によるガ
ス爆発の生ずるおそれはない。
As shown in FIG. 1, according to the method of the present invention, CO gas is actively generated immediately after the start of blowing, and almost no unreacted oxygen remains in the furnace. There is no risk of explosion.

このようにしてCOガスの発生いわゆる着火が行なわれ
た後は、炉内圧力を高めて操業する。従って、OD比の
低下が生ずることはない。
After the generation of CO gas, so-called ignition, is performed in this way, the pressure inside the furnace is increased and the furnace is operated. Therefore, the OD ratio does not decrease.

吹錬開始時における炉内圧力が0.3kt/ctlG以
上では、上述した効果は得られない。従って、吹錬開始
時、COガスが十分に発生するまでの間の炉内圧力はQ
、3kg/crlG未満となし、COガスが十分に発生
した後の炉内圧力は0.3kg1cdG以上とすること
が必要である。
If the pressure inside the furnace at the start of blowing is 0.3 kt/ctlG or more, the above-mentioned effects cannot be obtained. Therefore, at the start of blowing, the pressure inside the furnace until sufficient CO gas is generated is Q
, less than 3 kg/crlG, and the pressure inside the furnace after sufficient CO gas is generated must be 0.3 kg/crlG or more.

このような炉内圧力の制御は、排ガス排出用ダクト9の
途中に設けられたダンパ11(またはオリフィス)によ
り行なうことができる。
Such control of the furnace pressure can be performed by a damper 11 (or orifice) provided in the middle of the exhaust gas exhaust duct 9.

(実施例〕 次に、この発明を実施例により説明する。第3図に示し
た、炉内容積が7ポの鉄浴式溶融還元炉を使用し、下記
条件により溶融還元を行なった。
(Example) Next, the present invention will be described with reference to Examples. Using an iron bath type melting reduction furnace with an internal volume of 7 ports as shown in FIG. 3, melting reduction was carried out under the following conditions.

(1)溶鉄量    : 4〜8Tθn(2)鉄鉱石供
給ji  :  40〜70 kg / Ili n(
3)炭材供給量:コークス、MV coal (揮発分
中位の石炭)及び HV coal (揮発分高位の 石炭) 30〜50 kg / m i n (4)  フランクス供給量: 4〜5 kg/win
(5)炉内圧力 吹錬開始時から 3分間: 0.1kg / c4 G
吹錬開始時から 5分後: 0.7kg/cnl G(
6)酸素ガス吹込量 主孔(ラバー)1ノズル 16.3mm φ × 3 
孔):  700〜10100ON/Hr 副孔(ストレートノズル 46削mφ x15孔): 
 700〜120ONm3/)Ir(7)  攪拌用ガ
ス吹込量: 350〜60ONm3/Hr第1表に使用
した鉄鉱石、コースタ、MV coal、およびHVc
oalの組成および粒度を示す。
(1) Molten iron amount: 4~8Tθn (2) Iron ore supply ji: 40~70 kg/Ilin(
3) Carbon material supply amount: Coke, MV coal (medium volatile content coal) and HV coal (high volatile content coal) 30-50 kg/min (4) Franks supply amount: 4-5 kg/win
(5) 3 minutes from the start of furnace pressure blowing: 0.1 kg / c4 G
5 minutes after the start of blowing: 0.7 kg/cnl G (
6) Oxygen gas injection amount Main hole (rubber) 1 nozzle 16.3mm φ × 3
Hole): 700-10100ON/Hr Sub-hole (straight nozzle 46mmφ x 15 hole):
700-120ONm3/) Ir(7) Stirring gas injection amount: 350-60ONm3/Hr Iron ore, coaster, MV coal, and HVc used in Table 1
The composition and particle size of oal are shown.

のT、F、は約5−t、χとなり、OD比は約60%で
ある上、吹錬開始後直ちにCOガスが発生し、未反応の
酸素によるガス爆発を生ずることはなかった。
T, F, were approximately 5-t, χ, the OD ratio was approximately 60%, and CO gas was generated immediately after the start of blowing, and no gas explosion due to unreacted oxygen occurred.

〔発明の効果] 以上述べたように、この発明の方法によれば、鉄浴式溶
融還元炉内に鉄鉱石および炭材を供給し、炉内に上方か
ら垂直に挿入されたランスを通して吹き込まれる酸素に
より鉄鉱石を溶融還元するに際し、吹錬開始時に炉内に
残存する未反応の酸素によってガス爆発が生ずることは
なく、しかも、OD比を高位に安定させることができる
工業上有用な効果がもたらされる。
[Effects of the Invention] As described above, according to the method of the present invention, iron ore and carbonaceous materials are supplied into an iron bath type smelting reduction furnace, and are blown into the furnace through a lance vertically inserted from above. When melting and reducing iron ore using oxygen, gas explosions do not occur due to unreacted oxygen remaining in the furnace at the start of blowing, and the OD ratio can be stabilized at a high level, which is an industrially useful effect. brought about.

なお、炉内圧力の制御は、排ガス排出用ダクト9の途中
に設けられたダンパ11(またはオリフィス)により行
った。
The pressure inside the furnace was controlled by a damper 11 (or orifice) provided in the middle of the exhaust gas exhaust duct 9.

上記条件による原料の供給から出湯までの操業の経過を
、第2図に示す。第2図から明らかなように、溶鉄中の
炭素含有量は約5−t、χ、スラグ中
The progress of the operation from supply of raw materials to tapping of hot water under the above conditions is shown in Fig. 2. As is clear from Figure 2, the carbon content in the molten iron is approximately 5-t, χ, in the slag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法による吹錬開始時のCOガス、
COXガスおよび炉内に残存する未反応の酸素の割合を
示すグラフ、第2図はこの発明の方法による操業経過の
一例を示す図、第3図は鉄浴式溶融還元炉の概略縦断面
図、第4図はランスから吹き込まれる酸素の動圧とOD
比との関係を示すグラフ、第5図はランスから吹き込ま
れる酸素の動圧と脱炭酸素効率との関係を示すグラフ、
第6図は従来の方法による吹錬開始時のCOガス、CO
□ガスおよび炉内に残存する未反応の酸素の割合を示す
グラフである。図面において、 1・・・炉体、       2・・・ランス、3・・
・攪拌用ガス吹込口、4・・・フード、5.6・・・シ
ュート、  7・・・鉄浴、8・・・スラグ、    
  9・・・ダクト、10・・・乾式集塵機、   1
1・・・ダンパ。 第1図
Figure 1 shows CO gas at the start of blowing according to the method of this invention;
A graph showing the proportion of COX gas and unreacted oxygen remaining in the furnace, Fig. 2 is a diagram showing an example of the operation progress according to the method of the present invention, and Fig. 3 is a schematic vertical cross-sectional view of an iron bath type smelting reduction furnace. , Figure 4 shows the dynamic pressure and OD of oxygen blown from the lance.
Figure 5 is a graph showing the relationship between the dynamic pressure of oxygen blown from the lance and the decarburization oxygen efficiency.
Figure 6 shows CO gas and CO gas at the start of blowing using the conventional method.
□It is a graph showing the proportion of unreacted oxygen remaining in the gas and the furnace. In the drawings, 1...Furnace body, 2...Lance, 3...
・Gas inlet for stirring, 4...hood, 5.6...chute, 7...iron bath, 8...slag,
9...Duct, 10...Dry dust collector, 1
1...Damper. Figure 1

Claims (1)

【特許請求の範囲】 1 鉄浴式溶融還元炉内に鉄鉱石および炭材を供給し、
炉内圧力を高め、前記炉内に挿入されたランスを通し、
低い動圧で酸素を吹き込み、そして、前記炉の底壁およ
び/または側壁に設けられたガス吹込み口を通して攪拌
用ガスを吹き込むことにより吹錬し、前記鉄鉱石を溶融
還元する方法において、 吹錬開始時に、COガスが十分に発生するまでの間は、
前記炉内を実質的に大気圧となして操業することを特徴
とする、鉄鉱石の溶融還元方法。 2 前記吹錬開始時に、COガスが十分に発生するまで
の間は、前記炉内の圧力を0.3kg/cm^2G未満
となし、COガスが十分に発生した後は、前記炉内の圧
力を0.3kg/cm^2G以上となして操業する、請
求項1記載の鉄鉱石の溶融還元方法。
[Claims] 1. Supplying iron ore and carbonaceous material into an iron bath type smelting reduction furnace,
Increase the pressure inside the furnace and pass it through a lance inserted into the furnace,
A method for melting and reducing the iron ore by blowing oxygen at a low dynamic pressure and blowing a stirring gas through a gas blowing port provided on the bottom wall and/or side wall of the furnace. At the start of refining, until enough CO gas is generated,
A method for melting and reducing iron ore, characterized in that the furnace is operated at substantially atmospheric pressure. 2 At the start of the blowing, the pressure in the furnace is kept below 0.3 kg/cm^2G until sufficient CO gas is generated, and after sufficient CO gas is generated, the pressure in the furnace is The method for melting and reducing iron ore according to claim 1, wherein the method is operated at a pressure of 0.3 kg/cm^2G or more.
JP33165788A 1988-12-28 1988-12-28 Smelting reduction method of iron ore Expired - Fee Related JP2869985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33165788A JP2869985B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33165788A JP2869985B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Publications (2)

Publication Number Publication Date
JPH02179807A true JPH02179807A (en) 1990-07-12
JP2869985B2 JP2869985B2 (en) 1999-03-10

Family

ID=18246118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33165788A Expired - Fee Related JP2869985B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Country Status (1)

Country Link
JP (1) JP2869985B2 (en)

Also Published As

Publication number Publication date
JP2869985B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US4988079A (en) Apparatus for smelting and reducing iron ores
US4324583A (en) Supersonic injection of oxygen in cupolas
JPH11199907A (en) Injection system for high temperature oxygen into blast furnace
JPH01246311A (en) Production of gas and molten iron in iron bath reactor
CA1170833A (en) Gasification process of solid carbonaceous material
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
JP2602573B2 (en) Metal refining method
US6932854B2 (en) Method for producing low carbon steel
JPH02179807A (en) Smelting reduction method for iron ore
RU2005126707A (en) IMPROVED METHOD OF Smelting for iron production
JPS6038443B2 (en) Iron ore reduction processing method
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
TWI830137B (en) Top blowing lance of converter, method of adding auxiliary raw materials and refining method of molten iron
JPS62247014A (en) Carburizing, melting and refining method
JPH0723503B2 (en) Hot metal manufacturing method
JP2512919B2 (en) Refining method for stainless steel with less oxidation of valuable metals such as Cr during decarburization of molten steel
KR950012402B1 (en) Fe-mn smelting reduction process and equipment
JPH02179805A (en) Smelting reduction method for iron ore
JP3739941B2 (en) Method of melting iron-containing cold material
JP2023068358A (en) Method of refining hot metal in converter
JPH0723502B2 (en) Hot metal manufacturing method
JP2003064410A (en) Converter blowing method, and top-blow lance
JPH05105929A (en) Method for recovering waste converter gas
KR910009973B1 (en) Method of smelting reduction of chromium row materials and a smelting reduction furnace thereof
JPH08225823A (en) Refining of molten metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees