JPH02179535A - Active movement type suspension - Google Patents

Active movement type suspension

Info

Publication number
JPH02179535A
JPH02179535A JP33084488A JP33084488A JPH02179535A JP H02179535 A JPH02179535 A JP H02179535A JP 33084488 A JP33084488 A JP 33084488A JP 33084488 A JP33084488 A JP 33084488A JP H02179535 A JPH02179535 A JP H02179535A
Authority
JP
Japan
Prior art keywords
cylinder
accumulator
pressure
control valve
fluid pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33084488A
Other languages
Japanese (ja)
Inventor
Yosuke Akatsu
赤津 洋介
Naoto Fukushima
直人 福島
Yukio Fukunaga
由紀夫 福永
Itaru Fujimura
藤村 至
Masaharu Sato
佐藤 正晴
Kensuke Fukuyama
福山 研輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33084488A priority Critical patent/JPH02179535A/en
Publication of JPH02179535A publication Critical patent/JPH02179535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To improve the responsiveness in the attitude control by branching a flow passage led to an accumulator in a flow passage between a pressure control valve and a fluid pressure cylinder interposed between a car body and a wheel and installing a damping force generating means in a flow passage between the branching point and the fluid pressure cylinder. CONSTITUTION:As for the title suspension, a hydraulic cylinder 3 is interposed between a car body side member and a wheel side member 2, and a coil spring 5 for supporting the static load of the car body is interposed between a cylinder tube 3a and a car body side member 1. The pressurized oil supplied into the cylinder lower chamber L of the hydraulic cylinder 3 is controlled by a pressure control valve 7, which is controlled by an attitude change suppressing controller 11. Further, a piping 12 is branched midway from a piping 6, and the other edge of the piping 12 is connected to an accumulator 14. In this case, a throttle valve 16 as damping force generating means is interposed between the branching point X to the accumulator 14 and the cylinder lower chamber L of the hydraulic cylinder 3, and the transmission of vibration to the car body side can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、車両用の能動型サスペンションに係り、と
くに、車体と車輪との間に設けた流体圧シリンダと、こ
のシリンダの作動圧を姿勢変化に応じて制御する圧力制
御弁とを有した能動型サスペンションに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an active suspension for a vehicle, and in particular, relates to a fluid pressure cylinder provided between a vehicle body and a wheel, and the operating pressure of this cylinder is The present invention relates to an active suspension having a pressure control valve that controls pressure according to changes.

〔従来の技術〕[Conventional technology]

従来の能動型サスペンションとしては、例えば本出願人
が先に出願した実願昭63−10554号、特願昭63
−13642号記載のものがある。
Conventional active suspensions include, for example, Utility Application No. 10554/1983 filed by the present applicant, and Japanese Patent Application No. 1983/1983.
There is one described in No.-13642.

この両先願技術は、それらを等価的に示せば第4図に示
すように表される。これを詳述すると、同図において、
車体側部材1と車輪側部材2との間に、流体圧シリンダ
としての油圧シリンダ3が介挿されている。2Aは車輪
である。油圧シリンダ3は、車輪側部材2に固設された
シリンダチューブ3aと、このシリンダチューブ3a内
に摺動可能に挿入され且つ内部を上下に密封状態で隔設
してシリンダ上室U、下室りを画成するピストン3bと
、このピストン3bと車体側部材lとを連結するピスト
ンロンド3Cとを有している。さらに、シリンダチュー
ブ3a及び車体側部材1間には、車体の静荷重を支持す
るコイルスプリング5を介挿している。
These two prior art techniques can be expressed equivalently as shown in FIG. 4. To explain this in detail, in the same figure,
A hydraulic cylinder 3 serving as a fluid pressure cylinder is inserted between the vehicle body side member 1 and the wheel side member 2. 2A is a wheel. The hydraulic cylinder 3 includes a cylinder tube 3a fixed to the wheel side member 2, and a cylinder tube 3a that is slidably inserted into the cylinder tube 3a, and the inside of which is sealed and separated vertically to form an upper chamber U and a lower chamber. The piston 3b has a piston 3b that defines a section, and a piston rod 3C that connects the piston 3b and the vehicle body side member l. Furthermore, a coil spring 5 is inserted between the cylinder tube 3a and the vehicle body side member 1 to support the static load of the vehicle body.

また、油圧シリンダ3のシリンダ下室L(シリンダ室)
は、流路としての配管6を介して、圧力制御弁7の出力
ボートに接続されている。この圧力制御弁7の人力ポー
ト及び戻りボートは配管8及び9を介して油圧ポンプ、
タンクを有する油圧源10に接続されている。圧力制御
弁7は、電iffソレノイドを有し、該ソレノイドに供
給される指令値Iに応じた推力によってスプールが変位
し、油圧源10からのライン圧Ptを指令値Iに応じて
減圧して出力圧Pとする比例電磁減圧弁で成る。
In addition, the cylinder lower chamber L (cylinder chamber) of the hydraulic cylinder 3
is connected to the output port of the pressure control valve 7 via a pipe 6 as a flow path. This pressure control valve 7 is connected to a hydraulic pump and a return port via piping 8 and 9.
It is connected to a hydraulic power source 10 having a tank. The pressure control valve 7 has an electric IF solenoid, and the spool is displaced by the thrust according to the command value I supplied to the solenoid, and the line pressure Pt from the hydraulic source 10 is reduced according to the command value I. It consists of a proportional electromagnetic pressure reducing valve with an output pressure of P.

また、姿勢変化抑制制御装置11は、加速度センサや信
号処理回路を搭載しており、車体のロール。
In addition, the attitude change suppression control device 11 is equipped with an acceleration sensor and a signal processing circuit, and is equipped with an acceleration sensor and a signal processing circuit to prevent vehicle body roll.

ピッチなどに抗する方向の指令値■を求めて圧力制御弁
7の電磁ソレノイドに供給する。
A command value (■) in a direction that resists pitch etc. is determined and supplied to the electromagnetic solenoid of the pressure control valve 7.

さらに、前記配管6の途中には、配管12が分岐して接
続されており、この配管12は絞り弁13を介してアキ
ュムレータ14に至る。また、配管6における圧力制御
弁7の出力側と配管12への分岐点Xとの間に、絞り弁
15が挿入されている。
Further, a pipe 12 is branched and connected in the middle of the pipe 6, and this pipe 12 reaches an accumulator 14 via a throttle valve 13. Further, a throttle valve 15 is inserted between the output side of the pressure control valve 7 in the pipe 6 and a branch point X to the pipe 12.

そして、以上の構成において、例えば路面の凹凸による
振動が車輪2Aを介して車体側に伝わると、これにより
作動油圧の変動が発生し、作動油が配管6,12を介し
てシリンダ下室りと圧力制御弁7側及びアキュムレータ
14側との間で流通するので、振動は絞り弁15及び1
3によって減衰される。このとき、加振入力、即ち作動
油の振動数が、バネ上共振周波数域に相当する比較的低
い振動数であるときは、主に絞り弁15によって減衰さ
れ、一方、これより周波数の高い振動数であるときは、
絞り弁13による減衰が支配的となる。
In the above configuration, for example, when vibrations due to unevenness of the road surface are transmitted to the vehicle body via the wheels 2A, fluctuations in the hydraulic pressure occur, and the hydraulic oil flows through the pipes 6 and 12 to the lower cylinder chamber. Since the flow is between the pressure control valve 7 side and the accumulator 14 side, the vibration is caused by the throttle valves 15 and 1.
Attenuated by 3. At this time, when the excitation input, that is, the frequency of the hydraulic oil is a relatively low frequency corresponding to the sprung mass resonance frequency range, it is mainly attenuated by the throttle valve 15, while vibrations with a higher frequency When it is a number,
Attenuation by the throttle valve 13 becomes dominant.

この減衰力の分担理由は定性的には次のようである。つ
まり、低周波数では油圧変動に伴う流量変化が大きいた
め、例えば路面側からの突き上げでは、アキュムレータ
14が最初に潰れ、残りの大部分の作動油は絞り弁15
を通って圧力制御弁7に戻り、さらに弁7内のスプール
を変位させ出力、戻りボート間を連通ずることにより油
圧源10のタンクに戻る。このとき、絞り弁15によっ
て減衰力を発生させる。ところが、高周波数では、流量
変化が小さいため、油圧変動に伴う殆どの流量がアキュ
ムレータ14により吸収されてしまい、このとき絞り弁
13によって主たる減衰力を得る。
The reason for this division of damping force is qualitatively as follows. In other words, at low frequencies, the flow rate changes are large due to oil pressure fluctuations, so when pushing up from the road surface, for example, the accumulator 14 collapses first, and most of the remaining hydraulic fluid is transferred to the throttle valve 15.
It returns to the pressure control valve 7 through the valve 7, and then returns to the tank of the hydraulic power source 10 by displacing the spool in the valve 7 and communicating between the output and return boats. At this time, a damping force is generated by the throttle valve 15. However, at high frequencies, since the flow rate change is small, most of the flow rate due to oil pressure fluctuations is absorbed by the accumulator 14, and at this time, the main damping force is obtained by the throttle valve 13.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような能動型サスペンションの振動
減衰にあっては、路面側からの低周波数の加振入力に対
する減衰力を発生させるために、圧力制御弁7とアキュ
ムレータ14(絞り13)へ至る分岐点Xとの間に減衰
力発生手段としての絞り弁15を介挿していたことから
、圧力指令値Iに応じて圧力制御弁7が作動すると、絞
り弁15により流量低下が発生し、作動油がアキュムレ
ータ14に流れ込む時間(第5図中の矢印Aで示す作動
油の流通状態の時間)が長くなって、結局、圧力制御弁
7への圧力指令に対する油圧シリンダ3の応答性が著し
く低下するという未解決の問題があうた。
However, in vibration damping of such an active suspension, in order to generate a damping force against low frequency excitation input from the road surface, a branch point leading to the pressure control valve 7 and the accumulator 14 (orifice 13) is required. Since the throttle valve 15 as a damping force generating means is inserted between the pressure control valve 7 and It is said that the time for the hydraulic oil to flow into the accumulator 14 (the time for the hydraulic oil to flow as indicated by arrow A in FIG. 5) becomes longer, and as a result, the responsiveness of the hydraulic cylinder 3 to the pressure command to the pressure control valve 7 is significantly reduced. An unresolved problem arose.

この発明は、このような未解決の問題に着目してなされ
たもので、路面側からの低周波数の加振入力に対する減
衰力を的確に発生させるとともに、流体圧シリンダの作
動圧の制御に対する応答性を向上させるようにすること
を、その解決しようとする課題とする。
This invention was made by focusing on these unresolved problems, and it is possible to accurately generate a damping force against low-frequency excitation input from the road surface, and also to improve the response to control of the operating pressure of a fluid pressure cylinder. The problem it seeks to solve is to improve sexual performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、この発明は、車体及び車輪間
に介挿した流体圧シリンダと、この流体圧シリンダのシ
リンダ室に供給される流体圧源からの作動流体圧を車体
の姿勢変化に応じて制御する圧力制御弁と、この圧力制
御弁と前記シリンダ室とを連通ずる流路に分岐して設け
られたアキュムレータとを有する能動型サスペンション
において、前記流路における、前記アキュムレータへの
分岐点よりも前記流体圧シリンダ側の任意の位置に、該
流路を流通する作動流体に対する減衰力発生手段を設け
ている。
In order to achieve the above object, the present invention uses a fluid pressure cylinder inserted between a vehicle body and wheels, and a fluid pressure source supplied to a cylinder chamber of this fluid pressure cylinder to adjust working fluid pressure according to changes in the vehicle body posture. In the active suspension, the active suspension includes a pressure control valve that is controlled by a pressure control valve, and an accumulator that is branched into a flow path that communicates the pressure control valve and the cylinder chamber, from a branch point of the flow path to the accumulator. Also, a damping force generating means for the working fluid flowing through the flow path is provided at an arbitrary position on the fluid pressure cylinder side.

〔作用〕[Effect]

この発明では、路面から車体側へ低周波数の加振入力が
あった場合、これに応じて作動油の圧力変動を生じる。
In this invention, when there is a low frequency vibration input from the road surface to the vehicle body side, pressure fluctuations of the hydraulic oil occur in response.

この変動は、流量変化が大きいことによりアキュムレー
タが潰れた後にも、圧力制御弁を介して流体圧源側と流
通して吸収される。
Even after the accumulator collapses due to a large change in flow rate, this fluctuation is absorbed by communicating with the fluid pressure source side via the pressure control valve.

その際、減衰力発生手段により減衰力が発生して、車体
側へ伝達する振動が確実に減衰する。
At this time, a damping force is generated by the damping force generating means, and vibrations transmitted to the vehicle body are reliably damped.

また、圧力制御弁から車体姿勢の変化に抗する圧力がシ
リンダ室に供給される場合は、従来のような低周波数の
振動に対する減衰力発生手段を介することなくアキュム
レータに流れ、流れ終わった時点で作動流体を介してシ
リンダ室に圧力を伝達する。このため、アキュムレータ
に流れ込む時間が短くなる分、制御の応答性が改善され
る。
In addition, when pressure that resists changes in vehicle body posture is supplied from the pressure control valve to the cylinder chamber, it flows to the accumulator without going through the conventional damping force generation means for low-frequency vibrations, and when the flow ends, the pressure is supplied to the cylinder chamber. Pressure is transmitted to the cylinder chamber via the working fluid. For this reason, control responsiveness is improved as the time flowing into the accumulator is shortened.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図乃至第3図に基づき
説明する。ここで、前述した第4図と同一の構成要素に
ついては同一の符号を用いる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Here, the same reference numerals are used for the same components as in FIG. 4 described above.

第1図は、この実施例に係る能動型サスペンションを、
その−輪について示す構成図である。この能動型サスペ
ンションは、前述した第4図のものと比べて、低周波数
の振動を減衰させる絞り弁16(第4図では絞り弁15
に相当)の取付は位置が異なっているのみであり、その
他は同一の構成になっている。
FIG. 1 shows the active suspension according to this embodiment.
It is a block diagram showing the -ring. This active suspension has a throttle valve 16 (in Figure 4, the throttle valve 15
(equivalent to) is installed only in a different position; the other configurations are the same.

この実施例における絞り弁16は、配管6におけるアキ
ュムレータ14への分岐点Xと油圧シリンダ3のシリン
ダ下室りとの間の所定位置に介挿させている。
The throttle valve 16 in this embodiment is inserted at a predetermined position between the branch point X of the pipe 6 to the accumulator 14 and the lower cylinder chamber of the hydraulic cylinder 3.

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

いま、車両が平坦な良路を一定速度で直進している状態
から、比較的細かな凹凸のある路面を通過したとする。
Suppose now that the vehicle is traveling straight at a constant speed on a flat, good road, and then passes over a road surface with relatively small irregularities.

このとき、路面の凹凸により車輪2Aを介して油圧シリ
ンダ3に伝わる高周波数の振動は、シリンダ下室りにお
いて作動油の圧力変動を生じる。この変動は、流量変化
が小さいため、配管6及び12を介してアキュムレータ
14と間で往来し、この間に、作動油が絞り弁16及び
13を通過すざことによって減衰力を得ると同時に、ア
キュムレータ14によって脈動が吸収される。
At this time, high-frequency vibrations transmitted to the hydraulic cylinder 3 via the wheels 2A due to the unevenness of the road surface cause pressure fluctuations in the hydraulic oil in the lower chamber of the cylinder. This fluctuation occurs because the flow rate change is small, so the hydraulic oil flows back and forth between the accumulator 14 and the accumulator 14 via the pipes 6 and 12. During this period, the hydraulic oil passes through the throttle valves 16 and 13, thereby obtaining a damping force, and at the same time, the accumulator 14 absorbs pulsations.

この状態で発生する減衰力は、絞り弁16.13の両方
によって発生するため、前述した第4図のものに比べて
、より大きな値となる。したがって、車体への振動伝達
骨が低減されて良好な乗心地が確保される。
Since the damping force generated in this state is generated by both the throttle valves 16 and 13, it has a larger value than that in FIG. 4 described above. Therefore, the number of bones transmitting vibration to the vehicle body is reduced, and a good riding comfort is ensured.

また、車両がうねり路などの悪路を通過することにより
、路面側からバネ下共振域に相当する振動入力があった
とする。この場合には、油圧シリンダ3の作動油の振動
は、その流量変化が比較的大きなものである。このため
、例えばその振動がシリンダ下室りの圧力を高める方向
であるとすれば、最初に配管6.12を介してアキュム
レータ14に流入してアキュムレータ14を満たし、大
部分の作動油は配管6を介して圧力制御弁7に流入し、
前述の第4図と同様にして油圧源10に戻り、大きな脈
動が吸収される。この際、作動油は絞り弁16を通過す
るので、入力振動が確実に減衰する。また、作動油の振
動が反転したときも、上述とは反対方向の流通によって
変動が吸収され、且つ、絞り弁16により減衰力を得る
。このようにして、低周波数の振動入力も確実に減衰さ
れ、前述の高周波数振動の場合と同様に、車体側へ伝達
する振動が抑制される。
It is also assumed that when the vehicle passes through a rough road such as a undulating road, there is a vibration input from the road surface corresponding to the unsprung resonance region. In this case, the vibration of the hydraulic oil in the hydraulic cylinder 3 causes a relatively large change in the flow rate. Therefore, for example, if the vibration is in the direction of increasing the pressure in the lower chamber of the cylinder, it will first flow into the accumulator 14 via the pipe 6.12 and fill the accumulator 14, and most of the hydraulic oil will flow through the pipe 6.12. flows into the pressure control valve 7 via
Returning to the hydraulic power source 10 in the same manner as in FIG. 4 described above, large pulsations are absorbed. At this time, since the hydraulic oil passes through the throttle valve 16, the input vibration is reliably attenuated. Further, even when the vibration of the hydraulic oil is reversed, the fluctuation is absorbed by the flow in the opposite direction to that described above, and a damping force is obtained by the throttle valve 16. In this way, low-frequency vibration input is also reliably attenuated, and as in the case of high-frequency vibrations described above, vibrations transmitted to the vehicle body are suppressed.

一方、フラットな車体姿勢の走行中に旋回を行ったり、
制動をかけることにより車体がロールしたり、ノーズダ
イブなどを生じたとする。この車体姿勢の変動は、姿勢
変化抑制制御装置11において車体の各方向成分の加速
度として検出され、この検出値に応じて当該姿勢変化を
抑制する方向の指令値Iが各圧力制御弁7に出力される
On the other hand, turning while driving with a flat body posture,
Suppose that applying the brakes causes the vehicle body to roll or nose dive. This variation in vehicle body posture is detected as acceleration of each direction component of the vehicle body in the posture change suppression control device 11, and a command value I in the direction to suppress the posture change is output to each pressure control valve 7 according to this detected value. be done.

各圧力制御弁7では、指令値■に応じた作動圧Pを出力
ボートから配管6を介して直ちに出力する。この作動油
は、配管6をその分岐点Xまで圧力損失なく通過し、そ
の後、分岐路12に入って絞り弁13を通過してアキュ
ムレータ14に流れ込む(第2図中の矢印A参照)。こ
の流れ込みが終わるまでの時間は、第4図の場合に比べ
て絞り効果(第4図の絞り弁15による絞り効果)によ
る時間遅れtlがない分だけ短くなる。
Each pressure control valve 7 immediately outputs an operating pressure P corresponding to the command value (2) from the output boat via the piping 6. This hydraulic oil passes through the pipe 6 to its branch point X without pressure loss, then enters the branch passage 12, passes through the throttle valve 13, and flows into the accumulator 14 (see arrow A in FIG. 2). The time required for this inflow to end is shorter than in the case of FIG. 4 because there is no time delay tl due to the throttling effect (the throttling effect by the throttling valve 15 in FIG. 4).

そして、アキュムレータ14が作動油で満たされると、
圧力制御弁7の出力圧Pは、配管6を介して油圧シリン
ダ3のシリンダ下室りに伝達される。このとき、作動油
の流通を伴わないから、絞り弁16による圧力低下が発
生しない。このため、圧力指令に対するシリンダ下室り
の圧力の応答性は、絞り弁16の有無に関わらず同一で
ある。つまり、全体の圧力応答性としては、第3図に示
す如く、前述の時間遅れtlの分だけ向上させることが
できる。なお、第3図中のΔLは系全体の遅れである。
Then, when the accumulator 14 is filled with hydraulic oil,
The output pressure P of the pressure control valve 7 is transmitted to the lower cylinder chamber of the hydraulic cylinder 3 via the piping 6. At this time, since there is no flow of hydraulic oil, no pressure drop occurs due to the throttle valve 16. Therefore, the responsiveness of the pressure in the lower chamber of the cylinder to the pressure command is the same regardless of the presence or absence of the throttle valve 16. That is, as shown in FIG. 3, the overall pressure response can be improved by the time delay tl mentioned above. Note that ΔL in FIG. 3 is the delay of the entire system.

このようにして、シリンダ圧が応答性良く制御され、こ
の制御が指令値Iに基づき各輪で独立して行われるから
、車体姿勢の変化が的確に抑制される。
In this way, the cylinder pressure is controlled with good responsiveness, and since this control is performed independently for each wheel based on the command value I, changes in the vehicle body posture are accurately suppressed.

なお、前記実施例においては作動流体をオイルとした場
合について説明したが、必ずしもこれに限定されるもの
ではなく、例えば空気を用いて流体圧シリンダを空気圧
シリンダとしてもよい。
In addition, although the case where oil was used as the working fluid was described in the above-mentioned embodiment, the present invention is not necessarily limited to this, and the fluid pressure cylinder may be replaced by a pneumatic cylinder using air, for example.

また、流体圧シリンダの構造としては、例えば、前記第
1図中のピストン3bに、上下のシリンダ上室、下室U
、Lを絞り効果なく連通ずる連通孔を設け、作動力を上
、下室U、  Lの圧力差(即ちロンド面積差)によっ
て得るように形成したものでもよい。さらに、当然に、
シリンダチューブを車体側に、シリンダ下室ドを車輪側
に夫々連結した、前記実施例とは上下を反対にした構造
のものにも適用できる。
Further, as for the structure of the fluid pressure cylinder, for example, the piston 3b in FIG.
, L may be provided with communicating holes that communicate with each other without any throttling effect, and the operating force may be obtained by the pressure difference (i.e., the Rondo area difference) between the upper and lower chambers U and L. Furthermore, of course,
It is also possible to apply the present invention to a structure in which the cylinder tube is connected to the vehicle body side and the cylinder lower chamber is connected to the wheel side, with the upper and lower sides of the above embodiments being reversed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では、圧力制御弁と流体
圧シリンダとを連通ずる流路に、アキュムレータに至る
流路を分岐させ、この分岐点と流体圧シリンダとの間の
流路に、減衰力発生手段を介挿させるとしたため、路面
からのハネ上共振域相当の低周波数の振動入力があった
場合にも、これを減衰力発生手段によって確実に減衰さ
せ、車体側への振動伝達を抑制して、良好な乗心地を確
保することができるとともに、車体姿勢制御のために、
圧力制御弁が出力した圧力は、先願記載例の如く絞り弁
などによる流量低下を伴うことなく、つまり短時間の内
にアキュムレータと流通した後、減衰力発生手段の有無
と無関係に流体圧シリンダのシリンダ室に指令゛圧力を
伝達するから、アキュムレータを満たす時間が短くなる
分、圧力指令に対する流体圧シリンダの圧力応答性が改
善され、したがって車体の姿勢制御の応答性も格段に向
上するという効果が得られる。
As explained above, in the present invention, the flow path leading to the accumulator is branched into the flow path that communicates the pressure control valve and the fluid pressure cylinder, and the flow path between this branch point and the fluid pressure cylinder is damped. Because the force generating means is inserted, even if there is a low frequency vibration input from the road surface equivalent to the resonance area on the springs, this is reliably damped by the damping force generating means and vibration transmission to the vehicle body is prevented. In addition to ensuring a good riding comfort, it also controls the vehicle body posture.
The pressure output from the pressure control valve is not accompanied by a flow rate reduction due to a throttle valve or the like as in the example described in the previous application, and after flowing through the accumulator within a short period of time, it is transferred to the fluid pressure cylinder regardless of the presence or absence of a damping force generating means. Since the command pressure is transmitted to the cylinder chamber of the cylinder chamber, the time to fill the accumulator is shortened, and the pressure response of the fluid pressure cylinder to the pressure command is improved, and the responsiveness of the vehicle body attitude control is also significantly improved. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略構成図、第2図
はその実施例におけるアキュムレ−タへの作動油の流通
経路を説明する説明図、第3図はその実施例における応
答性の改善状況を示す波形図、第4図は先願記載例を等
価的に示す概略構成図、第5図は第4図の構成における
アキュムレータへの作動油の流通経路を説明する説明図
である。 図中、lは車体側部材、2は車輪側部材、3は流体圧シ
リンダとしての油圧シリンダ、6は流路としての配管、
7は圧力制御弁、14はアキュムレータ、16は減衰力
発生手段としての絞り弁、Lはシリンダ室としてのシリ
ンダ下室、Xは分岐点である。 第3図
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram illustrating the flow path of hydraulic oil to the accumulator in the embodiment, and Fig. 3 is the responsiveness in the embodiment. 4 is a schematic configuration diagram equivalently showing the example described in the prior application, and FIG. 5 is an explanatory diagram illustrating the flow path of hydraulic oil to the accumulator in the configuration of FIG. 4. . In the figure, l is a vehicle body side member, 2 is a wheel side member, 3 is a hydraulic cylinder as a fluid pressure cylinder, 6 is piping as a flow path,
7 is a pressure control valve, 14 is an accumulator, 16 is a throttle valve as a damping force generating means, L is a lower cylinder chamber as a cylinder chamber, and X is a branch point. Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)車体及び車輪間に介挿した流体圧シリンダと、こ
の流体圧シリンダのシリンダ室に供給される流体圧源か
らの作動流体圧を車体の姿勢変化に応じて制御する圧力
制御弁と、この圧力制御弁と前記シリンダ室とを連通す
る流路に分岐して設けられたアキュムレータとを有する
能動型サスペンションにおいて、 前記流路における、前記アキュムレータへの分岐点より
も前記流体圧シリンダ側の任意の位置に、該流路を流通
する作動流体に対する減衰力発生手段を設けたことを特
徴とする能動型サスペンション。
(1) A fluid pressure cylinder inserted between the vehicle body and the wheels, and a pressure control valve that controls working fluid pressure from a fluid pressure source supplied to the cylinder chamber of the fluid pressure cylinder in accordance with changes in the vehicle body posture; In an active suspension having an accumulator branched into a flow path communicating between the pressure control valve and the cylinder chamber, an arbitrary point in the flow path closer to the fluid pressure cylinder than a branch point to the accumulator is provided. An active suspension characterized in that a damping force generating means for the working fluid flowing through the flow path is provided at the position.
JP33084488A 1988-12-29 1988-12-29 Active movement type suspension Pending JPH02179535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33084488A JPH02179535A (en) 1988-12-29 1988-12-29 Active movement type suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33084488A JPH02179535A (en) 1988-12-29 1988-12-29 Active movement type suspension

Publications (1)

Publication Number Publication Date
JPH02179535A true JPH02179535A (en) 1990-07-12

Family

ID=18237168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33084488A Pending JPH02179535A (en) 1988-12-29 1988-12-29 Active movement type suspension

Country Status (1)

Country Link
JP (1) JPH02179535A (en)

Similar Documents

Publication Publication Date Title
JPH0780409B2 (en) Active suspension
JPS60234015A (en) Device for controlling hardness of spring rigging for car
JPH0419210A (en) Oscillation damping device for vehicle
JPH04151316A (en) Control method for active type suspension
JPH02254007A (en) Active suspension
JP2002127727A (en) Suspension device
JPH02286416A (en) Active type suspension
JP2016064691A (en) Suspension device of vehicle
JPS61193910A (en) Active suspension controller
JP3087410B2 (en) Vehicle damping device
JPH02179535A (en) Active movement type suspension
JPS60183216A (en) Foresight controller of vehicle vibration
JPH02286412A (en) Active type suspension
JP2575485B2 (en) Active suspension
JP2506331B2 (en) Actively controlled suspension device
JP2532064B2 (en) Active suspension
JP3351097B2 (en) Railway vehicle vibration control device
JPS59124419A (en) Shock absorber for car
JPH0470163B2 (en)
JP2020001489A (en) Suspension device
JPH04176721A (en) Active type suspension for vehicle
JPH0615287Y2 (en) Pressure control valve for active suspension
JPS61202908A (en) Suspension device
JP2503240B2 (en) Active suspension
JPH0788134B2 (en) Active suspension device