JPH0217704B2 - - Google Patents

Info

Publication number
JPH0217704B2
JPH0217704B2 JP56143075A JP14307581A JPH0217704B2 JP H0217704 B2 JPH0217704 B2 JP H0217704B2 JP 56143075 A JP56143075 A JP 56143075A JP 14307581 A JP14307581 A JP 14307581A JP H0217704 B2 JPH0217704 B2 JP H0217704B2
Authority
JP
Japan
Prior art keywords
engine
fuel
fuel injection
internal combustion
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56143075A
Other languages
Japanese (ja)
Other versions
JPS5844232A (en
Inventor
Masahiko Myaki
Norio Oomori
Motoharu Sueishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14307581A priority Critical patent/JPS5844232A/en
Priority to DE19823233486 priority patent/DE3233486A1/en
Publication of JPS5844232A publication Critical patent/JPS5844232A/en
Publication of JPH0217704B2 publication Critical patent/JPH0217704B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関に対する1行程当りの燃料噴
射回数を、機関暖機状態に応じて切換えるように
した内燃機関用燃料噴射装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection device for an internal combustion engine that changes the number of times fuel is injected per stroke to the internal combustion engine depending on the warm-up state of the engine.

従来公知の燃料噴射装置に於ては、その回路装
置を簡略化するため多気筒内燃機関の場合、各気
筒の電磁弁を同時に噴射駆動し、また一般に機関
1回転に1度噴射を行なうように制御している。
本発明装置の構成では電磁弁に供給する燃料圧力
を常に吸気管圧に対し一定圧力に制御し、また電
磁弁自体の幾何学的形状を精密に管理することに
より各気筒へ供給する燃料量を電磁弁に印加する
噴射パルス時間幅のみに正確に比例させて、精致
な燃料供給精度を実現するものであるが、前記電
磁弁への通電パルス時間幅と燃料流量の比例関係
が保てる範囲には物理的に上限および下限があ
る。
In conventionally known fuel injection devices, in order to simplify the circuit device, in the case of a multi-cylinder internal combustion engine, the solenoid valves of each cylinder are driven to inject at the same time, and generally injection is performed once per engine revolution. It's in control.
In the configuration of the device of the present invention, the fuel pressure supplied to the solenoid valve is always controlled to a constant pressure with respect to the intake pipe pressure, and the amount of fuel supplied to each cylinder is controlled by precisely controlling the geometrical shape of the solenoid valve itself. This method achieves precise fuel supply accuracy by making the injection pulse time width applied to the solenoid valve exactly proportional to the time width of the injection pulse. There are physical upper and lower limits.

即ち下限例では電磁弁の応答遅れのために現状
技術では約2ms以下のパルス幅では正確な燃料
供給ができず、また上限側では機関1回転で電磁
弁が開閉弁を完結するため例えば6000rpmでは最
大10msを越えて開弁させることはできない。
In other words, in the lower limit example, current technology cannot provide accurate fuel supply with a pulse width of approximately 2 ms or less due to the response delay of the solenoid valve, and in the upper limit example, the solenoid valve completes the opening/closing operation with one revolution of the engine, so for example at 6000 rpm. The valve cannot be opened for more than 10ms.

一方、近年の内燃機関の性能向上にはめざまし
いものがあり、機械損失の低減等により下限側の
要求燃料量はより減少し、またターボ過給機の装
着等により上限側では要求燃料量が増加する傾向
にあり、前記した電磁弁の物理的制約のためにも
はや1回転1回全気筒噴射の方式では機関の全運
転域に対して正確な燃料供給ができなくなつてき
ている。
On the other hand, there have been remarkable improvements in the performance of internal combustion engines in recent years, and the required fuel amount on the lower limit side is decreasing due to reductions in mechanical loss, etc., and the required fuel amount on the upper limit side is increasing due to the installation of turbo superchargers etc. Due to the above-mentioned physical limitations of the electromagnetic valve, it is no longer possible to accurately supply fuel to the entire operating range of the engine using the system of injecting all cylinders once per revolution.

上記問題に対する解決策として、従来1回転1
回全気筒同時噴射であつた噴射方式を、例えば2
回転1回全気筒同時噴射とする方法が考えられ
る。この2回転1回噴射では、従来の毎回転噴射
が機関各気筒が1回に燃焼するのに必要な燃料を
1/2ずつ2度に分けて与えていたのに対し1回の
噴射で1燃焼に必要な燃料すべてを与えることに
なり、同じ下限パルス幅で2倍の流量を噴射する
電磁弁を用いることによつて、燃料調量可能範囲
をほぼ2倍近く拡大することができる。
As a solution to the above problem, conventional
For example, if the injection method used to be simultaneous injection in all cylinders is
A possible method is to perform simultaneous injection in all cylinders in one revolution. With this two-rotation one-time injection, unlike the conventional every-rotation injection, which divides the fuel required for each cylinder of the engine to burn at one time into two separate 1/2 times, the fuel required for combustion in each cylinder of the engine is divided into two parts. By using an electromagnetic valve that provides all the fuel necessary for combustion and injects twice the flow rate with the same lower limit pulse width, the range in which fuel can be measured can be nearly doubled.

前述の通り燃料調量範囲の拡大については非常
に有利な2回転1回噴射であるが、本方式には反
面次の様な不具合がある。
As mentioned above, the two-rotation single injection is very advantageous in expanding the fuel metering range, but this method has the following drawbacks.

第1図に4気筒4サイクル機関に従来の毎回転
同時噴射を適用したシーケンス図、第2図に同一
の機関に2回転1回噴射を適用した場合のシーケ
ンス図の一例を示す。
FIG. 1 shows an example of a sequence diagram in which conventional simultaneous injection at every revolution is applied to a four-cylinder, four-stroke engine, and FIG. 2 shows an example of a sequence diagram in which one-time injection in two revolutions is applied to the same engine.

図から明らかなように、第1図の毎回転同時噴
射に於ては4気筒の内2気筒の吸入タイミングと
同期して噴射が行なわれ、また仮に機関負荷が途
中変動しても1回転毎に新規な負荷情報に基いて
噴射パルス幅が更新できる。これに対し第2図の
2回転1回の噴射では、吸入タイミングと噴射パ
ルスとが同期する気筒は1気筒のみで残る3気筒
は吸入ポートの吸気弁近傍に予め噴射しておいた
燃料を吸入する形になる。また負荷変動に対して
も2回転に1度しか情報の更新を行なわず、毎回
転噴射に対して約2倍の不感時間を持つことにな
る。
As is clear from the figure, in the simultaneous injection at every revolution in Fig. 1, injection is performed in synchronization with the intake timing of two of the four cylinders, and even if the engine load fluctuates midway, the injection is performed every revolution. The injection pulse width can be updated based on new load information. On the other hand, in the case of one injection per two revolutions in Figure 2, the intake timing and injection pulse are synchronized in only one cylinder, and the remaining three cylinders inhale fuel that has been injected in advance near the intake valve at the intake port. It becomes a shape. In addition, information is updated only once every two revolutions in response to load fluctuations, resulting in a dead time that is about twice as long as for injection every revolution.

このシーケンス上の欠点が機関の燃焼や、過渡
時の応答性に実害となつて顕れるのは主に機関冷
間時である。すなわち機関冷間時には吸入ポート
や吸気弁の温度が低く、ポートに噴射した燃料が
十分に気化し得ないため特に2回転1回噴射では
多くの液状燃料を吸入することになり、燃焼の不
安定や、排気ガス中の未燃焼有害成分が増加して
しまうといつた結果をきたす。また過渡時の応答
についても、冷間時の機関各摺転動部の大きな摩
擦損失と、前記した噴射後の燃料の気化の悪さと
から、例えば無負荷低回転からのスロツトル急開
等の運転操作に対して息つきやもたつきを生じ、
機関の運転性上許容し難い。本発明は前記機関冷
間時に於る2回転1回噴射方式の不具合を解消
し、かつ冒頭で述べた燃料調量可能範囲拡大の要
求をも同時に満足する内燃機関用燃料噴射装置の
提供を目的とする。
It is mainly when the engine is cold that this sequence defect becomes apparent, causing actual damage to the engine's combustion and transient responsiveness. In other words, when the engine is cold, the temperature of the intake port and intake valve is low, and the fuel injected into the port cannot be sufficiently vaporized, so a large amount of liquid fuel will be sucked in, especially when injecting once in two revolutions, resulting in unstable combustion. This results in an increase in unburned harmful components in the exhaust gas. In addition, with regard to transient response, due to the large friction loss of each sliding and rolling part of the engine when cold and the poor vaporization of the fuel after injection as described above, for example, during operation such as sudden opening of the throttle from low speed with no load, etc. You may experience breathlessness or sluggishness during operation.
This is unacceptable in terms of engine operability. The object of the present invention is to provide a fuel injection device for an internal combustion engine that solves the problems of the two-revolution, one-time injection method when the engine is cold, and also satisfies the request for expanding the fuel metering range mentioned at the beginning. shall be.

本発明によれば、内燃機関の冷態時及び暖機時
とでは機関回転当りの燃料噴射回数を可変するこ
とにより燃料調量可能範囲の拡大を実現するもの
である。さらに本発明の実施態様によれば、2回
転1回全気筒同時噴射の方式をとる場合、この方
式で不具合を発生する機関冷間時には、例えば機
関冷却水温等の温度情報に基いて機関1行程当り
の噴射回数を増す−即ち例えば2回転1回の噴射
から毎回転毎の噴射に切換えるよう制御する−こ
とによつて、冷間時の燃焼の不安定化や、機関応
答遅れと言つた不具合を回避できる。また機関冷
間時には、通常本発明が適用される電子制御燃料
噴射装置に於ては、例えば冷却水温信号に基いて
燃料噴射量を例えば1.3〜1.5倍に増量すべく制御
するため、当然、電磁弁に印加するパルス巾も
1.3〜1.5倍となり毎回転噴射で問題となる電磁弁
通電最小パルス幅の制約からも逃れることができ
る。
According to the present invention, the range in which fuel can be adjusted is expanded by varying the number of fuel injections per engine rotation when the internal combustion engine is cold and when it is warmed up. Furthermore, according to an embodiment of the present invention, when a method of simultaneous injection of all cylinders once in two revolutions is used, when the engine is cold, when a malfunction occurs with this method, one stroke of the engine is determined based on temperature information such as the engine cooling water temperature. By increasing the number of injections per engine, for example, by switching from injection once every two revolutions to injection every revolution, problems such as destabilization of combustion during cold conditions and delayed engine response can be avoided. can be avoided. Furthermore, when the engine is cold, the electronically controlled fuel injection system to which the present invention is applied normally controls the fuel injection amount to increase, for example, 1.3 to 1.5 times based on the cooling water temperature signal. The pulse width applied to the valve also
This is 1.3 to 1.5 times greater, and it is possible to avoid the restriction on the minimum pulse width for energizing the solenoid valve, which is a problem with injection at every revolution.

次に添付図面に従つて本発明に係る燃料噴射装
置の1実施例を詳細に説明する。第3図は4サイ
クル4気筒機関に公知の電子制御式燃料噴射装置
を適用した一実施例を示すブロツク図である。第
3図に於て内燃機関1は図示せぬエアクリーナ、
空気量計測器3、スロツトル弁11、吸気マニホ
ルド2を経て、空気を吸入する。一方、コントロ
ーラ6には前記吸入空気量計量器3、回転検出器
4、機関冷却水温検出器5等の信号が入力され
る。コントローラ6は機関の負荷、回転数、暖機
状態に対して最適な燃料流量に対応する電磁弁の
通電パルス幅を演算出力し、前記吸気マニホルド
2に配設した電磁弁7,8,9,10より機関1
に燃料が噴射される。尚吸入空気量検出器3は、
例えば熱線式、じやま板式、カルマン渦式等の公
知のものであり、回転検出器4は例えば機関1回
転、即ち360゜クランク角度にパルスを発するよう
構成した公知の電磁ピツクアツプ等であり、機関
冷却水検出器5は例えばサーミスタ等の温度に対
して何らかの出力特性を示す公知のもので良い。
Next, one embodiment of the fuel injection device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 3 is a block diagram showing an embodiment in which a known electronically controlled fuel injection device is applied to a 4-stroke, 4-cylinder engine. In FIG. 3, the internal combustion engine 1 includes an air cleaner (not shown),
Air is taken in through an air amount measuring device 3, a throttle valve 11, and an intake manifold 2. On the other hand, signals from the intake air amount meter 3, rotation detector 4, engine cooling water temperature detector 5, etc. are input to the controller 6. The controller 6 calculates and outputs the energization pulse width of the solenoid valves corresponding to the optimum fuel flow rate for the load, rotation speed, and warm-up state of the engine, and outputs the energization pulse width of the solenoid valves 7, 8, 9, arranged in the intake manifold 2. Engine 1 from 10
fuel is injected. In addition, the intake air amount detector 3 is
For example, the rotation detector 4 is a known electromagnetic pick-up configured to emit a pulse per engine revolution, that is, 360° crank angle, and the rotation detector 4 is a known electromagnetic pick-up configured to emit a pulse per engine revolution, that is, 360° crank angle. The cooling water detector 5 may be a known device, such as a thermistor, that exhibits some kind of output characteristic with respect to temperature.

以上の構成の燃料噴射装置に於て本発明に係る
コントローラ6内での処理方法について次に第4
図および第5図に従つて述べる。
In the fuel injection device having the above configuration, the processing method within the controller 6 according to the present invention will be explained in the fourth section.
The description will be made with reference to FIG.

第4図および第5図はマイクロプロセツサ等を
利用したデジタル制御において本発明を具体化す
る燃料噴射演算部分のフローチヤートである第4
図に示したのはすでに公知のデジタル式エンジン
制御の概略フローチヤートであり、メインルーチ
ンのプログラムはステツプ201〜206に沿つて様々
な処理を行なつて流れている。101は360゜クラ
ンク角割込端子であり、第3図の回転数検出器3
の360゜クランク角信号ごとに噴射パルス巾の演算
を行なうよう構成されている。
4 and 5 are flowcharts of the fuel injection calculation part embodying the present invention in digital control using a microprocessor etc.
What is shown in the figure is a general flowchart of a known digital engine control, and the main routine program executes various processes along steps 201 to 206. 101 is a 360° crank angle interrupt terminal, which is connected to the rotation speed detector 3 in Fig. 3.
The injection pulse width is calculated for each 360° crank angle signal.

次に第5図に沿つて360゜クランク角ごとの割込
による噴射パルス幅演算処理について詳細に説明
する。本発明の実施例はこの360゜クランク角割込
処理内に開示される。割込処理に入るとまずステ
ツプ102にて機関冷却水温検出器5の出力THW
予めメモリした設定温度KTHWと比較する。THW
>KTHWのとき、即ち機関暖機后であれば処理は
ステツプ103の側へ、THWKTHWのとき、即ち冷
間時であれば処理はステツプ109の側へ進行する。
Next, the injection pulse width calculation process by interrupting every 360° crank angle will be explained in detail with reference to FIG. Embodiments of the present invention are disclosed within this 360° crank angle interrupt process. When the interrupt process is started, first in step 102, the output T HW of the engine cooling water temperature detector 5 is compared with the set temperature KT HW stored in advance. T HW
>KT HW , that is, after the engine has warmed up, the process proceeds to step 103, and when T HW KT HW , that is, when the engine is cold, the process proceeds to step 109.

まず暖機後について説明すると、ステツプ103
は、フラグ反転処理であり、処理がステツプ103
を通過するごとに、フラグAを0→1、1→0と
反転させる。即ちステツプ103のフラグAは360゜
クランク角毎に0→1→0→1と反転している。
次にステツプ111にてこのフラグAが1か0かを
判定し、フラグA=0であれば何も実行せずに割
込処理を終了する。フラグA=1であれば、ステ
ツプ104の処理へ進む。即ちステツプ104以降の処
理は割込1回おき−720゜CAつまり機関2回転に
1回実行される。ステツプ104は基本噴射パルス
幅TPを求める処理であり、TPは例えば吸入空気
量と回転数の信号から演出したり、あるいは予め
メモリされたマツプより検索することによつて求
められる。尚特に図中には記載しないが、吸気温
度に応じた基本噴射パルス幅の補正もこの段階で
必要に応じて実行する。ステツプ104にて求めた
基本噴射パルス幅には、ステツプ105にて、例え
ば冷却水温に応じた暖機増量等の補正乗算、ステ
ツプ106にて電磁弁の個有の特性上必要な電源電
圧補正、無効噴射時間等の補正加算等のいずれも
公知の補正が加えられる。これらのステツプを経
て電磁弁への最終通電パルス幅Tiが求められ、
図示せぬ電磁弁駆動回路と接続された出力ポート
107より出力され割込を終了する。以上ステツ
プ101、102、103、111、104、105、106、107、
108とつながる処理により、機関暖機后には720゜
クランク角、即ち機関2回転に1度パルス幅Ti
を演算し機関のいずれかの気筒の吸入行程で燃料
の噴射を実行する。次にTHWKTHWのとき、即
ち機関冷間時について説明する。冷却水温判定ス
テツプ102にてTHWKTHWであれば処理はステツ
プ109に進む。ステツプ109は基本噴射パルス幅
TPの演算処理であり、プログラムの簡略化のた
め既に説明したステツプ104と共通化するのが良
い。但しステツプ104にて求められるTPは2回転
1回噴射の場合の基本噴射パルス幅であるから、
そのまま冷間時の毎回転噴射のパルス幅として適
用することはできない。従つて次にステツプ110
の処理でTPを1/2に割算する。以下補正から出
力、割込終了に至るステツプ105、106、107、108
は、暖機後の場合と全く同様である。以上ステツ
プ101、102、109、=104、110、105、106、107、
108と連なる処理により機関冷間時には360゜クラ
ンク角ごと、即ち機関毎回転ごとに一度パルス幅
Tiを演算し機関のいずれかの気筒の吸入行程で
燃料の噴射を実行する。
First, to explain what happens after warming up, step 103
is a flag inversion process, and the process starts at step 103.
Each time it passes, flag A is inverted from 0 to 1 and from 1 to 0. That is, the flag A in step 103 is inverted in the order of 0→1→0→1 every 360° crank angle.
Next, in step 111, it is determined whether this flag A is 1 or 0, and if flag A=0, the interrupt process is ended without executing anything. If flag A=1, the process advances to step 104. That is, the processing from step 104 onwards is executed every other interruption at −720° CA, that is, once every two revolutions of the engine. Step 104 is a process for determining the basic injection pulse width T P. T P is determined, for example, by producing from signals of the intake air amount and rotational speed, or by searching from a map stored in advance. Although not particularly shown in the figure, correction of the basic injection pulse width according to the intake air temperature is also performed as necessary at this stage. The basic injection pulse width obtained in step 104 is multiplied in step 105 for correction such as increase in warm-up amount according to the cooling water temperature, and in step 106, power supply voltage correction necessary for the unique characteristics of the solenoid valve is applied. Known corrections such as correction and addition of invalid injection time and the like are added. Through these steps, the final energization pulse width Ti to the solenoid valve is determined.
The signal is output from the output port 107 connected to a solenoid valve drive circuit (not shown), and the interruption ends. Above steps 101, 102, 103, 111, 104, 105, 106, 107,
By the process connected to 108, after the engine warms up, the pulse width Ti is changed to 720° crank angle, that is, once every two revolutions of the engine.
is calculated and the fuel is injected during the intake stroke of one of the engine's cylinders. Next, the case when T HW KT HW , that is, when the engine is cold, will be explained. If T HW KT HW is determined in the cooling water temperature determination step 102, the process proceeds to step 109. Step 109 is the basic injection pulse width
This is the arithmetic processing of T P , and in order to simplify the program, it is preferable to use it in common with step 104 already explained. However, since T P obtained in step 104 is the basic injection pulse width in the case of two revolutions and one injection,
It cannot be applied as it is as the pulse width of injection at each rotation during cold operation. So next step 110
Divide T P by 1/2 by processing. Below are steps 105, 106, 107, 108 from correction to output and end of interrupt.
is exactly the same as after warm-up. Above steps 101, 102, 109, = 104, 110, 105, 106, 107,
108, when the engine is cold, the pulse width is reduced once every 360° crank angle, that is, every engine revolution.
Ti is calculated and fuel is injected during the intake stroke of one of the engine's cylinders.

尚以上述べた実施例では冷間時のTPを暖機后
と共通演算処理するステツプ109=104、及び1/2
倍処理をするステツプ110により求めたが、第4
図破線内に示したように、冷間時、毎回転噴射用
のTP演算処理をするステツプ112を別に設けても
任意である。
In the embodiment described above, step 109 = 104, and 1/2, in which T P during cold operation is processed in common with that after warm-up.
It was obtained by multiplying step 110, but the fourth
As shown within the broken line in the figure, it is optional to provide a separate step 112 for performing T P calculation processing for injection at each rotation during cold time.

またTPの演算には何らかの吸入空気量検出器
を用いるよう実施例では開示したが、例えば機関
吸気管圧力とか、スロツトル開度等からTPを求
める公知のいずれの方法でも、本発明を組み合わ
せて所望の効果を得ることができる。
Furthermore, although the embodiment discloses that some type of intake air amount detector is used to calculate T P , the present invention may be combined with any known method for determining T P from engine intake pipe pressure, throttle opening, etc. The desired effect can be obtained.

また回転数検出器は、本実施例では360゜クラン
ク角ごごとにパルス信号を発生する型式のもので
構成したが、所定の360゜クランク角カウント処理
と組み合わせれば、例えば30゜60゜180゜クランク角
信号を発生するものあるいは点火1次信号を用い
ても良い。機関暖機状態を検出する手段には本実
施例では冷却水温検出器を用いたが、例えば空冷
機関の場合ならシリンダヘツド温度や潤滑油温を
検出する方法で代用しても全く任意である。
Furthermore, in this embodiment, the rotation speed detector is of a type that generates a pulse signal every 360° crank angle, but if it is combined with a predetermined 360° crank angle counting process, for example, 30°, 60°, 180°゜A device that generates a crank angle signal or an ignition primary signal may be used. In this embodiment, a cooling water temperature detector is used as a means for detecting the warm-up state of the engine, but in the case of an air-cooled engine, for example, a method of detecting cylinder head temperature or lubricating oil temperature may be used instead.

また本実施例は、噴射パルス幅演算をデジタル
処理する場合について開示したが本発明を公知の
アナグロ式の燃料噴射装置に適用することも可能
である。この場合公知の4気筒4サイクル機関の
毎回転同時噴射装置の回路に本発明を適用するな
らば、冷却水温信号出力を一定の比較レベルと比
較するゲート回路により、機関暖機中に限り演算
トリガである点火1次信号の1/2分周出力をさら
に1/2に分周することにより、本発明の実施例と
全く同様な作動効果が実現できる。
Further, although the present embodiment has disclosed a case in which the injection pulse width calculation is digitally processed, the present invention can also be applied to a known analog type fuel injection device. In this case, if the present invention is applied to the circuit of a known simultaneous injection device for every revolution of a 4-cylinder 4-cycle engine, a gate circuit that compares the cooling water temperature signal output with a fixed comparison level can be used to trigger the calculation only while the engine is warming up. By further frequency-dividing the 1/2 frequency-divided output of the ignition primary signal into 1/2, it is possible to achieve the same operating effect as in the embodiment of the present invention.

また機関の形成は本実施例に開示した4気筒に
限らず、6気筒や8気筒機関でも全く問題なく本
発明が適用できる。
Further, the structure of the engine is not limited to the 4-cylinder engine disclosed in this embodiment, but the present invention can be applied to a 6-cylinder or 8-cylinder engine without any problem.

また、本実施例の如く各気筒毎に燃料噴射用の
電磁弁7〜10を配置する方式の他にも、SPI
(シングル・ポイント・インジエクシヨン)と呼
ばれる吸気管集束部に1個又は複数個の電磁弁を
配置する方式にも本発明を適用可能であり、その
場合機関2回転当り1回又は2回以上の複数回燃
料噴射を行うように構成することも可能である。
In addition to the method of arranging fuel injection solenoid valves 7 to 10 for each cylinder as in this embodiment, SPI
The present invention can also be applied to a system called single point injection in which one or more solenoid valves are arranged in the intake pipe convergence part, and in that case, the solenoid valve can be used once or more than once per two engine revolutions. It is also possible to configure the fuel injection system to perform multiple fuel injections.

以上述べたように本発明によれば、冷間時の機
関安定性、運転性を悪化させることなく、燃料噴
射弁に与える駆動パルス信号のパルス幅変化範囲
を実質的に拡大できるという効果を奏する。
As described above, according to the present invention, the range of variation in the pulse width of the drive pulse signal applied to the fuel injection valve can be substantially expanded without deteriorating the engine stability and drivability when the engine is cold. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の毎回転同時噴射の噴射タイミン
グを示すシーケンス図、第2図は2回転1回噴射
の噴射タイミングを示すシーケンス図、第3図は
本発明の実施例を開示するシステム構成ブロツク
図、および第4図および第5図は本発明装置の実
施例の動作を示すフローチヤートである。 1……機関本体、2……吸気マニホルド、3…
…吸入空気量計量器、4……回転検出器、5……
冷却水温度検出器、6……コントローラ(演算回
路)。
Fig. 1 is a sequence diagram showing the injection timing of conventional simultaneous injection every revolution, Fig. 2 is a sequence diagram showing the injection timing of one injection in two revolutions, and Fig. 3 is a system configuration block disclosing an embodiment of the present invention. FIG. 4 and FIG. 5 are flowcharts showing the operation of an embodiment of the apparatus of the present invention. 1...Engine body, 2...Intake manifold, 3...
...Intake air amount meter, 4... Rotation detector, 5...
Cooling water temperature detector, 6...controller (arithmetic circuit).

Claims (1)

【特許請求の範囲】 1 内燃機関の回転に同期した信号により最適な
燃料噴射量を演算し、機関の行程に同期して燃料
を各気筒に同時に噴射する内燃機関用燃料噴射装
置において、機関の暖機状態を検出する温度検出
器、及び該検出器からの検出信号を入力とし、機
関が冷態時にある場合には暖機状態にある場合よ
りも機関回転当りの燃料噴射回数を多くする制御
手段を設け、 前記制御手段としては、機関が暖機状態にある
と判定したときは燃料噴射回数を機関2回転につ
き1回噴射とし、機関が冷態時にあると判定した
ときは燃料噴射回数を機関1回転につき1回噴射
とするように制御する構成としたことを特徴とす
る内燃機関用燃料噴射装置。 2 内燃機関の作動状態を示す信号により最適な
燃料噴射量を演算し、機関のいずれかの気筒の吸
入行程で燃料を噴射する内燃機関用燃料噴射装置
において、機関の暖機状態を検出する温度検出
器、及び該検出器からの検出信号を入力とし、機
関が冷態時にある場合には暖機状態にある場合よ
りも機関回転当りの燃料噴射回数を多くする制御
手段を設けたことを特徴とする内燃機関用燃料噴
射装置。 3 前記制御手段としては、機関が暖機状態にあ
ると判定したときは燃料噴射回数を機関2回転に
つき1回噴射とし、機関が冷態時にあると判定し
たときは燃料噴射回数を機関1回転につき1回噴
射とするように制御する構成としたことを特徴と
する特許請求の範囲第2項記載の内燃機関用燃料
噴射装置。
[Scope of Claims] 1. A fuel injection device for an internal combustion engine that calculates an optimal fuel injection amount using a signal synchronized with the rotation of the internal combustion engine and injects fuel into each cylinder simultaneously in synchronization with the stroke of the engine. A temperature detector that detects a warm-up state and a detection signal from the detector are input, and when the engine is in a cold state, the number of fuel injections per engine rotation is increased than when the engine is in a warm-up state. The control means is configured to inject fuel once every two revolutions of the engine when it is determined that the engine is warmed up, and to decrease the number of fuel injections when it is determined that the engine is in a cold state. 1. A fuel injection device for an internal combustion engine, characterized in that the fuel injection device is configured to perform control so as to perform injection once per engine rotation. 2. Temperature at which the warm-up state of the engine is detected in a fuel injection device for an internal combustion engine that calculates the optimal fuel injection amount based on a signal indicating the operating state of the internal combustion engine and injects fuel during the intake stroke of any cylinder of the engine. A detector and a control means that receives a detection signal from the detector and controls the number of fuel injections per engine revolution when the engine is cold than when the engine is warmed up. A fuel injection device for internal combustion engines. 3 As for the control means, when it is determined that the engine is in a warm-up state, the number of fuel injections is set to once per two engine revolutions, and when it is determined that the engine is in a cold state, the number of fuel injections is set to be injected once per engine revolution. 3. The fuel injection device for an internal combustion engine according to claim 2, characterized in that the fuel injection device is configured to perform control so as to inject once per fuel injection.
JP14307581A 1981-09-10 1981-09-10 Fuel injection device for internal-combustion engine Granted JPS5844232A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14307581A JPS5844232A (en) 1981-09-10 1981-09-10 Fuel injection device for internal-combustion engine
DE19823233486 DE3233486A1 (en) 1981-09-10 1982-09-09 Fuel injection system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14307581A JPS5844232A (en) 1981-09-10 1981-09-10 Fuel injection device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5844232A JPS5844232A (en) 1983-03-15
JPH0217704B2 true JPH0217704B2 (en) 1990-04-23

Family

ID=15330325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14307581A Granted JPS5844232A (en) 1981-09-10 1981-09-10 Fuel injection device for internal-combustion engine

Country Status (2)

Country Link
JP (1) JPS5844232A (en)
DE (1) DE3233486A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532907A (en) * 1984-09-14 1985-08-06 Ford Motor Company Selective single fire/double fire fuel injection control
US4667636A (en) * 1985-03-22 1987-05-26 Toyota Jidosha Kabushiki Kaisha Fuel injection type internal combustion engine
JPH0823325B2 (en) * 1986-04-29 1996-03-06 三菱電機株式会社 Fuel control device for internal combustion engine
DE3617104A1 (en) * 1986-05-21 1987-11-26 Bosch Gmbh Robert METHOD AND ELECTRONIC COMBUSTION ENGINE CONTROL SYSTEM FOR COLD START CONTROL
JP2522209B2 (en) * 1987-04-02 1996-08-07 日本電装株式会社 Electronically controlled fuel injector
JP2603659B2 (en) * 1987-11-26 1997-04-23 松下電工株式会社 Display device
JPH05214985A (en) * 1992-02-05 1993-08-24 Fuji Heavy Ind Ltd Fuel injection control method for engine
JPH06159115A (en) * 1993-07-23 1994-06-07 Hitachi Ltd Electronic control type fuel injection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557635A (en) * 1978-10-20 1980-04-28 Nissan Motor Co Ltd Fuel injection system
JPS55137323A (en) * 1979-04-13 1980-10-27 Nippon Denso Co Ltd Electronic controlled fuel injection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557635A (en) * 1978-10-20 1980-04-28 Nissan Motor Co Ltd Fuel injection system
JPS55137323A (en) * 1979-04-13 1980-10-27 Nippon Denso Co Ltd Electronic controlled fuel injection device

Also Published As

Publication number Publication date
JPS5844232A (en) 1983-03-15
DE3233486A1 (en) 1983-03-24

Similar Documents

Publication Publication Date Title
JPS597548Y2 (en) Internal combustion engine fuel supply system
JPH0251056B2 (en)
JP3856100B2 (en) Fuel injection control device for internal combustion engine
JPWO2003038263A1 (en) Engine control device
JP3314294B2 (en) Control device for internal combustion engine
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0416622B2 (en)
JPH0217704B2 (en)
JPH0385349A (en) Fuel injection device of internal combustion engine
JPH0429860B2 (en)
JP2652417B2 (en) Engine fuel injection device
JP4379670B2 (en) Fuel property determination device for internal combustion engine
JP2001342885A (en) Fuel injection control device for internal combustion engine
JP3031164B2 (en) Method of detecting rotation fluctuation of internal combustion engine
JPH057546B2 (en)
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2001090581A (en) Control device for internal combustion engine
JPS6328228B2 (en)
JPH09264169A (en) Cylinder direct injection type engine
JP3715109B2 (en) Fuel injection control method for internal combustion engine
JP3680505B2 (en) Fuel injection control device for direct-injection spark-ignition internal combustion engine
JP2917183B2 (en) Start control device for fuel injection device of internal combustion engine
JPH05202783A (en) Fuel injection control device of internal combustion engine
JP2586565B2 (en) Output fluctuation detecting device for internal combustion engine
JPH0660584B2 (en) Fuel injector for multi-cylinder engine