JPH0217437A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0217437A
JPH0217437A JP16802088A JP16802088A JPH0217437A JP H0217437 A JPH0217437 A JP H0217437A JP 16802088 A JP16802088 A JP 16802088A JP 16802088 A JP16802088 A JP 16802088A JP H0217437 A JPH0217437 A JP H0217437A
Authority
JP
Japan
Prior art keywords
gas
heater
insulator
sensitive
gas sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16802088A
Other languages
Japanese (ja)
Other versions
JP2714006B2 (en
Inventor
Masamichi Ipponmatsu
正道 一本松
Toshiyuki Tsujimura
辻村 俊幸
Masayuki Shiratori
白鳥 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Osaka Gas Co Ltd
Original Assignee
Toshiba Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Osaka Gas Co Ltd filed Critical Toshiba Corp
Priority to JP63168020A priority Critical patent/JP2714006B2/en
Publication of JPH0217437A publication Critical patent/JPH0217437A/en
Application granted granted Critical
Publication of JP2714006B2 publication Critical patent/JP2714006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To make it possible to detect a plurality of gases with excellent selectivity by providing a heater which is provided in a deviated state on an insulator, a plurality of electrode pairs, and plural kinds of gas sensitive bodies which are provided on said electrode pairs. CONSTITUTION:When a voltage is applied across lead pins 2b and 2c, a heater 21 is heated, and an insulating board 4 is heated. At this time, the embedding position of the heater 21 is deviated into the sides of gas sensitive bodies 11 and 12, and the optimum temperature matching the characteristics of the gas sensitive bodies can be set for the gas sensitive bodies 11 and 12. When gas in atmosphere reacts with the gas sensitive body 11, the resistance value between electrodes 5a and 5b is changed, and the value is taken out as the output of a sensor through the lead pins 2a and 2b. When the gas reacts with the gas sensitive body 12, the resistance value between electrodes 6a and 6b is changed, and the value is taken out as the output of the sensor through the lead pins 2a and 2e. When the heater 21 is deviated and the optimum temperature is set for the gas sensitive bodies 11 and 12 by forming a groove 30 as required, the plural kinds of the gases can be detected with excellent selectivities.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、ガス漏れ警報器などに用いるガスセンサに
関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a gas sensor used in a gas leak alarm or the like.

(従来の技術) 従来、大気中の還元性ガスを検知するものとして、N型
半導体特性を示す5n02.  ZnO。
(Prior Art) Conventionally, 5n02. ZnO.

Fe2O3などの金属酸化物半導体を焼結体または波膜
として有するガスセンサが知られている。
Gas sensors are known that include metal oxide semiconductors such as Fe2O3 as sintered bodies or corrugated films.

これは、絶縁基板上に一対の電極を設け、その両型極上
に感ガス体であるところの金属酸化物半導体を設け、さ
らにその感ガス体を温めるためのヒータを絶縁基板の内
部に設けたもので、感ガス体に還元性ガスが接触すると
、感ガス体の電気伝導度が増大、すなわち抵抗値が減少
するという現象を利用している。
This consists of a pair of electrodes placed on an insulating substrate, a metal oxide semiconductor serving as a gas-sensitive body placed on top of both electrodes, and a heater placed inside the insulating substrate to warm the gas-sensitive body. This method utilizes the phenomenon that when a reducing gas comes into contact with a gas-sensitive body, the electrical conductivity of the gas-sensitive body increases, that is, the resistance value decreases.

ただし、このようなガスセンサは、一種類のガスしか検
知することができない。
However, such a gas sensor can only detect one type of gas.

このため、検知しようとするガスが複数種に及ぶ場合、
その種類の数だけガスセンサを用意しなければならず、
検知システムが大形かつ複雑になり、しかも高価になる
Therefore, when there are multiple types of gases to be detected,
You must prepare as many gas sensors as there are types,
Detection systems become large, complex, and expensive.

そこで、絶縁基板上に複数種の感ガス体を設け、複数種
のガスを一括して検知することのできる複台形のガスセ
ンサが登場した。
Therefore, a multiple trapezoidal gas sensor has been developed that is capable of detecting multiple types of gas at once by providing multiple types of gas-sensitive bodies on an insulating substrate.

(発明が解決しようとする課題) ところが、複合形のガスセンサの場合、各感ガス体が同
じ温度となり、そのため各感ガス体の特性を最大限に発
揮することができず、検知しようとするガスに対する選
択性が悪いという欠点がある。
(Problem to be Solved by the Invention) However, in the case of a composite type gas sensor, each gas-sensitive body has the same temperature, so the characteristics of each gas-sensitive body cannot be maximized, and the gas to be detected It has the disadvantage of poor selectivity for

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、複数種のガスを良好な選択性
をもって検知することができる信頼性にすぐれたガスセ
ンサを提供することにある。
This invention was made in view of the above circumstances,
The purpose is to provide a highly reliable gas sensor that can detect multiple types of gases with good selectivity.

[発明の構成] (課題を解決するための手段) 請求項1のガスセンサは、絶縁体と、この絶縁体に偏位
状態で設けたヒータと、前記絶縁体上に設けた複数対の
電極と、これら電極対上に設けた複数種の感ガス体とを
備え、各電極対間の抵抗値変化がそれぞれセンサ出力と
なる。
[Structure of the Invention] (Means for Solving the Problems) A gas sensor according to claim 1 includes: an insulator, a heater provided in an offset state on the insulator, and a plurality of pairs of electrodes provided on the insulator. , and a plurality of types of gas-sensitive bodies provided on these electrode pairs, and the resistance change between each electrode pair becomes a sensor output.

請求項2のガスセンサは、絶縁体と、この絶縁体に偏位
状態で設けたヒータと、前記絶縁体上に設けた複数対の
電極と、これら電極対上に設けた複数種の感ガス体と、
これら感ガス体の相互間の絶縁体上に設けた溝とを備え
、各電極対間の抵抗値変化がそれぞれセンサ出力となる
A gas sensor according to a second aspect of the present invention includes an insulator, a heater provided on the insulator in an offset state, a plurality of pairs of electrodes provided on the insulator, and a plurality of types of gas-sensitive bodies provided on these electrode pairs. and,
A groove is provided on an insulator between these gas-sensitive bodies, and a change in resistance value between each electrode pair becomes a sensor output.

(作用) 請求項1のガスセンサでは、ヒータの偏位により、その
ヒータから各感ガス体へかけての距離がそれぞれ異なる
。よって、各感ガス体の温度をそれぞれの特性に合った
最適な温度にすることかできる。
(Function) In the gas sensor according to the first aspect, the distance from the heater to each gas-sensitive body differs depending on the displacement of the heater. Therefore, the temperature of each gas-sensitive body can be adjusted to the optimum temperature that matches the characteristics of each body.

請求項2のガスセンサでは、ヒータの偏位に加え、溝が
絶縁体の熱伝導度を低下させることにより、各感ガス体
の温度をそれぞれの特性に合った最適な温度にすること
ができる。
In the gas sensor according to the second aspect of the present invention, in addition to the deflection of the heater, the groove reduces the thermal conductivity of the insulator, so that the temperature of each gas-sensitive body can be adjusted to an optimum temperature that matches the characteristics of each gas-sensitive body.

(実施例) 以下、この発明の一実施例について第1図および第2図
により説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

1は本体の基台となるステムで、そのステム1にリード
ピン2a、2b、2c、2d、2eを植設する。そして
、これらリードピンにそれぞれリードフレーム3a、3
b、3c、3d、3eを介して絶縁体たとえば板状かつ
矩形状の絶縁基板4を設ける。
Reference numeral 1 denotes a stem serving as the base of the main body, and lead pins 2a, 2b, 2c, 2d, and 2e are implanted in the stem 1. Then, lead frames 3a and 3 are attached to these lead pins, respectively.
An insulator, such as a plate-shaped and rectangular insulating substrate 4, is provided via the substrates b, 3c, 3d, and 3e.

絶縁基板4は、たとえばアルミナを主成分とするセラミ
ックを材質としている。
The insulating substrate 4 is made of, for example, ceramic whose main component is alumina.

また、絶縁基板4の上面に、一対の電極5a。Further, a pair of electrodes 5a is provided on the upper surface of the insulating substrate 4.

5bを設け、さらにもう一対の電極6a、6bを設ける
。そして、電極対5a、5b上にわたって第1感ガス体
11を設け、電極対6a、6b上にわたって第2感ガス
体12を設ける。
5b is provided, and another pair of electrodes 6a, 6b are provided. A first gas-sensitive body 11 is provided over the electrode pair 5a, 5b, and a second gas-sensitive body 12 is provided over the electrode pair 6a, 6b.

感ガス体11.12は、酸化物半導体層上に触媒層を形
成したもので、互いに異なる種類のガスに対して高い感
度つまり選択性を有しており、具体的には次のように作
られる。
The gas-sensitive elements 11 and 12 have a catalyst layer formed on an oxide semiconductor layer, and have high sensitivity or selectivity to different types of gases. Specifically, they are manufactured as follows. It will be done.

先ず、感ガス体11は、5n02−Nb系半導体を、オ
クチル酸スズおよびニオブレジネートを原料として用い
たマスキング法(またはスクリーン印刷法)により、絶
縁基板4の電極対5a。
First, the gas-sensitive body 11 is formed by applying a 5n02-Nb-based semiconductor to the electrode pair 5a of the insulating substrate 4 by a masking method (or screen printing method) using tin octylate and niobrenate as raw materials.

5bの上に付若させ、かつ約600℃で焼成することに
より、約1 、  Omra X 1 、 5 m+s
の矩形状でしかも厚さ約5000人の被膜とする。そし
て、被膜の上にスラリー化したメタン高感度用触媒であ
るP t−Rh−A、e2o3系触媒を塗布する。
5b and firing at about 600°C, about 1, Omra X 1, 5 m+s
The film has a rectangular shape and a thickness of about 5,000 people. Then, a slurry-formed Pt-Rh-A, e2o3 catalyst, which is a highly sensitive methane catalyst, is applied onto the coating.

感ガス体12は、5n02−Nb系半導体の形成法は感
ガス体11と同じであるが、その上に塗布する触媒がア
ルコール高感度処理を施したpt−A、!!2 o、系
触媒である点で異なっている。
The gas-sensitive element 12 is made of a 5n02-Nb-based semiconductor using the same method as the gas-sensitive element 11, but the catalyst applied thereon is PT-A treated with high alcohol sensitivity. ! 2 o, differs in that it is a system catalyst.

ここで、種々のガスに対する感ガス体11゜12の感度
を下記表に対比して示す。
Here, the sensitivity of the gas-sensitive elements 11 and 12 to various gases is shown in comparison in the table below.

なお、この測定は感ガス部11の温度を約400℃、感
、ガス部12の温度をそれよりも約30℃低い値に設定
して行なったものである。また、感度は、空気中の感ガ
ス体抵抗値Rairと、ガス中の感ガス体抵抗値Rga
sとの比で示している。
Note that this measurement was carried out with the temperature of the gas sensitive section 11 set to about 400.degree. C. and the temperature of the sensitive gas section 12 set to a value about 30.degree. C. lower. In addition, the sensitivity is determined by the gas-sensitive element resistance value Rair in the air and the gas-sensitive element resistance value Rga in the gas.
It is shown as a ratio to s.

すなわち、感ガス体11は、CH,、に高い感度つまり
選択性がある。感ガス体12は、C2H50Hに高い感
度つまり選択性がある。
That is, the gas-sensitive body 11 has high sensitivity or selectivity to CH. The gas-sensitive body 12 has high sensitivity or selectivity to C2H50H.

一方、螺旋状のヒータ21を絶縁基板4の感ガス体11
側に偏位した状態で埋設する。
On the other hand, the spiral heater 21 is connected to the gas sensing body 11 of the insulating substrate 4.
Bury it with it deviated to the side.

また、絶縁基板4の上面の周縁にポンディングパッド2
2a、22b、22c、22d、22eを設ける。
Also, a bonding pad 2 is provided on the periphery of the upper surface of the insulating substrate 4.
2a, 22b, 22c, 22d, and 22e are provided.

ポンディングパッド22a、22d、2\eは1電極リ
ード用であり、ポンディングパッド22aに電極5a、
6asポンデイングパツド22dに電t!5!5 b、
ポンディングパッド22eに電極6bをそれぞれ電気的
に接続する。
The bonding pads 22a, 22d, 2\e are for one electrode lead, and the electrodes 5a,
Electric t on 6as ponding pad 22d! 5!5 b,
The electrodes 6b are electrically connected to the bonding pads 22e, respectively.

ポンディングパッド22b、22cはヒータリード用で
あり、ポンディングパッド22bにヒータ21の一端、
ポンディングパッド22cにヒータ21の他端をそれぞ
れ電気的に接続する。
The bonding pads 22b and 22c are for heater leads, and one end of the heater 21 is connected to the bonding pad 22b.
The other ends of the heaters 21 are electrically connected to the bonding pads 22c.

そして、各ポンディングパッドに対して各り一ドフレー
ムの一端をパラレルギャップウエルダにて接合し、その
各リードフレームの他端は各り一ドピンの上部に同じく
パラレルギャップウエルグにて接合する。
Then, one end of each lead frame is joined to each bonding pad using a parallel gap welder, and the other end of each lead frame is joined to the upper part of each lead frame using a parallel gap weld.

また、絶縁基板4の上面において、感ガス体11.12
の相互間に溝30を設ける。この溝30は、基板厚の約
1/4の深さを有する矩形状のもので、断熱効果を発揮
し、絶縁基板4の上面の熱伝導度を下げる働きをする。
Further, on the upper surface of the insulating substrate 4, the gas-sensitive bodies 11 and 12
A groove 30 is provided between the two. This groove 30 has a rectangular shape with a depth of about 1/4 of the substrate thickness, exhibits a heat insulating effect, and functions to lower the thermal conductivity of the upper surface of the insulating substrate 4.

つぎに、上記のような構成において作用を説明する。Next, the operation in the above configuration will be explained.

リードビン2b、2c間に電圧を印加すると、ヒータ2
1が発熱し、絶縁基板4が熱せられる。
When a voltage is applied between the lead bins 2b and 2c, the heater 2
1 generates heat, and the insulating substrate 4 is heated.

この場合、ヒータ21の埋設位置を感ガス体11側に偏
らせていることにより、感ガス体11をその特性に合っ
た最適な温度たとえば約400℃にすることができる。
In this case, by biasing the buried position of the heater 21 toward the gas-sensitive body 11, the gas-sensitive body 11 can be brought to an optimum temperature, for example, about 400° C., that matches its characteristics.

逆に、感ガス体12はヒータ21から遠く離れた位置に
あり、しかも溝30が熱伝導度を低下させるので、感ガ
ス体12をその特性に合った最適な温度たとえば感ガス
体11よりも約30℃低い温度にすることができる。
Conversely, since the gas-sensitive body 12 is located far away from the heater 21 and the grooves 30 reduce the thermal conductivity, the gas-sensitive body 12 is kept at an optimum temperature suitable for its characteristics, e.g., lower than the gas-sensitive body 11. The temperature can be about 30°C lower.

なお、感ガス体12の温度をそれほど下げる必要がなけ
れば、溝30を形成せず、ヒータ21を偏位させるだけ
でよい。
Note that if there is no need to lower the temperature of the gas-sensitive body 12 so much, the groove 30 may not be formed and the heater 21 may be simply deviated.

しかして、大気中にガスが存在すると、それが感ガス体
11または感ガス体12と反応する。
Therefore, when gas is present in the atmosphere, it reacts with the gas-sensitive body 11 or the gas-sensitive body 12.

ガスが感ガス体11と反応すると、電極5a。When the gas reacts with the gas-sensitive body 11, the electrode 5a.

5b間の抵抗値が変化し、それがセンサ出力としてリー
ドビン2a、2dから取出される。
The resistance value between the lead bins 2a and 2d changes and is taken out as a sensor output.

感ガス体12と反応すると、電極5a、6b間の抵抗値
が変化し、それがセンサ出力としてり−ドピン2a、、
2eから取出される。
When it reacts with the gas-sensitive body 12, the resistance value between the electrodes 5a and 6b changes, and this is the sensor output.
2e.

すなわち、感ガス体11用のリードビン2a。That is, the lead bin 2a for the gas-sensitive body 11.

2dに対して検知回路を構成すれば、CH4検知用とし
て使用することができる。
If a detection circuit is configured for 2d, it can be used for CH4 detection.

感ガス体12用のり−ドビン2a、2eに対して検知回
路を構成すれば、C2H50H検知用として使用するこ
とができる。
If a detection circuit is constructed for the glue dowels 2a and 2e for the gas-sensitive body 12, it can be used for C2H50H detection.

このように、ヒータ21を偏位させ、また必要であれば
溝30を形成して感ガス体11.12の温度をそれぞれ
の特性に合った最適な温度に設定することにより、感ガ
ス体の特性を最大限に発揮することができる。
In this way, by deflecting the heater 21 and forming the grooves 30 if necessary, the temperature of the gas-sensitive elements 11 and 12 is set to the optimum temperature that matches the characteristics of each gas-sensitive element. The characteristics can be maximized.

したがって、複数種のガスをそれぞれ良好な選択性をも
って検知することができ、信頼性にすぐれたものとなる
Therefore, multiple types of gases can be detected with good selectivity, resulting in excellent reliability.

また、一方のたとえば感ガス体12の検知出力を参照用
として使えば、他方の感ガス体11のCH4検知の選択
性をより高めることができる。
Further, by using the detection output of one of the gas-sensitive bodies 12 as a reference, the selectivity of CH4 detection of the other gas-sensitive body 11 can be further improved.

なお、上記実施例では、熱伝導度を低下させるための溝
を感ガス体11.12の相互間に形成したが、溝の形成
位置や形状については感ガス体11.12の特性に応じ
て適宜に変更可能であり、たとえば第3図に示すように
、感ガス体11゜12を囲むような位置および形状の溝
50.51゜52を形成してもよい。
In the above embodiment, grooves for reducing thermal conductivity were formed between the gas-sensitive elements 11.12, but the position and shape of the grooves may vary depending on the characteristics of the gas-sensitive elements 11.12. The grooves 50, 51, 52 may be formed in positions and shapes that surround the gas-sensitive elements 11, 12, as shown in FIG. 3, for example, as shown in FIG.

また、絶縁体としては、板状かつ矩形状の絶縁基板4に
限らず、円筒状のものでもよい。
Further, the insulator is not limited to the plate-shaped and rectangular insulating substrate 4, but may be a cylindrical one.

さらに、感ガス体が二つの場合について説明したが、感
ガス体が三つあるいはそれ以上ある場合についても同様
に実施可能である。
Furthermore, although the case in which there are two gas-sensitive bodies has been described, the present invention can be similarly implemented in a case in which there are three or more gas-sensitive bodies.

[発明の効果] 以上述べたようにこの発明によれば、 請求項1のガスセンサは、絶縁体と、この絶縁体に偏位
状態で設けたヒータと、前記絶縁体上に設けた複数対の
電極と、これら電極対上に設けた複数種の感ガス体とを
備えたので、複数種のガスを良好な選択性をもって検知
することができる信頼性にすぐれたものとなる。
[Effects of the Invention] As described above, according to the present invention, the gas sensor of claim 1 includes an insulator, a heater provided in an offset state on the insulator, and a plurality of pairs of heaters provided on the insulator. Since it includes electrodes and a plurality of types of gas-sensitive bodies provided on these electrode pairs, it is highly reliable and can detect a plurality of types of gases with good selectivity.

請求項2のガスセンサは、絶縁体と、この絶縁体に偏位
状態で設けたヒータと、前記絶縁体上に設けた複数対の
電極と、これら電極対上に設けた複数種の感ガス体と、
これら感ガス体の相互間の絶縁体上に設けた溝とを備え
たので、複数種のガスを良好な選択性をもって検知する
ことができる信頼性にすぐれたものとなる。
A gas sensor according to a second aspect of the present invention includes an insulator, a heater provided on the insulator in an offset state, a plurality of pairs of electrodes provided on the insulator, and a plurality of types of gas-sensitive bodies provided on these electrode pairs. and,
Since grooves are provided on the insulator between these gas-sensitive bodies, it is possible to detect a plurality of types of gases with good selectivity and is highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における要部のを示す図で
ある。 4・・・絶縁基板(絶縁体) 、5a、5b、6a。 6b・・・電極、11・・・第1感ガス体、12・・・
第2感ガス体、21・・・ヒータ、30・・・溝。
FIG. 1 is a diagram showing essential parts in an embodiment of the present invention. 4... Insulating substrate (insulator), 5a, 5b, 6a. 6b... Electrode, 11... First gas sensing body, 12...
Second gas sensing body, 21... heater, 30... groove.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁体と、この絶縁体に偏位状態で設けたヒータ
と、前記絶縁体上に設けた複数対の電極と、これら電極
対上に設けた複数種の感ガス体とを具備し、各電極対間
の抵抗値変化をそれぞれセンサ出力とすることを特徴と
するガスセンサ。
(1) An insulator, a heater provided on the insulator in an offset state, a plurality of pairs of electrodes provided on the insulator, and a plurality of types of gas-sensitive bodies provided on these electrode pairs. , a gas sensor characterized in that a change in resistance value between each pair of electrodes is used as a sensor output.
(2)絶縁体と、この絶縁体に偏位状態で設けたヒータ
と、前記絶縁体上に設けた複数対の電極と、これら電極
対上に設けた複数種の感ガス体と、これら感ガス体の相
互間の絶縁体上に設けた溝とを具備し、各電極対間の抵
抗値変化をそれぞれセンサ出力とすることを特徴とする
ガスセンサ。
(2) An insulator, a heater provided on the insulator in an offset state, a plurality of pairs of electrodes provided on the insulator, a plurality of types of gas-sensitive bodies provided on these electrode pairs, and What is claimed is: 1. A gas sensor comprising a groove provided on an insulator between gas bodies, the sensor output being a change in resistance value between each pair of electrodes.
JP63168020A 1988-07-06 1988-07-06 Gas sensor Expired - Lifetime JP2714006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168020A JP2714006B2 (en) 1988-07-06 1988-07-06 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168020A JP2714006B2 (en) 1988-07-06 1988-07-06 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0217437A true JPH0217437A (en) 1990-01-22
JP2714006B2 JP2714006B2 (en) 1998-02-16

Family

ID=15860319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168020A Expired - Lifetime JP2714006B2 (en) 1988-07-06 1988-07-06 Gas sensor

Country Status (1)

Country Link
JP (1) JP2714006B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103654A (en) * 1981-12-16 1983-06-20 Matsushita Electric Ind Co Ltd Multifunctional gas sensor
JPS58105047A (en) * 1981-12-18 1983-06-22 Hitachi Ltd Monolithic type temperature-humidity sensor
JPS61186847A (en) * 1985-02-09 1986-08-20 ドレーゲルヴエルク・アクチエンゲゼルシヤフト Gas sensor with plurality of sensor element
JPS6296561U (en) * 1985-12-06 1987-06-19

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103654A (en) * 1981-12-16 1983-06-20 Matsushita Electric Ind Co Ltd Multifunctional gas sensor
JPS58105047A (en) * 1981-12-18 1983-06-22 Hitachi Ltd Monolithic type temperature-humidity sensor
JPS61186847A (en) * 1985-02-09 1986-08-20 ドレーゲルヴエルク・アクチエンゲゼルシヤフト Gas sensor with plurality of sensor element
JPS6296561U (en) * 1985-12-06 1987-06-19

Also Published As

Publication number Publication date
JP2714006B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
KR910006223B1 (en) Gas sensor and method for production thereof
KR100351810B1 (en) absolute humidity sensor
JPS6066145A (en) External atmosphere detecting device
US4935289A (en) Gas sensor and method for production thereof
US6834547B2 (en) Humidity sensor and fabrication method thereof
JPH0217437A (en) Gas sensor
US4433320A (en) Dew sensor
JPH02119202A (en) Temperature sensor
JPS6375548A (en) Gas sensor
JPH01313751A (en) Gas sensor
JP3345695B2 (en) Acceleration sensor
JPH01299451A (en) Gas sensor
US6145371A (en) Gas sensor
JPH03249555A (en) Multicomponent gas sensor
JPH01301158A (en) Gas sensor
JPS6158775B2 (en)
JPS568537A (en) Flammable gas detecting element
JPS58166249A (en) Humidity, temperature and gas sensitive element
JPH038506B2 (en)
JPH06308076A (en) Solid electrolyte gas sensor
JPS6117410Y2 (en)
JPS58151549A (en) Electrostatic capacity type humidity sensitive element
KR950014873A (en) Gas sensor and manufacturing method
KR100188711B1 (en) Thick film contact combustion type gas sensor and its manufacturing method
KR100329807B1 (en) Electrode structure of the semiconducting type gas sensor