JPH02174030A - Interlocked fuse - Google Patents

Interlocked fuse

Info

Publication number
JPH02174030A
JPH02174030A JP63332433A JP33243388A JPH02174030A JP H02174030 A JPH02174030 A JP H02174030A JP 63332433 A JP63332433 A JP 63332433A JP 33243388 A JP33243388 A JP 33243388A JP H02174030 A JPH02174030 A JP H02174030A
Authority
JP
Japan
Prior art keywords
conductor
phase
resistor
fuse
interlocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332433A
Other languages
Japanese (ja)
Other versions
JPH053089B2 (en
Inventor
Kazuto Ikeda
池田 一人
Toshiyuki Kobayashi
敏行 小林
Yuji Hirata
平田 裕士
Yukiyasu Morikita
森北 幸康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FUSE KK
Kansai Electric Power Co Inc
Original Assignee
OSAKA FUSE KK
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FUSE KK, Kansai Electric Power Co Inc filed Critical OSAKA FUSE KK
Priority to JP63332433A priority Critical patent/JPH02174030A/en
Publication of JPH02174030A publication Critical patent/JPH02174030A/en
Publication of JPH053089B2 publication Critical patent/JPH053089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To make the operation reliable by interlocking fuses of individual phases via the mutual transfer of thermal energy by thermal conduction. CONSTITUTION:Conductors 3 are connected by a low-melting point metal between dissociation end sections at center dissociation sections of resistors 2 and 2' of individual phases, individual phases are insulated and separated by a thermal conductor 4 made of a heat-resistant insulating material with good thermal conductivity, and the elastic force in the direction separating from the dissociation end section of the resistor is applied to the conductors 3. When the fuse of one phase is operated, its heat is transferred to the other phase via the thermal conductor 4, the low-melting point metal of the other phase is melted, thus the conductors 3 are separated from dissociation end sections of resistors by the applied elastic force, and both phases are interlockingly cut off. When one phase is melted, the other phase is also surely melted, and the occurrence of the open-phase operation is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、三相三線式や三相四線式など低圧配電線に
おいて、欠相保護用として使用される連動ヒユーズに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an interlocking fuse used for protection against an open phase in a low voltage distribution line such as a three-phase three-wire system or a three-phase four-wire system.

[従来の技術] この種ヒユーズとしては、従来から例えば第14図に示
すようなものがあった。
[Prior Art] As this type of fuse, there has conventionally been one as shown in FIG. 14, for example.

すなわち、密閉筒16内を隔壁17で仕切って遮断部1
8及びアーク短絡部19を構成し、両端を端子20に接
続して可溶体21.22.23を内蔵したもので、−本
の可溶体、例えば可溶体21が溶断すると、これによっ
て発生した金属蒸気やアークが接近して配置した他相間
を短絡させ、大電流を流すことによって遮断部18で回
路を遮断するようにしたものである。
That is, the inside of the sealed cylinder 16 is partitioned by the partition wall 17 and the blocking part 1
8 and an arc short circuit part 19, both ends are connected to the terminal 20, and fusible bodies 21, 22, and 23 are built-in. Steam or arc short-circuits other phases arranged close to each other, and a large current is caused to flow, thereby interrupting the circuit at the interrupting part 18.

[発明が解決しようとする課題] −i的に、ヒユーズが溶断すると極間にはアークが発生
し、金属蒸気が充満する。各相のヒユーズが接近して配
置されであると、極間や相間に金属蒸気が充満し、異相
間には絶縁破壊が起り、アーク短絡が発生する。しかし
ながら、この動作は必ずしも確実ではなく、異相間がア
ーク短絡しない場合も起り得る。すなわち、比較的大き
な電流域では、金属蒸気が大量に発生し、異相間の絶縁
が簡単に破壊されてアーク短絡が確実に起るが、中電流
域においては偶発的となり、過負荷小電流域においては
アーク短絡は全く期待できない。従って一相が溶断して
も他相が溶断せず、欠相運転となり、三相ヒユーズの誤
動作となる危険性があった。
[Problems to be Solved by the Invention] -i. When the fuse blows, an arc is generated between the poles, and metal vapor is filled. If the fuses of each phase are placed close to each other, metal vapor will fill between the poles and between the phases, causing dielectric breakdown between different phases and causing an arc short circuit. However, this operation is not always reliable, and there may be cases where arc short circuits do not occur between different phases. In other words, in a relatively large current range, a large amount of metal vapor is generated, the insulation between different phases is easily destroyed, and an arc short circuit definitely occurs, but in a medium current range, it becomes accidental, and an overload occurs in a small current range. In this case, arc short circuit cannot be expected at all. Therefore, even if one phase is blown out, the other phases are not fused out, resulting in open phase operation, which poses a risk of malfunctioning of the three-phase fuse.

そこで、この発明の目的とするところは、−相が溶断し
た場合には、確実に他の相も溶断し、欠相運転を起すお
それのない連動ヒユーズを提供するところにある。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an interlocking fuse that ensures that when the negative phase is fused, the other phases are also fused and there is no risk of open phase operation.

[課題を解決するための手段] 上記目的を達成するため、この発明に係る連動ヒユーズ
は一相の動作時にその発熱を他相に伝導して同時に溶断
させる熱伝導連動方式を採用した。
[Means for Solving the Problems] In order to achieve the above object, the interlocking fuse according to the present invention employs a heat conduction interlocking method in which when one phase is operated, heat generated from the fuse is conducted to the other phase and simultaneously blown out.

すなわち、この発明に係る連動ヒユーズは、複数対の電
線接続用端子間に中央部を分断開離して各相の抵抗体を
接続し、中央開離部において各相の抵抗体の開離端部間
に導電体を低融点金属で接合するとともに、各相間を熱
伝導の良い耐熱性絶縁材からなる熱導体で絶縁隔離し、
導電体には抵抗体の開離端部間から離脱する方向の弾発
力を付与する構成としたものである。
That is, the interlocking fuse according to the present invention connects the resistors of each phase by dividing and opening the central part between multiple pairs of wire connection terminals, and connecting the open ends of the resistors of each phase at the central opening part. In addition to joining a conductor between them with a low-melting point metal, each phase is insulated and isolated using a thermal conductor made of a heat-resistant insulating material with good thermal conductivity.
The structure is such that an elastic force is applied to the conductor in a direction in which it separates from between the open end portions of the resistor.

導電体は、ヒユーズの定格電流に応じて通電容量を上げ
る必要があるため蓄熱容量を持たせることが望ましい。
It is desirable that the conductor has a heat storage capacity because it is necessary to increase the current carrying capacity according to the rated current of the fuse.

導電体と熱導体は一体あるいは別体に構成できる0例え
ば、蓄熱容量を持たせた導電体を熱導体の両面に接合固
着し、導電体に付与される弾発力は可動熱導体に付与さ
れた弾発力によって与えられる一体構成とすることがで
きる。一方、抵抗体の開離端部間に固定熱導体を接合固
着し、蓄熱容量を有する可動導電体を開離端部がら離脱
する方向の弾発力を付与して低融点金属で抵抗体の開離
端部間に接合すれば別体構成とすることができる。
The electric conductor and the thermal conductor can be constructed as one body or separate bodies. It can be an integral configuration provided by a resilient force. On the other hand, a fixed thermal conductor is bonded and fixed between the open ends of the resistor, a movable conductor having a heat storage capacity is given an elastic force in the direction of separating from the open ends, and the resistor is made of a low melting point metal. By joining between the separated end portions, a separate configuration can be achieved.

また、この発明によれば、これら熱伝導連動方式による
連動遮断に加え、導電体に接合される抵抗体に僅かな構
成を加えることによって、アークによる相間短絡を強制
的かつ確実に行い得る構成とすることができる。
Further, according to the present invention, in addition to the interlocking interrupting using the thermal conduction interlocking method, by adding a slight structure to the resistor joined to the conductor, a structure is created in which phase-to-phase short circuit due to arc can be forcibly and reliably performed. can do.

すなわち、導電体に接合される抵抗体を、導電体と平行
状態で熱導体の端縁を越えて延びる平行部と、この平行
部から直角に折れ曲がる垂直部を有する構成とし、垂直
部近傍の平行部に小孔を穿設してアークに方向性を持た
せる構成である。
In other words, a resistor to be joined to a conductor is configured to have a parallel part that extends beyond the edge of the thermal conductor in parallel with the conductor, and a vertical part that bends at a right angle from this parallel part, and a parallel part near the vertical part. It has a structure in which a small hole is drilled in the part to give directionality to the arc.

なお、熱導体は、窒化アルミニウム、酸化ベリリウム、
炭化珪素などのセラミック材等、熱伝導の良い耐熱性絶
縁材の成形焼成体を用いるのが好ましく、導電体あるい
は抵抗体を半田付接合するためには、所定領域にメタラ
イズ加工後ニッケルメッキを施すのが推奨される。
Note that the thermal conductor is aluminum nitride, beryllium oxide,
It is preferable to use a molded and fired body of a heat-resistant insulating material with good thermal conductivity, such as a ceramic material such as silicon carbide.In order to solder a conductor or resistor, predetermined areas are metalized and then nickel plated. is recommended.

導電体としては、銅、銅亜鉛合金、銅ニツケル合金等の
導電性の良い金属を使用する。
As the conductor, a metal with good conductivity such as copper, copper-zinc alloy, copper-nickel alloy, etc. is used.

抵抗体も、銅、銅亜鉛合金、銅ニツケル合金等が使用で
きる。
Copper, copper-zinc alloy, copper-nickel alloy, etc. can also be used for the resistor.

[作用] 上記のように各相の抵抗体の中央gFIM部において開
離端部間に導電体を低融点金属で接合するとともに、各
相間を熱伝導の良好な耐熱性絶縁材料からなる熱導体で
絶縁隔離し、導電体に抵抗体の開離端部から離脱する方
向の弾発力を付与しておけば、−相のヒユーズが動作し
た場合、その発熱が熱導体を介して他相に伝導され、他
相の低融点金属も溶融されるので、付与された弾発力に
よって導電体が抵抗体の開離端部から離脱し、両相が連
動して遮断される。
[Function] As described above, a conductor is joined between the open ends of the resistor of each phase at the center gFIM part using a low melting point metal, and a thermal conductor made of a heat-resistant insulating material with good thermal conductivity is connected between each phase. If the electrical conductor is insulated and isolated, and an elastic force is applied to the conductor in the direction of separating it from the open end of the resistor, when the negative phase fuse is activated, the heat generated will flow through the thermal conductor to the other phase. As the conduction is conducted and the low melting point metal of the other phase is also melted, the applied elastic force causes the conductor to separate from the open end of the resistor, and both phases are interlocked and cut off.

蓄熱容量を持たせた導電体を使用した場合、ヒユーズの
定格電流に従って通電容量をあげることができる。
If a conductor with heat storage capacity is used, the current carrying capacity can be increased according to the rated current of the fuse.

蓄熱容量を持たせた導電体を可動熱導体の両面に接合固
着し、熱導体に付与した弾発力によって導電体に抵抗体
の軸方向に抵抗体の開離端部から離脱する方向の弾発力
を付与し、かつこの可動熱導体の作動方向と反対側に可
動熱導体の移動後、各相間を絶縁隔離する耐熱絶縁隔離
板を熱導体と一体的に設けた場合、連動動作後における
各相間の絶縁が確保される。
A conductor with a heat storage capacity is bonded and fixed to both sides of a movable thermal conductor, and the elastic force applied to the thermal conductor causes the conductor to have an elastic force in the axial direction of the resistor in the direction of detachment from the open end of the resistor. If a heat-resistant insulating separator plate is provided integrally with the heat conductor to apply power and to insulate and isolate each phase after the movable heat conductor is moved to the opposite side of the operating direction of the movable heat conductor, after the interlocking operation Insulation between each phase is ensured.

また、導電体に接合される抵抗体が、平行部と垂直部を
有し、垂直部近傍の平行部に小孔を設けて初期発弧点を
限定した構成においては、フレミングの左手の法則によ
り、垂直部の回りに磁界が形成されるとともに発生した
アークを他相方向に駆動する力が山くため、相間短絡が
強制的かつ確実に行われ安定した連動状右が得られる。
In addition, in a configuration where the resistor connected to the conductor has a parallel part and a vertical part, and a small hole is provided in the parallel part near the vertical part to limit the initial firing point, Fleming's left-hand rule applies. , a magnetic field is formed around the vertical part, and the force that drives the generated arc in the direction of the other phases is increased, so the short circuit between the phases is forcibly and reliably performed, and a stable interlocking state is obtained.

これは、中電流域・大電流域の連動遮断を保証するもの
となる。すなわち、過負荷小電流域においては、熱伝導
連動方式で各相を連動遮断するとともに、中電流域・大
電流域ではアーク短絡による連動遮断を確実に生起する
構成とすることができるものである。
This guarantees interlocking interruption in the medium current range and large current range. In other words, in the overload small current range, each phase is interlocked and shut off using a thermal conduction interlocking method, and in the medium and large current ranges, it is possible to create a configuration that reliably causes interlocking shutoff due to arc short circuit. .

[実施例コ 以下添附図面に示した実施例について説明する。[Example code] The embodiments shown in the accompanying drawings will be described below.

第1図は、この発明に係る連動ヒユーズの一実施例とし
て示した二相連動式の基本構造を示すもので、1.1′
は二対の電線接続用端子、2.2′は各相の端子間に接
続した抵抗体で、中央部において分断開離状態としてい
る。3は中央開離部において、各相の抵抗体2.2′の
開離端部2a、2’a間に低融点金属で接合した導電体
、4はこの導電体3を接合固着した熱導体で、熱伝導の
良好な耐熱性絶縁材である窒化アルミニウムで成形され
ており、各相間を絶縁隔離している。この熱導体4には
例えば矢印で示す抵抗体の軸方向に弾発力が付与され、
これによって導電体3に抵抗体2.2′の開離端部2a
、2’aから離脱する方向の弾発力が付与されている。
FIG. 1 shows the basic structure of a two-phase interlocking type shown as an embodiment of the interlocking fuse according to the present invention.
are two pairs of wire connection terminals, and 2.2' is a resistor connected between the terminals of each phase, which are separated at the center. 3 is a conductor bonded between the open ends 2a and 2'a of the resistor 2.2' of each phase with a low melting point metal in the central open part, and 4 is a thermal conductor to which this conductor 3 is bonded and fixed. It is made of aluminum nitride, a heat-resistant insulating material with good thermal conductivity, and provides insulation and isolation between each phase. For example, an elastic force is applied to the thermal conductor 4 in the axial direction of the resistor shown by the arrow,
This causes the conductor 3 to have an open end 2a of the resistor 2.2'.
, 2'a is applied with an elastic force in the direction of detachment.

第2図は動作状態を示すもので、過負荷小電流の通電に
より一相のヒユーズが発熱し、低融点金属が溶断すると
き、熱導体4を介してその発熱が他相にも伝えられ、低
融点金属を溶融することによって弾発力が働き、導電体
3が熱導体4ともども抵抗体の軸方向に作動して開離端
部2aから離脱することによって、連動遮断された状態
を示している。
Figure 2 shows the operating state. When the fuse of one phase generates heat due to the application of a small overload current and the low melting point metal melts, the heat is transmitted to the other phases via the thermal conductor 4. By melting the low melting point metal, an elastic force acts, and the conductor 3 and the thermal conductor 4 act in the axial direction of the resistor and separate from the open end 2a, thereby indicating a state in which the interlocking is interrupted. There is.

第3図は密閉筒5内に動作部を封止した状態を示してお
り、第1図と同一部分は同一符号で示している。6は熱
導体4を抵抗体の軸方向に引張るコイルスプリングであ
る。
FIG. 3 shows a state in which the operating section is sealed within the sealed cylinder 5, and the same parts as in FIG. 1 are indicated by the same symbols. 6 is a coil spring that pulls the thermal conductor 4 in the axial direction of the resistor.

第4図(A)(B)及び第5図(A)(B)は上記実施
例に使用した熱導体4及びこの熱導体に導電体3を接合
固着した状態を示す斜視図並びに側面図で、熱導体4の
両面には第4図に示す通り、メタライズ加エフを施した
上、ニッケルメッキ8が施され、このニッケルメッキの
上に第5図に示す通り、蓄熱容量を持たせた導電体3が
高融点金属9により高温半田付けされている。
4(A)(B) and FIG. 5(A)(B) are perspective views and side views showing the thermal conductor 4 used in the above embodiment and the state in which the electrical conductor 3 is bonded and fixed to the thermal conductor. As shown in FIG. 4, both surfaces of the thermal conductor 4 are metallized and nickel plated 8, as shown in FIG. The body 3 is soldered at high temperature with a high melting point metal 9.

第6図は、このような導電体3及び熱導体4を使用した
具体例で、電源接続用端子1.1′を有する抵抗体2.
2′の開離端部2a、2’aが低融点金属10で導電体
3に接合されている。また、この例では抵抗体が、導電
体3と平行状態で熱導体4の端縁を越えて延びる平行部
イと、この平行部イから直角に折れ曲がる垂直部口を有
し、垂直部近傍の平行部に小孔11が形成された構造と
なっている。このような構造においては、第7図に示す
通り、電流工の流れに応じてフレミングの左手の法則に
より、垂直部口の回りに磁界Hが生じ矢印Fの力が生じ
る。一方小孔の形成により、初期発弧点が限定されてい
るので、−相のヒユーズが動作して発生したアークは、
矢印Fの方向に駆動され、他相を強制的かつ確実にアー
ク短絡できる構造となっている。小孔11の位置は垂直
部に近いほど良いが、応力等の問題もあるので、若干離
すほうが良い、小孔の大きさは、抵抗体断面積Sに対す
る小孔により減少した抵抗体断面積S′の割合いが50
%〜95%程度になるのが好ましい、小孔を他の異種金
属か合金で埋めると、応力に対し補強強化され、安定し
た長期信頼性のあるヒユーズとすることができる。
FIG. 6 shows a specific example using such an electric conductor 3 and a thermal conductor 4, including a resistor 2.1 having a power supply connection terminal 1.1'.
The open ends 2a, 2'a of 2' are joined to the conductor 3 with a low melting point metal 10. In addition, in this example, the resistor has a parallel portion A that extends beyond the edge of the thermal conductor 4 in parallel with the conductor 3, and a vertical portion that is bent at a right angle from the parallel portion A, and has a vertical portion near the vertical portion. It has a structure in which small holes 11 are formed in the parallel parts. In such a structure, as shown in FIG. 7, a magnetic field H is generated around the vertical opening according to Fleming's left-hand rule according to the flow of the electrician, and a force as indicated by the arrow F is generated. On the other hand, the initial firing point is limited due to the formation of small holes, so the arc generated by the operation of the − phase fuse is
It is driven in the direction of arrow F, and has a structure that can forcibly and reliably arc short-circuit other phases. The closer the position of the small hole 11 is to the vertical part, the better, but since there are problems such as stress, it is better to leave it slightly apart. ’ ratio is 50
If the small holes are filled with other dissimilar metals or alloys, preferably about 95% to 95%, the fuse can be reinforced and strengthened against stress, resulting in a stable and long-term reliable fuse.

第8図は、コイルスプリング6によって抵抗体2.2′
の軸方向に引張力を付与された可動熱導体4を有する第
3図と同様のヒユーズにおいて、可動熱導体4の作動方
向と反対側に可動熱導体の移動後、各相間を絶縁隔離す
る耐熱絶縁隔壁板12を設けた実施例を示すもので、動
作後の相間の絶縁を安定に確保することができる。
FIG. 8 shows that the resistor 2.2' is connected by the coil spring 6.
In a fuse similar to that shown in FIG. 3 having a movable thermal conductor 4 applied with a tensile force in the axial direction of This shows an embodiment in which an insulating partition plate 12 is provided, and insulation between phases can be stably ensured after operation.

第9図は、両面に抵抗体2.2′が滑入して移動ガイド
の役割をする溝13aを設けた耐熱絶縁隔壁板13を示
している。
FIG. 9 shows a heat-resistant insulating partition plate 13 provided on both sides with grooves 13a into which the resistor 2.2' slides and serves as a movement guide.

上記実施例においてはいずれも導電体を可動熱導体に接
合固着し、この導電体に抵抗体を低融点金属で接合固着
する例を示しているが、導電体を可動に設けることも可
能である。
In the above embodiments, an electric conductor is bonded and fixed to a movable thermal conductor, and a resistor is bonded and fixed to this conductor with a low melting point metal, but it is also possible to provide a movable electric conductor. .

第11(A>(B)は、この場合に用いる導電体3及び
熱導体4の例示斜視図で、導電体3は蓄熱容量を持たせ
て耐熱絶縁物14に接合固着している。また、熱導体4
は、(B)図に示すように、両面にヒユーズが動作した
際十分絶縁が保てる距離を隔てて、2か所にメタライズ
加工とニッケルメッキを施した表面処理部15を設けて
いる。
11th (A>(B)) is an exemplary perspective view of the electric conductor 3 and the thermal conductor 4 used in this case, where the electric conductor 3 has a heat storage capacity and is bonded and fixed to a heat-resistant insulator 14. thermal conductor 4
As shown in Figure (B), surface treatment portions 15 are provided on both sides with metallization and nickel plating at two locations separated by a distance that allows sufficient insulation to be maintained when the fuse operates.

電線接続用端子1.1′を設けた抵抗体2.2′は、第
11図に示すように、中央の開離端部2a、2’aにお
いて高融点金属16を使用して表面処理部15に高温半
田付けする。
As shown in FIG. 11, the resistor 2.2' provided with the wire connection terminal 1.1' is surface-treated using a high melting point metal 16 at the central open ends 2a, 2'a. High temperature solder to 15.

第12図(A)は、連動ヒユーズとしての組合わせ例で
、導電体3を矢印方向の弾発力を付与して低融点金属で
抵抗体2.2′に接合固着した例を示している。同図(
B)は、動作状態を示している。
Figure 12 (A) shows an example of a combination as an interlocking fuse, in which the conductor 3 is bonded and fixed to the resistor 2.2' with a low melting point metal while applying elastic force in the direction of the arrow. . Same figure (
B) shows the operating state.

第13図(A)は、組合わせ例の他日で、導電体3を抵
抗体2.2′の軸方向に弾発力を付与して、低融点金属
で抵抗体2.2′に接合固着した例を示している。同図
(B)は、動作状態を示している。この場合、抵抗体の
一方側を導電体3がスライド可能なように曲げておく。
Fig. 13(A) shows another example of the combination, in which the conductor 3 is bonded to the resistor 2.2' with a low melting point metal by applying elastic force in the axial direction of the resistor 2.2'. This shows an example of a stuck case. The figure (B) shows the operating state. In this case, one side of the resistor is bent so that the conductor 3 can slide.

[発明の効果] 以上詳述の通り、この発明に係る連動ヒユーズは、熱伝
導による相互の熱エネルギーの授受により各相のヒユー
ズを連動させるものであり、動作が確実である。
[Effects of the Invention] As described in detail above, the interlocking fuse according to the present invention interlocks the fuses of each phase by mutual exchange of thermal energy through thermal conduction, and is reliable in operation.

また、動作後において各相間を絶縁隔離する耐熱絶縁隔
壁板を設けておくと、連動動作後における各相間の絶縁
が確保される。
Further, if a heat-resistant insulating partition plate is provided to insulate and isolate each phase after operation, insulation between each phase after interlocking operation is ensured.

抵抗体に垂直部と水平部を設け、水平部に小孔を設けて
おくと、初期発弧点が限定され、発生したアークが他相
方向に駆動されるため、相間短絡が強制的かつ確実に行
われ、中電流域・大電流域の連動遮断も保証された連動
ヒユーズとなし得る。
If the resistor has a vertical part and a horizontal part, and a small hole is provided in the horizontal part, the initial firing point will be limited and the generated arc will be driven in the direction of the other phase, making it possible to forcibly and reliably short circuit between phases. Interlocking fuses can be used to guarantee interlocking disconnection in the medium and large current ranges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る連動ヒユーズの一実施例とし
て示した二相連動式の基本構造を示す斜視図、 第2図は、同連動ヒユーズの動作状態を示す斜視図、 第3図は、同連動ヒユーズを密閉筒内に封止した状態を
示す概略図、 第4図(A)と(B)は、同連動ヒユーズに使用した熱
導体の斜視図と側面図、 第5図(A)と(B)は、同然導体に導電体を接合固着
した状態を示す斜視図と側面図、第6図は、同然導体及
び導電体を使用した連動ヒユーズの具体例を示す正面図
、 第7図は、同連動ヒユーズの抵抗体構造に基づく動作状
態を示す概略図、 第8図は、動作後において各相間の絶縁を確保する耐熱
絶縁隔壁板を追加した例を示す概略図、第9図は、耐熱
絶縁隔壁板の他例を示す斜視図、第10図(A)は、連
動ヒユーズの他例における導電体の斜視図、(B)は、
熱導体の斜視図、第11図は、同然導体と抵抗体を接合
した状態を示す正面図、 第12図(A)は、導電体と組合わせて連動ヒユーズと
した状態における斜視図、(B)は、動作状態を示す斜
視図、 第13図(A)は、導電体の動作方向を異にする連動ヒ
ユーズの斜視図、(B)は、動作状態を示す斜視図、 第14図は、従来の連動ヒユーズの代表例を示す概略図
である。 ■、1′・・・・・・電線接続用端子、2.2′・・・
・・・抵抗体 2a、2′a・・−・・・開離端部 3・・・・・・導電体  4・・・・・・熱導体7・・
・・・・メタライズ加工  8・・・・・・ニッケルメ
ッキ9・・・・・・高融点金属  10・・・・・・低
融点金属11・・・・・・小孔  12.13・・・・
・・耐熱絶縁隔壁板13a・・・・・・溝  16・・
・・・・高融点金属代理人 弁理士 大 島 泰 甫 第1図 第4図 (A) (B) 第2図 第6図 第3S 第7図 第8図 第11図 第12 図
Fig. 1 is a perspective view showing the basic structure of a two-phase interlocking type shown as an embodiment of the interlocking fuse according to the present invention, Fig. 2 is a perspective view showing the operating state of the interlocking fuse, and Fig. 3 is a perspective view showing the operating state of the interlocking fuse. , a schematic diagram showing the state in which the interlocking fuse is sealed in a sealed cylinder; Figures 4 (A) and (B) are a perspective view and a side view of the thermal conductor used in the interlocking fuse; and Figure 5 (A). ) and (B) are a perspective view and a side view showing a state in which a conductor is bonded and fixed to a conductor, FIG. 6 is a front view showing a concrete example of a conductor and an interlocking fuse using the conductor, and FIG. The figure is a schematic diagram showing the operating state of the interlocking fuse based on the resistor structure. Figure 8 is a schematic diagram showing an example in which a heat-resistant insulation partition plate is added to ensure insulation between each phase after operation. Figure 9 10 is a perspective view showing another example of a heat-resistant insulating partition plate, FIG. 10(A) is a perspective view of a conductor in another example of an interlocking fuse, and FIG.
FIG. 11 is a perspective view of the thermal conductor; FIG. 11 is a front view showing a state in which a conductor and a resistor are joined together; FIG. ) is a perspective view showing the operating state; FIG. 13(A) is a perspective view of an interlocking fuse that changes the operating direction of the conductor; FIG. 14(B) is a perspective view showing the operating state; FIG. 2 is a schematic diagram showing a typical example of a conventional interlocking fuse. ■, 1'...Terminal for connecting wires, 2.2'...
...Resistor 2a, 2'a...Open end portion 3...Conductor 4...Thermal conductor 7...
...Metallization 8...Nickel plating 9...High melting point metal 10...Low melting point metal 11...Small hole 12.13...・
...Heat-resistant insulating partition plate 13a...Groove 16...
...High melting point metal agent Patent attorney Yasushi Oshima Fig. 1 Fig. 4 (A) (B) Fig. 2 Fig. 6 Fig. 3S Fig. 7 Fig. 8 Fig. 11 Fig. 12

Claims (6)

【特許請求の範囲】[Claims] (1)複数対の電線接続用端子間に中央部を分断開離し
て各相の抵抗体を接続し、中央開離部において各相の抵
抗体の開離端部間に導電体を低融点金属で接合するとと
もに、各相間を熱伝導の良い耐熱性絶縁材からなる熱導
体で絶縁隔離し、導電体には抵抗体の開離端部間から離
脱する方向の弾発力を付与してなる連動ヒューズ。
(1) Connect the resistors of each phase by separating and opening the central part between multiple pairs of wire connection terminals, and insert a low-melting-point conductor between the open ends of the resistors of each phase at the central opening part. In addition to joining with metal, each phase is insulated and isolated using a thermal conductor made of a heat-resistant insulating material with good thermal conductivity, and an elastic force is applied to the conductor in the direction of separating it from between the open ends of the resistor. An interlocking fuse.
(2)導電体が蓄熱容量を有し、熱導体の両面に接合固
着され、導電体に付与される弾発力が可動熱導体に付与
された弾発力によって与えられる請求項1記載の連動ヒ
ューズ。
(2) The interlocking device according to claim 1, wherein the electric conductor has a heat storage capacity and is bonded and fixed to both sides of the thermal conductor, and the elastic force applied to the electric conductor is provided by the elastic force applied to the movable thermal conductor. fuse.
(3)可動熱導体が抵抗体の軸方向に作動する請求項2
記載の連動ヒューズにおいて、可動熱導体の作動方向と
反対側に可動熱導体の移動後、各相間を絶縁隔離する耐
熱絶縁隔壁板を設けてなる連動ヒューズ。
(3) Claim 2 in which the movable thermal conductor operates in the axial direction of the resistor.
The interlocking fuse described above is provided with a heat-resistant insulating partition plate for insulating and isolating each phase after the movable thermal conductor moves on the opposite side to the operating direction of the movable thermal conductor.
(4)抵抗体の開離端部間に固定熱導体が接合固着され
、蓄熱容量を有する可動導電体が開離端部から離脱する
方向の弾発力を受けて低融点金属で抵抗体の開離端部間
に接合されている請求項1記載の連動ヒューズ。
(4) A fixed thermal conductor is bonded and fixed between the open ends of the resistor, and the movable conductor having a heat storage capacity receives an elastic force in the direction of separating from the open ends, and the resistor is made of a low melting point metal. The interlocking fuse of claim 1, wherein the interlocking fuse is joined between the open ends.
(5)導電体に接合される抵抗体が、導電体と平行状態
で熱導体の端縁を越えて延びる平行部と、この平行部か
ら直角に折れ曲がる垂直部を有し、垂直部近傍の平行部
に小孔が穿設されている請求項1記載の連動ヒューズ。
(5) A resistor joined to a conductor has a parallel part that extends beyond the edge of the thermal conductor in parallel with the conductor, and a vertical part that bends at right angles from this parallel part, and has a parallel part near the vertical part. 2. The interlocking fuse according to claim 1, wherein a small hole is formed in the portion.
(6)熱導体がセラミック材料からなり、両面の所定領
域にメタライズ加工後ニッケルメッキが施されている請
求項1記載の連動ヒューズ。
(6) The interlocking fuse according to claim 1, wherein the thermal conductor is made of a ceramic material, and predetermined areas on both surfaces are metallized and then nickel plated.
JP63332433A 1988-12-27 1988-12-27 Interlocked fuse Granted JPH02174030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332433A JPH02174030A (en) 1988-12-27 1988-12-27 Interlocked fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332433A JPH02174030A (en) 1988-12-27 1988-12-27 Interlocked fuse

Publications (2)

Publication Number Publication Date
JPH02174030A true JPH02174030A (en) 1990-07-05
JPH053089B2 JPH053089B2 (en) 1993-01-14

Family

ID=18254917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332433A Granted JPH02174030A (en) 1988-12-27 1988-12-27 Interlocked fuse

Country Status (1)

Country Link
JP (1) JPH02174030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243372B4 (en) * 2001-09-21 2012-04-05 Yazaki Corp. Safety device for power circuit and fuse box
JP2014507772A (en) * 2011-02-02 2014-03-27 タイコ・エレクトロニクス・コーポレイション 3-function reflowable circuit protection device
JP2014507773A (en) * 2011-02-02 2014-03-27 タイコ・エレクトロニクス・コーポレイション 3-function reflowable circuit protection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243372B4 (en) * 2001-09-21 2012-04-05 Yazaki Corp. Safety device for power circuit and fuse box
JP2014507772A (en) * 2011-02-02 2014-03-27 タイコ・エレクトロニクス・コーポレイション 3-function reflowable circuit protection device
JP2014507773A (en) * 2011-02-02 2014-03-27 タイコ・エレクトロニクス・コーポレイション 3-function reflowable circuit protection device

Also Published As

Publication number Publication date
JPH053089B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US7498923B2 (en) Fast acting, low cost, high power transfer switch
KR100922694B1 (en) Arc-less electrical connector
AU667953B2 (en) Current limiting fuse and dropout fuseholder for interchangeable cutout mounting
EP2416405B1 (en) Battery pack with cell-level fusing and method of using same
US6323750B1 (en) Electrical component with a safety release
US4311890A (en) High-voltage, blast-actuated power switch having a deformable bridge conductor
GB2173054A (en) Subminiature fuses
US4417224A (en) Time delay fuse
JPS63264845A (en) Current limit fuse
US4988969A (en) Higher current carrying capacity 250V subminiature fuse
KR940008191B1 (en) High breaking capacity micro-fuse
JPH0673262B2 (en) Delay fuse
EP3232460A1 (en) Surge protection device and thermal tripping mechanism thereof
EP1267449A2 (en) Ring tongue lug retainer molded case circuit breaker
TWI450297B (en) Fuse installation structure of vacuum switch
JPS59117036A (en) Electric fuse element
FR2449959A1 (en) THERMAL CIRCUIT BREAKER WITH FUSE
JPH02174030A (en) Interlocked fuse
US4375630A (en) Multiple element current limiting fuse
USRE33137E (en) Subminiature fuse
US5566423A (en) Delay mechanism for retarding relative movement between two members
JPH04345724A (en) Non-destructive fuse
US3206579A (en) Fuse and method of manufacture
US2853580A (en) Switch
US2275403A (en) Electrical protective device