JPH02173926A - Perpendicular magnetic recording medium, its production, and recording and reproducing device using this medium - Google Patents

Perpendicular magnetic recording medium, its production, and recording and reproducing device using this medium

Info

Publication number
JPH02173926A
JPH02173926A JP32637688A JP32637688A JPH02173926A JP H02173926 A JPH02173926 A JP H02173926A JP 32637688 A JP32637688 A JP 32637688A JP 32637688 A JP32637688 A JP 32637688A JP H02173926 A JPH02173926 A JP H02173926A
Authority
JP
Japan
Prior art keywords
magnetic
recording
film
magnetization
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32637688A
Other languages
Japanese (ja)
Other versions
JP2507574B2 (en
Inventor
Kazuyoshi Yoshida
吉田 和悦
Takanobu Takayama
孝信 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP63326376A priority Critical patent/JP2507574B2/en
Priority to US07/321,081 priority patent/US5244751A/en
Publication of JPH02173926A publication Critical patent/JPH02173926A/en
Application granted granted Critical
Publication of JP2507574B2 publication Critical patent/JP2507574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve recording and reproducing characteristics by forming a specific perpendicular magnetic recording magnetic film consisting of a mixture including cobalt and its oxide on a nonmagnetic base body. CONSTITUTION:A magnetic field is applied to the film surface of a perpendicular magnetic recording magnetic film in the perpendicular direction to measure a magnetization curve, and a first tangent 1 touching a demagnetization curve in the first quadrant is drawn in the vicinity of the position where the applied magnetic field is zero, and an areas S surrounded with a second tangent 5 drawn in the saturation magnetization area of high magnetic field, the first tangent, and a shoulder part 4 of the demagnetization curve is divided by saturation magnetization Ms to obtain a value R=S/Ms whether the shoulder part 4 of the demagnetization curve intersects the first tangent 1 or not, and at this time, the value R has a certain characteristic for 10kA/m or lower. Thus, recording and reproducing characteristics are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は垂直磁気記録媒体とその製造方法及びそれを用
いた磁気記録再生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a perpendicular magnetic recording medium, a method for manufacturing the same, and a magnetic recording/reproducing apparatus using the same.

〔従来の技術〕[Conventional technology]

垂直磁気記録媒体としては、Co−Cr合金が知られて
おり、磁気異方性、飽・相離化ともに大きく、垂直磁気
記録媒体として優れた特性を備えている。
Co-Cr alloys are known as perpendicular magnetic recording media, and have large magnetic anisotropy, saturation, and phase separation, and have excellent properties as perpendicular magnetic recording media.

ところが金属膜であるため摩耗に弱く、磁気ヘッドの慴
動特性を低下するという問題があった。この点を解消し
、耐摩耗性の観点から例えばCOの部分酸化膜が検討さ
れ、磁気異方性の大きな垂直磁化膜が得られている。こ
の種の磁気記録媒体に関連するものとして、例えば特開
昭59−140629号及びジャパニーズ・ジャーナル
・オブ・アプライド・フィジックス、23巻、No、6
. L397 (1984年)(Jpn、 J、 Ap
pl、 Phys、、 Vol、23. No、6. 
L397(1984)3等が挙げられる。
However, since it is a metal film, it is susceptible to wear and has the problem of deteriorating the sliding characteristics of the magnetic head. To solve this problem, a partially oxidized film of CO, for example, has been studied from the viewpoint of wear resistance, and a perpendicularly magnetized film with large magnetic anisotropy has been obtained. Related to this type of magnetic recording medium, for example, Japanese Patent Application Laid-Open No. 140629/1983 and Japanese Journal of Applied Physics, Vol. 23, No. 6
.. L397 (1984) (Jpn, J, Ap
pl, Phys, Vol, 23. No, 6.
L397 (1984) 3 and the like.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

しかし、上記Go系磁性金属の部分酸化膜は、飽和磁化
が1000kA/m以下の範囲で垂直磁化膜が実現する
ものの、実際に記録再生を行うと、再生出力及び出力半
減記録密度ともに低く、磁気記録媒体としては不十分な
特性しか得られていない。
However, although the partial oxide film of the Go-based magnetic metal realizes a perpendicular magnetization film with a saturation magnetization of 1000 kA/m or less, when actually recording and reproducing, both the reproduction output and the output half-reduced recording density are low, and the magnetic It has insufficient characteristics as a recording medium.

本発明の目的はこの問題を解消することにあり、その第
1の目的は記録再生特性を向上させた改良された垂直磁
気記録媒体を、第2の目的はそれを製造する方法を、そ
して第3の目的はこの垂直磁気記録媒体を用いた磁気記
録再生装置をそれぞれ提供することにある。
The purpose of the present invention is to solve this problem, and the first purpose is to provide an improved perpendicular magnetic recording medium with improved recording and reproducing characteristics, the second purpose is to provide a method for manufacturing the same, and the second purpose is to provide an improved perpendicular magnetic recording medium with improved recording and reproducing characteristics. The purpose of No. 3 is to provide a magnetic recording/reproducing device using this perpendicular magnetic recording medium.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は、所定の形状を有する非磁性基体上に
、直接もしくは高透磁率層を介して少なくともコバルト
及びその酸化物を含む混合体から成る垂直磁気記録用磁
性膜を形成した磁気記録媒体であって、この磁性膜の膜
面に対して垂直方向に磁場を印加して磁化曲線を測定し
た時の、第1象限における減磁曲線に対して印加磁場零
付近で第1の接線を引いた時、この減磁曲線のショルダ
部が前記第1の接線と交わるか、もしくは交わらなくと
も高磁場の飽和磁化領域で引いた第2の接線と前記第1
の接線と減磁曲線のショルダ部で囲まれた面積Sを飽和
磁化Msで除した値R=S/Msが10kA/m以下で
ある特性を有する垂直磁気記録媒体により、達成される
The first object is to provide magnetic recording in which a magnetic film for perpendicular magnetic recording made of a mixture containing at least cobalt and its oxide is formed on a non-magnetic substrate having a predetermined shape, either directly or through a high magnetic permeability layer. When a magnetic field is applied perpendicularly to the film surface of the magnetic film and the magnetization curve is measured, the first tangent to the demagnetization curve in the first quadrant is set near zero in the applied magnetic field. When drawn, the shoulder part of this demagnetization curve intersects with the first tangent line, or even if it does not intersect, the second tangent line drawn in the saturation magnetization region of high magnetic field and the first tangent line.
This is achieved by a perpendicular magnetic recording medium having a characteristic in which the value R=S/Ms, which is obtained by dividing the area S surrounded by the tangent line and the shoulder part of the demagnetization curve by the saturation magnetization Ms, is 10 kA/m or less.

つまり、本発明者らは、磁性膜面に垂直方向に磁場を印
加して測定した時の磁化曲線が、上述のとおりある特定
形状を有していることが極めて有効であることを見出し
た。本発明はこの知見に基づいてなされたもので、以下
図面によりこの特性改善の要因となる磁化曲線の形状に
ついて説明する。
In other words, the present inventors have found that it is extremely effective that the magnetization curve when measured by applying a magnetic field perpendicularly to the magnetic film surface has a certain specific shape as described above. The present invention has been made based on this knowledge, and the shape of the magnetization curve, which is a factor in improving the characteristics, will be explained below with reference to the drawings.

第1図及び第2図は本発明の磁性膜の典型的な垂直方向
の磁化曲線を示したものである。そして、第3図は従来
の垂直磁化膜の例を示したものである。
1 and 2 show typical perpendicular magnetization curves of the magnetic film of the present invention. FIG. 3 shows an example of a conventional perpendicular magnetization film.

まず、第3図に示した従来の垂直磁化膜においては、磁
場を減少させながら測定した磁化曲線の減磁曲線6のシ
ョルダ部4の形状が丸味をおびており、この部分におけ
る磁化反転が極めて緩慢に起こっている。
First, in the conventional perpendicularly magnetized film shown in FIG. 3, the shape of the shoulder part 4 of the demagnetization curve 6 of the magnetization curve measured while decreasing the magnetic field is rounded, and the magnetization reversal in this part is extremely slow. is happening.

これに対し、第1図に示した本発明による垂直磁化膜の
磁化曲線では、印加磁場が零付近で引いた第1の接線1
と減磁曲線6のショルダ部2とが交差し、ショルダ部2
は接線1の左側の低磁場領域に存在している。また、シ
ョルダ部が接線1の左側に存在しない場合でも、第2図
に示したようにショルダ部3における減磁曲線が、零磁
場付近での第1の接線1と、高磁場の飽和磁化領域で弓
いた第2の接線5との交点の極めて近くに存在している
On the other hand, in the magnetization curve of the perpendicularly magnetized film according to the present invention shown in FIG.
and the shoulder part 2 of the demagnetization curve 6 intersect, and the shoulder part 2
exists in the low magnetic field region to the left of tangent 1. Furthermore, even if the shoulder section does not exist on the left side of the tangent line 1, the demagnetization curve at the shoulder section 3 is different from the first tangent line 1 near zero magnetic field to the saturation magnetization region at high magnetic field as shown in FIG. It exists very close to the intersection with the second tangent line 5 curved at .

本発明者らは、このようにショルダ部3もしくは4が第
1の接線1の右側に存在する場合、これら第1の接線1
と第2の接線5と減磁曲線のショルダ部3もしくは4と
で囲まれた領域の面積をSとしたとき、このSを飽和磁
化Msで除した値R=S/Msが小さいほど記録再生特
性が優れており、実用上上述のとおりR=10kA/m
以下(零を含む)が好ましいことを見出したものである
The present inventors believe that when the shoulder portion 3 or 4 is present on the right side of the first tangent line 1, these first tangent lines 1
When the area of the region surrounded by the second tangent 5 and the shoulder 3 or 4 of the demagnetization curve is S, the smaller the value R = S/Ms, which is obtained by dividing this S by the saturation magnetization Ms, the better the recording and reproducing. It has excellent characteristics, and in practical terms R = 10kA/m as mentioned above.
We have found that the following (including zero) are preferable.

それ故、前述の第3図のR値は、第2図のそれと比較し
て著しく大きいことがわかる。この面積Sは、第°1、
第2の接線1もしくは5とショルダ部3もしくは4の減
磁曲線から容易に求めることができる。上記第1図と第
2図に示した垂直磁化膜に共通していることは、磁化曲
線(減磁曲線)のショルダ部2.3の形状の角形性が極
めて鋭く、この部分での磁化反転が極めて急峻である点
にある。
Therefore, it can be seen that the above-mentioned R value in FIG. 3 is significantly larger than that in FIG. 2. This area S is the degree 1st,
It can be easily determined from the demagnetization curve of the second tangent line 1 or 5 and the shoulder portion 3 or 4. What is common to the perpendicularly magnetized films shown in Figures 1 and 2 above is that the shoulder portion 2.3 of the magnetization curve (demagnetization curve) has an extremely sharp square shape, and magnetization reversal occurs in this portion. is extremely steep.

また、上記第2の目的は、非磁性基体−にに、酸素含有
雰囲気中で少な(どもコバル1へを含む金属粒子を蒸着
することにより、部分酸化コバルト金属粒子を含む飽和
磁化Msが400〜1200kA / m、より好まし
くは600〜1100kA/mの磁性膜を形成する工程
と、前記磁性膜を非還元性雰囲気中、150〜220℃
にて熱処理する工程とを有して成る垂直磁気記録媒体の
製造方法により、達成される。
The second objective is to deposit metal particles containing a small amount of Cobalt 1 on a non-magnetic substrate in an oxygen-containing atmosphere, so that the saturation magnetization Ms containing partially oxidized cobalt metal particles is 400 to 400. A step of forming a magnetic film of 1200 kA/m, more preferably 600 to 1100 kA/m, and heating the magnetic film at 150 to 220°C in a non-reducing atmosphere.
This is achieved by a method of manufacturing a perpendicular magnetic recording medium, which comprises a step of heat-treating at .

上記飽和磁化Msの調整は、蒸着時の雰囲気中における
酸素分圧を!18Iaすることにより、周知の方法で任
意にコントロールすることができる。なお、蒸着時の非
磁性基体は、常温に保持してもよいが、好ましくは30
〜80℃である。80℃を屈え例えば100℃のような
高温では特性向上が望めず好ましくない。
Adjustment of the above saturation magnetization Ms depends on the oxygen partial pressure in the atmosphere during vapor deposition! 18Ia, it can be arbitrarily controlled by a well-known method. Note that the nonmagnetic substrate during vapor deposition may be kept at room temperature, but preferably at 30°C.
~80°C. If the temperature is higher than 80°C, for example, 100°C, no improvement in characteristics can be expected, which is not preferable.

さらにまた、上記第3の目的は、」−記垂直磁気記録媒
体を磁気記録再生媒体とした磁気記録再生装置に用いる
ことにより、達成される。こtにより、記録再生特性が
大幅に改善され、極めて高い記録密度を有する磁気記録
再生装置を実現することができる。また、上記磁気記録
再生装置において、記録再生媒体への信号の記録を磁気
ヘッドで、信号の読出しを例えばファラディもしくはカ
ー効果などの光学的手段を用いた光学ヘッドで構成する
ことにより、高密度で転送速度の速い光磁気記録再生装
置を実現することができる。
Furthermore, the third object is achieved by using the perpendicular magnetic recording medium as described in "-" in a magnetic recording and reproducing apparatus using the magnetic recording and reproducing medium. As a result, the recording and reproducing characteristics are greatly improved, and a magnetic recording and reproducing device having an extremely high recording density can be realized. In addition, in the above magnetic recording/reproducing device, recording of signals on the recording/reproducing medium is performed by a magnetic head, and signal reading is performed by an optical head using optical means such as the Faraday or Kerr effect, thereby achieving high density. A magneto-optical recording/reproducing device with a high transfer rate can be realized.

〔作用〕[Effect]

本発明の垂直磁化膜に用いることにより記録再生特性が
向上する詳細な理由は明らかでないが、以下のように推
察できる8本発明による垂直磁化膜の特徴は、第1図、
第2図に示したように、磁化曲線のショルダ部の角形性
が鋭角的になっている点にある。このことは前述したよ
うに、磁化反転が極めて急峻に起こっていることを示し
ている。
Although the detailed reason why the recording and reproducing characteristics are improved by using the perpendicularly magnetized film of the present invention is not clear, it can be inferred as follows.8 The characteristics of the perpendicularly magnetized film according to the present invention are as shown in
As shown in FIG. 2, the squareness of the shoulder portion of the magnetization curve is acute. As mentioned above, this indicates that the magnetization reversal occurs extremely sharply.

このような特性を持つ磁気記録媒体では、磁気記録を行
−)だ時の空間分解能が向上し、その結果、記録密度特
性の向上と再生出力の大幅な向上がもたらされたものと
考えらおる。
It is believed that magnetic recording media with such characteristics have improved spatial resolution during magnetic recording, resulting in improved recording density characteristics and a significant improvement in reproduction output. is.

次に、光磁気記録装置に本発明による磁性薄膜を記録媒
体として用いた時の、各構成要素の作用を説明する。第
4図に本発明による光磁気記録装置の一例を示した。こ
の例は、垂直磁化膜が、その飽和磁化が約800k A
 / m以下の時に光の透過性がよくなる性質を利用し
たものである。まず、光透過性のよい基板8の上に、磁
性膜を形成し記録媒体とする。この記録媒体は一定速度
(V)で送られ、磁気ヘッド10を通過する時に磁気記
録と同じ原理に基づき信号の記録が行われる。この時、
信号は磁性膜の大きな垂直磁気異方性により、磁化方向
は矢印で示したように上向きあるいは下向きとして記録
される。次に信号情報の読出しは。
Next, the effects of each component when the magnetic thin film according to the present invention is used as a recording medium in a magneto-optical recording device will be explained. FIG. 4 shows an example of a magneto-optical recording device according to the present invention. In this example, the perpendicular magnetization film has a saturation magnetization of about 800 kA.
This takes advantage of the property that light transmittance improves when the thickness is less than / m. First, a magnetic film is formed on a substrate 8 having good optical transparency to form a recording medium. This recording medium is fed at a constant speed (V), and as it passes through the magnetic head 10, signals are recorded based on the same principle as magnetic recording. At this time,
Due to the large perpendicular magnetic anisotropy of the magnetic film, the signal is recorded with the magnetization direction pointing upward or downward as shown by the arrow. Next, read the signal information.

ファラディ効果を利用してなされる6すなわち偏向子1
1を通って直線偏向された光12は磁性膜の一点に収束
され、磁性膜に苅して垂直入射し、磁性膜を透過して基
板の裏面に到達する。この時、磁化方向の上向き、下向
きに対応して光の偏向面が回転する。この偏向面の回転
を検光子13によって読取り、それを電気信号に変換す
ることによって信号の再生が行わ扛る。
6, that is, the deflector 1, which is made using the Faraday effect.
The light 12 linearly polarized through the magnetic film 1 is focused on one point on the magnetic film, enters the magnetic film perpendicularly, passes through the magnetic film, and reaches the back surface of the substrate. At this time, the light deflection plane rotates in accordance with the upward and downward directions of magnetization. The rotation of this deflection surface is read by the analyzer 13 and converted into an electrical signal to reproduce the signal.

上記した光磁気記録再生のシステムは、本発明の垂直磁
化膜が光を透過し易い性質を用いたものであり、また、
信号の記録に磁気ヘッドを用いたのは、磁性膜のキュリ
ー点が300℃以上であり、通常の光磁気記録で用いら
れているレーザ加熱による熱記録方式が採用できないた
めである。
The above-mentioned magneto-optical recording and reproducing system utilizes the property of the perpendicular magnetization film of the present invention to easily transmit light, and
A magnetic head was used to record the signal because the Curie point of the magnetic film is 300° C. or higher, and the thermal recording method using laser heating, which is used in normal magneto-optical recording, cannot be used.

また、第4図で示した方法の他に、光の反射を用いたカ
ー(Kcrr)効果により信号の再生を行う方法を用い
れば、光が透過しない磁性膜でも記録媒体として用いる
ことが可能となる。
Furthermore, in addition to the method shown in Figure 4, if a method of reproducing signals by the Kerr (Kcrr) effect using light reflection is used, even a magnetic film that does not transmit light can be used as a recording medium. Become.

以上、本発明による垂直磁化膜の効果とその機能を説明
したが、この磁性膜は成膜時における基板温度が80℃
以下、好ましくは30〜60℃の条件で、飽和磁化Ms
の範囲を400〜1200kA/ m 、より好ましく
は600〜1100k A / mに設定することによ
って作製することができる。さらに、これらの磁性膜を
例えば空気中、あるいは窒素ガスのごとき不活性ガス中
といった非還元性雰囲気中、150〜220℃の範囲で
熱処理することによって、磁化曲線のショルダ部がより
鋭角的になり、記録再生特性を向上させることが可能と
なる。特に飽和磁化Msが400〜600kA/mの磁
性膜については、この熱処理が必須であり極めて有効で
ある。もちろんMsが600k A / m以上の磁性
膜についても、この熱処理は有効であるが、このように
Msの大きいものの場合には熱処理を省略することも可
能である。
The effects and functions of the perpendicularly magnetized film according to the present invention have been explained above, but this magnetic film has a substrate temperature of 80°C during film formation.
Hereinafter, preferably under the condition of 30 to 60°C, the saturation magnetization Ms
It can be produced by setting the range of 400 to 1200 kA/m, more preferably 600 to 1100 kA/m. Furthermore, by heat-treating these magnetic films in a non-reducing atmosphere such as air or an inert gas such as nitrogen gas at a temperature in the range of 150 to 220°C, the shoulder of the magnetization curve becomes more acute. , it becomes possible to improve recording and reproducing characteristics. In particular, for magnetic films with a saturation magnetization Ms of 400 to 600 kA/m, this heat treatment is essential and extremely effective. Of course, this heat treatment is also effective for magnetic films with Ms of 600 kA/m or more, but in the case of such a large Ms, the heat treatment can be omitted.

〔実施例〕〔Example〕

以下、本発明の詳細を実施例を用いて説明する。 Hereinafter, the details of the present invention will be explained using examples.

実施例1 第5図に示した真空蒸着装置を用いて、微量な酸素を導
入しながらCoの蒸着を行った。金属C。
Example 1 Using the vacuum deposition apparatus shown in FIG. 5, Co was deposited while introducing a small amount of oxygen. Metal C.

を電子ビーム加熱法(蒸着源14)により溶解し、蒸着
速度が約1nffi/sになるようにフィラメント電流
を調整した。また酸素の導入量はニードルバルブ15に
より調節して酸素分圧をaxio−3〜1O−2Paの
範囲で変化させ、種々の飽和磁化値をもつ試料を作製し
た。つまり、周知のように酸素分圧の大きさと飽和磁化
Msの大きさとは相反するものであるため、分圧を大き
くすればMsは小さくなり1分圧を小さくすればMsは
大きくなる。したがって飽和磁化のtA整は試料に見合
った酸素分圧に制御することにより行った。基板16に
は、厚さ20μmのポリイミドフィルムを用いた。また
、基板温度は30℃とした。このような条件で、飽和磁
化の異なる5種類(試料番号#1〜#5)の膜厚250
nmのCo/Co酸化物混合垂直磁化膜を作製した。こ
れらの試料の磁気特性を試料振動型磁力計(VSM)を
用いて測定した。その結果を第1表に示した。
was melted by an electron beam heating method (evaporation source 14), and the filament current was adjusted so that the deposition rate was about 1 nffi/s. Further, the amount of oxygen introduced was adjusted by the needle valve 15, and the oxygen partial pressure was varied in the range of axio-3 to 10-2 Pa, thereby producing samples having various saturation magnetization values. That is, as is well known, the magnitude of the oxygen partial pressure and the magnitude of the saturation magnetization Ms are contradictory, so if the partial pressure is increased, Ms will be decreased, and if the partial pressure is decreased by 1, Ms will be increased. Therefore, the saturation magnetization tA was adjusted by controlling the oxygen partial pressure to match the sample. For the substrate 16, a polyimide film with a thickness of 20 μm was used. Further, the substrate temperature was 30°C. Under these conditions, five types (sample numbers #1 to #5) with different saturation magnetizations were prepared with a film thickness of 250 mm.
A Co/Co oxide mixed perpendicularly magnetized film with a thickness of 1 nm was fabricated. The magnetic properties of these samples were measured using a vibrating sample magnetometer (VSM). The results are shown in Table 1.

なお、表中に示した上、夕はそれぞれ印加磁界が膜面に
垂直方向、膜面内方向であることを示し1パ6°   
     以下余白 なお、この表中には各試料の磁化曲線の形状をも示して
おり、Aは本発明の実施例となる第1図に示した形状、
Bも本発明の実施例となる第2図に示した形状、そして
Cは比較例となる従来の第3図に示した形状になってい
ることを表わしている。形状B、Cについては、ショル
ダ部における角形性の程度を表わすために、第3図に示
した斜線部分の面積Sを飽和磁化Msで除した値R=S
/Ms(単位はkA/m)をも併記した。この値Rが小
さいものほど角形性に優れていることを示している。
In addition, as shown in the table, the applied magnetic field is perpendicular to the film surface and in the direction within the film surface, respectively.
In the margin below, this table also shows the shape of the magnetization curve of each sample, where A is the shape shown in FIG. 1 which is an example of the present invention,
B also represents the shape shown in FIG. 2, which is an embodiment of the present invention, and C represents the conventional shape shown in FIG. 3, which is a comparative example. For shapes B and C, in order to express the degree of squareness in the shoulder part, the value R = S obtained by dividing the area S of the hatched part shown in Fig. 3 by the saturation magnetization Ms.
/Ms (unit: kA/m) is also written. The smaller this value R is, the more excellent the squareness is.

この表から、明らかなように試料#2及び#3は角形性
が優れており熱処理前においても磁化膜11A、Bを示
している。一方5試料#4は熱処理前はCであるが、熱
処理後はBであり、R値も15から2に向上している。
As is clear from this table, samples #2 and #3 have excellent squareness and exhibit magnetized films 11A and 11B even before heat treatment. On the other hand, Sample 5 #4 was graded C before heat treatment, but graded B after heat treatment, and its R value also improved from 15 to 2.

試料#1及び#5は熱処理を施してもCであり、十分な
特性が得られない。
Samples #1 and #5 remained C even after heat treatment, and sufficient characteristics could not be obtained.

なお、熱処理は、各試料を空気中、200℃において1
5分間行った。熱処理を行ったことによって。
The heat treatment was performed by heating each sample in air at 200°C.
It lasted 5 minutes. By performing heat treatment.

飽和磁化等のマクロな磁気特性には大きな変化がみられ
なかったが、上述のとおり#2〜#4の試料については
磁化曲線の形状に変化が見られ、ショルダ部の角形性が
鋭角的になった。
Although no major changes were observed in the macroscopic magnetic properties such as saturation magnetization, as mentioned above, there were changes in the shape of the magnetization curves for samples #2 to #4, and the squareness of the shoulder part became acute. became.

実施例2 上記実施例1で作製した試料を円板状に切り抜き、記録
再生特性の評価を行った。用いた磁気ヘッドは非晶質状
のCo−Nb−Zr薄膜をMn−Znフェライトのブロ
ックではさみ込んだMIG(Metal in Gap
)タイプのものであり、そのギャップ長は0.2μmで
ある。記録再生特性は、相対速度2m/sとし、媒体表
面に潤滑剤を塗布し、磁気ヘッドを接触させながら測定
した。
Example 2 The sample prepared in Example 1 above was cut out into a disk shape, and the recording and reproducing characteristics were evaluated. The magnetic head used is an MIG (Metal in Gap) in which an amorphous Co-Nb-Zr thin film is sandwiched between Mn-Zn ferrite blocks.
) type, and its gap length is 0.2 μm. The recording and reproducing characteristics were measured at a relative speed of 2 m/s, with a lubricant applied to the medium surface, and with a magnetic head in contact with the medium.

代表的な記録再生特性として試料#3と#5の再生出力
の記録密度依存性を第6図に示した。図から明らかなご
とく、磁化曲線のショルダ部が鋭角的な磁化変化をする
試料#3の方が、高密度領域における再生出力が高く、
出力半減記録密度(Dsn)も150kFcIと優れて
いる。また#3の試料では孤立再生波形が双峰状になっ
て、典型的な垂直磁気記録がされているのに対して、#
5の試料では、マクロな磁気特性においては垂直磁化膜
になっているにもかかわらず、孤立再生波形は単峰状で
垂直磁気記録が行われていない。第7図に試料#1〜#
5とそれらを熱処理した時の、飽和磁化と線記録密度1
0kPCIにおl−する再生出力(Etoh)の関係、
第8図に飽和磁化と出力半減記録密度(Dso)の関係
を示した。
FIG. 6 shows the recording density dependence of the reproduction output of samples #3 and #5 as typical recording and reproduction characteristics. As is clear from the figure, sample #3, in which the shoulder part of the magnetization curve exhibits a sharp magnetization change, has a higher reproduction output in the high-density region;
The output half-reduction recording density (Dsn) is also excellent at 150 kFcI. In addition, in sample #3, the isolated reproduction waveform was bimodal, indicating typical perpendicular magnetic recording, whereas #3
In sample No. 5, although it has a perpendicular magnetization film in terms of macroscopic magnetic properties, the isolated reproduction waveform is unimodal and no perpendicular magnetic recording is performed. Figure 7 shows samples #1 to #
5 and the saturation magnetization and linear recording density 1 when they are heat treated.
Relationship of playback output (Etoh) to 0kPCI,
FIG. 8 shows the relationship between saturation magnetization and output half-reduction recording density (Dso).

まず、熱処理前の試料(実線で示す)においては、磁化
曲線の形状が鋭角的な#2と#3の試料において、高い
再生出力と記録密度特性の得られる。:とがわかる。さ
らにこれらの試料を熱処理すると、#1と#5を除いて
他の試料で記録再生特性が向上する。特に#4の試料で
の特性向上が茗しい。これは熱処理によって磁化曲線の
形状がタイプCからタイプBへと変化し、ショルダ部が
鋭角的な変化を示すようになったためである6次に本発
明による垂直磁化膜を光磁気記録再生装置に応用した例
について述べる。
First, among the samples before heat treatment (indicated by the solid line), high reproduction output and recording density characteristics were obtained in samples #2 and #3 whose magnetization curves had acute shapes. : I can understand. Furthermore, when these samples are heat-treated, the recording and reproducing characteristics of the samples except #1 and #5 are improved. The improvement in characteristics of sample #4 is particularly impressive. This is because the shape of the magnetization curve changes from type C to type B due to heat treatment, and the shoulder part now shows an acute angle change.6 Next, the perpendicular magnetization film according to the present invention is applied to a magneto-optical recording/reproducing device. An example of application will be described.

実施例3 第4図に示したようにテープ送り機構(図面省略)と、
信号記録用の磁気ヘッド10と光再生システム11.1
2.13を備えた装置を作製(1,た。また記録媒体は
、酸素分圧が9 X 10−’ Pa、膜厚が50nm
であること以外は、実施例1と同じ条件で作製した。磁
性膜の熱処理も空気中、200°Cで15分間施した0
作製した試料の磁気特性はMs=620kA/m、抗磁
力Hc土72kA / m 、 He// 25kA 
/ m、角形比(Mr/ Ms)よ=0.2、(Mr/
 Ms)z7=0.1、R=2kA/mで磁化曲線のシ
ョルダ部の形状は第2図に示したBタイプのものであっ
た。また使用した磁気ヘッドのタイプは前述したものと
同じであるがギャップ長は0.5μm、  I−ラック
幅は5μmとした。光磁気記録においてはI−ラック幅
は1、μm程度あれば十分であり、このトラック幅は狭
い方が望ましいが、本実施例ではヘッド加工の都合上5
μm程度としたものである。光再生系に用いた光源(図
面省略)は、波長830nmの半導体レーザであり1μ
mのスボッ1−径に集光されている。記録媒体試料をテ
ープ状に切り取り、作製した光磁気記録再生装置でその
記録再生特性を評価したところ、0.7μmのビット長
において、信号対雑音比(S/N比)約45dB(ノイ
ズ帯域30kHz)の良好な特性が得られた。
Embodiment 3 As shown in FIG. 4, a tape feeding mechanism (not shown),
Magnetic head 10 for signal recording and optical reproduction system 11.1
2. A device equipped with 13 was fabricated (1.
It was produced under the same conditions as Example 1 except that. The magnetic film was also heat-treated at 200°C for 15 minutes in air.
The magnetic properties of the prepared sample are Ms=620kA/m, coercive force Hc soil 72kA/m, He//25kA
/ m, squareness ratio (Mr/ Ms) = 0.2, (Mr/
Ms) z7=0.1, R=2 kA/m, and the shape of the shoulder part of the magnetization curve was of type B shown in FIG. The type of magnetic head used was the same as described above, but the gap length was 0.5 μm and the I-rack width was 5 μm. In magneto-optical recording, an I-rack width of about 1 μm is sufficient, and a narrower track width is preferable, but in this example, due to head processing considerations, it is sufficient to have an I-rack width of about 1 μm.
The diameter is about μm. The light source used for the optical regeneration system (not shown in the drawing) is a semiconductor laser with a wavelength of 830 nm and a diameter of 1μ.
The light is focused on a diameter of a sub-bottle of m. When a recording medium sample was cut into a tape shape and its recording and reproducing characteristics were evaluated using a fabricated magneto-optical recording and reproducing device, the signal-to-noise ratio (S/N ratio) was approximately 45 dB (noise band: 30 kHz) at a bit length of 0.7 μm. ) good properties were obtained.

本実施例では記録媒体中の透過光を利用するファラディ
効果を用いて信号の読出しを行ったが、カー効果による
読出し方式を用いれば、反射光を利用するので磁性膜の
膜厚を0.1μm以上(ζできるため、比較的長いピッ
1−長からも反磁界が減少することが期待でき、書込む
磁化量が増える点で有利となる。また、カー効果読出し
方式を用いれば次のような利点もある。本実施例では信
号の記録をリングヘッドを用いて行ったが、磁性層と基
板の間にパーマロイなどの高透磁率層を設けた、いわゆ
る2暦膜媒体を用いることが可能となり、その場合には
信号の記録を単磁極型ヘッドを用いて行えばより理想的
な垂直磁気記録が可能となり、高いS/N特性を得るこ
とが可能となる。
In this example, signals were read out using the Faraday effect, which uses transmitted light in the recording medium. However, if the readout method based on the Kerr effect is used, reflected light is used, so the thickness of the magnetic film can be reduced to 0.1 μm. (ζ), it is expected that the demagnetizing field will be reduced even from a relatively long pin length, which is advantageous in that the amount of magnetization to be written will increase.In addition, if the Kerr effect readout method is used, the following There are also advantages: in this example, signals were recorded using a ring head, but it is now possible to use a so-called two-layer film medium in which a high permeability layer such as permalloy is provided between the magnetic layer and the substrate. In that case, if signals are recorded using a single-pole head, more ideal perpendicular magnetic recording becomes possible and high S/N characteristics can be obtained.

さらに、2層膜媒体を用いた場合には、高透磁率層を光
の反射層として用いることが可能となり、磁性層の厚さ
を薄くした場合にカー回転角のエンハンスメン1−効果
を期待することができる。
Furthermore, when using a two-layer film medium, it becomes possible to use the high magnetic permeability layer as a light reflecting layer, and when the thickness of the magnetic layer is made thinner, an enhancement effect on the Kerr rotation angle is expected. can do.

なお、本発明による磁性膜は十分に強い摺動強度をもつ
が、磁性層の表面にカーボン、ホウ素、炭化物、窒化物
、ホウ化物などの保護膜を形成すればより強い記録媒体
を得ることが可能である。
Although the magnetic film according to the present invention has sufficiently strong sliding strength, a stronger recording medium can be obtained by forming a protective film of carbon, boron, carbide, nitride, boride, etc. on the surface of the magnetic layer. It is possible.

特に光磁気記録においては、記録ビット長が比較的長い
ため、保護膜が光を透過するのであれば、50nm以上
の厚さであっても、磁気記録は可能である。
Particularly in magneto-optical recording, since the recording bit length is relatively long, magnetic recording is possible even with a thickness of 50 nm or more as long as the protective film transmits light.

実施例4 第9図は、磁化曲線のショルダ部の形状を示すR値=S
/Msと低周波規格化再生出力(E工。k)の関係を示
す。試料の磁化膜は実施例1と同様にして作成したもの
であり、曲線aは飽和磁化Msが800−1100kA
 / mの範囲のもの、bはMs600〜800kA 
/ m 、cはMs400〜600kA / mの試料
について測定した結果である。
Example 4 FIG. 9 shows the shape of the shoulder part of the magnetization curve with R value = S
The relationship between /Ms and low frequency normalized reproduction output (E-k.k) is shown. The magnetized film of the sample was prepared in the same manner as in Example 1, and curve a shows saturation magnetization Ms of 800-1100 kA.
/ m range, b is Ms600-800kA
/m and c are the results measured for samples with Ms400 to 600kA/m.

第10図は、R値と出力半減線記録密度り、。の関係を
示したものであり、曲線a、b、cはそれぞれ第9図と
同一の試料についての測定結果である。
Figure 10 shows the R value and the output half-loss line recording density. Curves a, b, and c are the measurement results for the same sample as in FIG. 9, respectively.

これら、第9図、第10図から、好ましい記録再生特性
であるE 11) kが0.07 μVpp/ μm、
 m / S、turn以上、D、。が140kFCI
以上の両特性を得るためには、Rが10kA/m以下に
することが必要なことがわかる。
From these FIGS. 9 and 10, the preferable recording/reproducing characteristics E11) k is 0.07 μVpp/μm,
m/S, turn or more, D,. is 140kFCI
It can be seen that in order to obtain both of the above characteristics, it is necessary to set R to 10 kA/m or less.

第11図は、蒸着後の磁化膜に施す熱処理と記録再生特
性の関係を示したものである。試料は実施例1と同様に
して作成したが、成膜時の飽和磁化Msは、730k 
A / mのものである。図から明らかなように熱処理
温度が150℃以上になるとE 1ffk、D、。とも
に向上する。熱処理温度は200℃近傍で最も大きくな
るが、余り温度が高くなるとMsが変動し易くなる、基
板との間に歪が生じる、基板が樹脂からなる場合にその
耐熱性などの理由から実用上、その上限は220℃程度
となる。
FIG. 11 shows the relationship between the heat treatment applied to the magnetized film after vapor deposition and the recording/reproducing characteristics. The sample was prepared in the same manner as in Example 1, but the saturation magnetization Ms during film formation was 730k.
It is of A/m. As is clear from the figure, when the heat treatment temperature is 150°C or higher, E 1ffk, D,. Improve together. The heat treatment temperature is highest at around 200°C, but in practice, if the temperature is too high, Ms will tend to fluctuate, distortion will occur between the substrate and the substrate, and if the substrate is made of resin, its heat resistance will be affected. The upper limit is about 220°C.

以上の実施例においてはCOとCoの酸化物混合垂直磁
化膜を例にあげたが、その他COに例えばFeやNiの
ごとき磁性金属を添加した磁性膜においても上記実施例
と同様の効果が得られていることを確認している。また
添加元素として非磁性のTi、 Cr、 Mn、 Cu
、 Zr、 V、A n 、 Mo、W、Re、Ru、
Pt、Nb、Bi等を添加した場合にも同様である。特
にBiについては、光磁気効果を向上させる働きのある
ことも確認されている。
In the above embodiments, a mixed perpendicularly magnetized film of CO and Co oxides was used as an example, but the same effects as in the above embodiments can also be obtained with other magnetic films in which magnetic metals such as Fe and Ni are added to CO. It is confirmed that the Additionally, non-magnetic Ti, Cr, Mn, and Cu are added as additive elements.
, Zr, V, An, Mo, W, Re, Ru,
The same applies when Pt, Nb, Bi, etc. are added. In particular, Bi has been confirmed to have a function of improving the magneto-optical effect.

〔発明の効果〕 本発明によれば、以上説明したように少なくともコバル
ト金属とその酸化物とを含む混合垂直磁化膜の記録再生
特性を大幅に向上させることが可能となる。したがって
それを用いた磁気記録再生装置の再生出力と記録密度と
を向上させることができる。
[Effects of the Invention] According to the present invention, as described above, it is possible to significantly improve the recording and reproducing characteristics of a mixed perpendicular magnetization film containing at least cobalt metal and its oxide. Therefore, it is possible to improve the reproduction output and recording density of a magnetic recording and reproduction apparatus using the same.

また、本発明による磁性膜が50nm程度の厚さで光を
よく透過する性質と、光磁気効果をもつ性質を用いるこ
とにより、磁気ヘッド書込み、光再生のシステムをもつ
光磁気記録再生装置が可能となる。
Furthermore, by utilizing the properties of the magnetic film of the present invention that transmit light well at a thickness of about 50 nm and have a magneto-optical effect, it is possible to create a magneto-optical recording and reproducing device that has a magnetic head writing and optical reproducing system. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による垂直磁化膜の膜面垂直方向におけ
る磁化曲線、第2図は本発明による垂直磁化膜の膜面垂
直方向における他の磁化曲線の例。 第3図は比較例となる従来の垂直磁化膜の磁化曲線、第
4図は本発明による磁性膜を用いた光磁気記録再生装置
の概略図、第5図は磁性膜を作製するのに用いた真空蒸
着装置の概略図、第6図は本発明による垂直磁化膜の再
生出力の記録密度依存性とその比較例、第7図は本発明
による垂直磁化膜の飽和磁化と低周波規格化再生出力の
関係を示した特性曲線図、第8図は同じく飽和磁化と出
力半減線記録密度の関係を示した特性曲線図、第9図は
R値と再生出力との関係を示した特性曲線図。 第10図は同じくR値と出力半減線記録密度、の関係を
示した特性曲線図、そして、第11図は磁化膜の熱処理
温度と記録再生出力との関係を示した特性曲線図である
。 1・・・減磁曲線の磁場零付近における第1の接線2.
3.4・・・減磁曲線の″ショルダ部″5・・・減磁曲
線の高磁場における第2の接線6・・・試料の膜面垂直
方向に磁場を印加した時の磁化曲線において、磁場を減
少させながら測定した減磁曲線 代理人弁理士  中 村 純之助 第 E 図 第2 図 第3 図 ahmイt:、   Ms (KA/ml第7図 七ヶ田進化 Ms(kA/m+ 第8 図 第5 図 Sこ夕)塞度 (kFCI) 第6 図 (kA/ml 第9 図 (kA/ml
FIG. 1 shows an example of the magnetization curve in the direction perpendicular to the film surface of the perpendicularly magnetized film according to the present invention, and FIG. 2 shows another example of the magnetization curve in the direction perpendicular to the film surface of the perpendicularly magnetized film according to the invention. Fig. 3 shows the magnetization curve of a conventional perpendicularly magnetized film as a comparative example, Fig. 4 is a schematic diagram of a magneto-optical recording/reproducing device using the magnetic film according to the present invention, and Fig. 5 shows the magnetization curve used for producing the magnetic film. Figure 6 shows the recording density dependence of the reproduction output of the perpendicularly magnetized film according to the present invention and its comparative example, and Figure 7 shows the saturation magnetization and low frequency normalized reproduction of the perpendicularly magnetized film according to the present invention. A characteristic curve diagram showing the relationship between output, Figure 8 is a characteristic curve diagram showing the relationship between saturation magnetization and output half-loss line recording density, and Figure 9 is a characteristic curve diagram showing the relationship between R value and reproduction output. . FIG. 10 is a characteristic curve diagram showing the relationship between the R value and the output half line recording density, and FIG. 11 is a characteristic curve diagram showing the relationship between the heat treatment temperature of the magnetized film and the recording/reproducing output. 1... The first tangent of the demagnetization curve near zero magnetic field2.
3.4..."Shoulder part" of the demagnetization curve 5...Second tangent in the high magnetic field of the demagnetization curve 6...In the magnetization curve when a magnetic field is applied in the direction perpendicular to the film surface of the sample, Demagnetization curve measured while decreasing the magnetic field Junnosuke Nakamura, Attorney, Patent Attorney Figure 2 Figure 3 Figure ahm it:, Ms (KA/ml Figure 7 Shichigata evolution Ms (kA/m+ Fig. 5 (kFCI) Fig. 6 (kA/ml) Fig. 9 (kA/ml

Claims (1)

【特許請求の範囲】 1、所定の形状を有する非磁性基体上に、直接もしくは
高透磁率層を介して少なくともコバルト及びその酸化物
を含む混合体から成る垂直磁気記録用磁性膜を形成した
磁気記録媒体であって、この磁性膜の膜面に対して垂直
方向に磁場を印加して磁化曲線を測定した時の、第1象
限における減磁曲線に対して印加磁場零付近で第1の接
線を引いた時、この減磁曲線のシヨルダ部が前記第1の
接線と交わるか、もしくは交わらなくとも高磁場の飽和
磁化領域で引いた第2の接線と前記第1の接線と減磁曲
線のシヨルダ部で囲まれた面積Sを飽和磁化Msで除し
た値R=S/Msが10kA/m以下である特性を有す
る垂直磁気記録媒体。 2、上記磁性膜の飽和磁化Msを600〜1200kA
/mとした請求項1記載の垂直磁気記録媒体。 3、非磁性基体上に、酸素含有雰囲気中で少なくともコ
バルトを含む金属粒子を蒸着することにより、部分酸化
コバルト金属粒子を含む飽和磁化Msが400〜120
0kA/mの磁性膜を形成する工程と、前記磁性膜を非
還元性雰囲気中、150〜220℃にて熱処理する工程
とを有して成る垂直磁気記録媒体の製造方法。 4、請求項1もしくは2記載の垂直磁気記録媒体を磁気
記録再生媒体とした磁気記録再生装置。 5、請求項4記載の磁気記録再生装置において、信号の
記録は磁気ヘッドで、信号の読出しは光学ヘッドで行う
構成とした光磁気記録再生装置。
[Claims] 1. A magnetic film in which a magnetic film for perpendicular magnetic recording made of a mixture containing at least cobalt and its oxide is formed on a nonmagnetic substrate having a predetermined shape, either directly or through a high magnetic permeability layer. In a recording medium, when a magnetic field is applied in a direction perpendicular to the film surface of this magnetic film and a magnetization curve is measured, the first tangent to the demagnetization curve in the first quadrant near zero applied magnetic field. When the shoulder part of this demagnetization curve intersects with the first tangent, or even if it does not intersect, the second tangent drawn in the saturation magnetization region of high magnetic field and the first tangent line of the demagnetization curve intersect. A perpendicular magnetic recording medium having a characteristic that the value R=S/Ms obtained by dividing the area S surrounded by the shoulder portion by the saturation magnetization Ms is 10 kA/m or less. 2. Set the saturation magnetization Ms of the magnetic film to 600 to 1200 kA.
2. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is set to /m. 3. By depositing metal particles containing at least cobalt on a nonmagnetic substrate in an oxygen-containing atmosphere, the saturation magnetization Ms containing partially oxidized cobalt metal particles is 400 to 120.
A method for manufacturing a perpendicular magnetic recording medium, comprising the steps of forming a magnetic film of 0 kA/m, and heat-treating the magnetic film at 150 to 220° C. in a non-reducing atmosphere. 4. A magnetic recording and reproducing apparatus using the perpendicular magnetic recording medium according to claim 1 or 2 as a magnetic recording and reproducing medium. 5. The magneto-optical recording and reproducing apparatus according to claim 4, wherein the recording of signals is performed by a magnetic head, and the reading of signals is performed by an optical head.
JP63326376A 1988-03-11 1988-12-26 Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same Expired - Lifetime JP2507574B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63326376A JP2507574B2 (en) 1988-12-26 1988-12-26 Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same
US07/321,081 US5244751A (en) 1988-03-11 1989-03-09 Perpendicular magnetic recording medium, its fabrication method and read-write machine using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63326376A JP2507574B2 (en) 1988-12-26 1988-12-26 Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same

Publications (2)

Publication Number Publication Date
JPH02173926A true JPH02173926A (en) 1990-07-05
JP2507574B2 JP2507574B2 (en) 1996-06-12

Family

ID=18187113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63326376A Expired - Lifetime JP2507574B2 (en) 1988-03-11 1988-12-26 Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same

Country Status (1)

Country Link
JP (1) JP2507574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG95701A1 (en) * 2001-09-27 2003-04-23 Toshiba Kk Perpendicular magnetic recording/reading apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774826A (en) * 1980-10-24 1982-05-11 Sekisui Chem Co Ltd Magnetic recording medium
JPS63291214A (en) * 1987-05-22 1988-11-29 Sony Corp Perpendicular magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774826A (en) * 1980-10-24 1982-05-11 Sekisui Chem Co Ltd Magnetic recording medium
JPS63291214A (en) * 1987-05-22 1988-11-29 Sony Corp Perpendicular magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG95701A1 (en) * 2001-09-27 2003-04-23 Toshiba Kk Perpendicular magnetic recording/reading apparatus

Also Published As

Publication number Publication date
JP2507574B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US6713197B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
KR100377453B1 (en) Magnetic media with ferromagnetic overlay materials for improved thermal stability
JP3385004B2 (en) Magnetic recording media
JP3434476B2 (en) High density information recording medium and method of manufacturing the medium
JPH1092637A (en) Magnetic recording medium and device
US6128166A (en) Magnetic head for increasing track density of a magnetic disk
Ouchi Recent advancements in perpendicular magnetic recording
US6410133B1 (en) Magnetic recording disk, method of the magnetic recording disk and magnetic recording apparatus
JPH04102223A (en) Magnetic recording medium and production thereof and magnetic recorder
WO2003049085A1 (en) Magnetic recording medium, its manufacturing method, and magnetic recorder
US5244751A (en) Perpendicular magnetic recording medium, its fabrication method and read-write machine using it
JPS5963026A (en) Vertical magnetic recording medium
JP2507574B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and recording / reproducing apparatus using the same
US5496620A (en) Magnetic recording medium
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JP2001256640A (en) Magnetic recording medium and magnetic recording device
JP2579184B2 (en) Magnetic recording media
JP2898996B2 (en) Magnetic recording medium, method of manufacturing the same, and recording / reproducing apparatus using the same
JP2003085738A (en) Magnetic recording medium and magnetic recording device
JPH09298114A (en) Vertical magnetic recording medium and magnetic recording device using it
US5981055A (en) Tape-type magnetic recording medium and signal reproducing method using the same
JP2521532B2 (en) Perpendicular magnetic recording medium, manufacturing method of the medium, and recording / reproducing method
JPH0380445A (en) Magneto-optical recording medium
JPH11175944A (en) Magnetic recording medium and magnetic recording device
JPH0483313A (en) Soft magnetic thin film and magnetic head