JPH0217203Y2 - - Google Patents

Info

Publication number
JPH0217203Y2
JPH0217203Y2 JP12307784U JP12307784U JPH0217203Y2 JP H0217203 Y2 JPH0217203 Y2 JP H0217203Y2 JP 12307784 U JP12307784 U JP 12307784U JP 12307784 U JP12307784 U JP 12307784U JP H0217203 Y2 JPH0217203 Y2 JP H0217203Y2
Authority
JP
Japan
Prior art keywords
movable cylinder
cylinder
valve
piston
oil chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12307784U
Other languages
Japanese (ja)
Other versions
JPS6138304U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12307784U priority Critical patent/JPS6138304U/en
Publication of JPS6138304U publication Critical patent/JPS6138304U/en
Application granted granted Critical
Publication of JPH0217203Y2 publication Critical patent/JPH0217203Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は定速で作動する多段形複動油圧シリン
ダ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-stage double-acting hydraulic cylinder device that operates at a constant speed.

複数の可動シリンダがテレスコープ式に往復動
する多段形複動油圧シリンダは、長いストローク
を必要としながら取付スペースに制約がある場合
に頻繁に用いられる。しかしこの種シリンダにお
いては、往動時または復動時の各作動中に複数の
可動シリンダが順次作動するため速度が一定せ
ず、したがつて作動する可動シリンダの切替わり
時にシリンダ及び負荷に衝撃が発生するため用途
に限界があつた。
Multi-stage double-acting hydraulic cylinders in which a plurality of movable cylinders reciprocate in a telescopic manner are frequently used when a long stroke is required and installation space is limited. However, in this type of cylinder, the speed is not constant because multiple movable cylinders operate sequentially during each forward or backward motion, and therefore, when the movable cylinder is switched, an impact is applied to the cylinder and the load. There are limits to its usage due to the occurrence of

本出願人は、上述の問題を解決するために、先
に特開昭59−80513号に記載の装置を提案した。
この装置は簡単な構成にもかかわらずほぼ一定の
速度で作動するという優れたものである。しか
し、この装置においては、多段形複動式油圧シリ
ンダ特有の構造から、各可動シリンダにおける往
動側油室の有効断面積が通常復動側油室のそれの
1.5〜4倍程度となる。したがつて各可動シリン
ダの往復動に同じ油圧力を使用した場合、往動時
には往動側油室に大流量が流れるが、復動時に
は、復動側油室に流れる流量が往動側油室よりも
上記の逆倍率で1/1.5〜1/4程度少なくなつ
て復動方向への出力が小さくなるうえ、大流量が
流れる往動側油室に背圧が発生するためその復動
方向の出力は一層減少し、しかしてこのような復
動時における出力不足から、負荷の大きさによつ
ては復動時の作動速度が低下して往動時の作動速
度と等速にはならない場合が生じるいう問題があ
つた。
In order to solve the above-mentioned problem, the present applicant previously proposed a device described in Japanese Patent Application Laid-open No. 80513/1983.
This device is excellent in that it operates at a nearly constant speed despite its simple construction. However, in this device, due to the unique structure of multi-stage double-acting hydraulic cylinders, the effective cross-sectional area of the forward-acting oil chamber in each movable cylinder is usually larger than that of the backward-acting oil chamber.
It will be about 1.5 to 4 times. Therefore, if the same hydraulic pressure is used for the reciprocating motion of each movable cylinder, a large amount of flow will flow into the forward side oil chamber during forward movement, but during backward movement, the flow flowing into the backward movement side oil chamber will be smaller than the amount flowing into the forward side oil chamber. The above reverse magnification is about 1/1.5 to 1/4 smaller than in the chamber, so the output in the backward direction is smaller, and back pressure is generated in the forward side oil chamber, where a large flow flows, so the output in the backward direction is reduced. The output of the motor decreases further, and due to this lack of output during the backward movement, the operating speed during the backward movement may decrease depending on the load size and may not reach the same speed as the operating speed during the forward movement. There was a problem that some cases may occur.

本考案は上述の点に鑑みてなされたもので、簡
単な構成を追加することによつて復動方向の出力
低下を防止し、ほぼ一定の速度で作動する多段形
複動油圧シリンダ装置を提供するものである。
The present invention was developed in view of the above points, and provides a multi-stage double-acting hydraulic cylinder device that prevents a decrease in output in the backward-acting direction by adding a simple configuration and operates at a nearly constant speed. It is something to do.

以下本考案の実施例を説明すると、第1図はこ
の考案に使用する多段形油圧シリンダの実施例で
あつて、基本シリンダ1内に、ピストン2,3を
それぞれ基端部側に有する可動シリンダ4,5を
順次嵌装し、第1可動シリンダ4のピストン2に
その軸方向に流通路6を設けて各可動シリンダ
4,5の往動側油室7,8を相互に連通させ、一
方同じく第1可動シリンダ4のピストン2の中央
に軸方向に延びる送通管9を突設し、ピストン2
の半径方向には、流通路10を設け、また第2可
動シリンダ5のチユーブ5aにはピストン3との
接続部付近においてチユーブ5a内外を連通する
複数の流通孔11a,11b,11cを設けて各
可動シリンダ4,5の復動側油室12,13を相
互に連通させてある。
An embodiment of the present invention will be described below. Fig. 1 shows an embodiment of a multi-stage hydraulic cylinder used in this invention, which is a movable cylinder having pistons 2 and 3 on the base end side in a basic cylinder 1. 4 and 5 are fitted one after another, a flow passage 6 is provided in the piston 2 of the first movable cylinder 4 in its axial direction, and the forward oil chambers 7 and 8 of each movable cylinder 4 and 5 are communicated with each other. Similarly, a delivery pipe 9 extending in the axial direction is provided protrudingly from the center of the piston 2 of the first movable cylinder 4, and the piston 2
A flow path 10 is provided in the radial direction of the tube 5a of the second movable cylinder 5, and a plurality of flow holes 11a, 11b, 11c are provided in the tube 5a of the second movable cylinder 5 in the vicinity of the connection with the piston 3 to communicate between the inside and outside of the tube 5a. The reciprocating side oil chambers 12 and 13 of the movable cylinders 4 and 5 are communicated with each other.

ここにおいて、第1可動シリンダ4のピストン
2には、その半径方向に設けた流通路10の外周
への開口部分に対応して円環状の凹溝14を設け
てあり、この凹溝14と復動側油室12とを連通
する絞り孔15をピストン2に1箇所または複数
箇所設けてある。一方基本シリンダ1のチユーブ
1aの両端部には肉厚部1bを形成してあり、両
肉厚部1bには2個のヘツド側給排ポート16,
16及びロツド側給排ポート17が設けてある。
このロツド側給排ポート17は、復動側油室12
内へロツド側端より若干ヘツド側寄り位置に開口
しており、第1可動シリンダ4がロツド側すなわ
ち図の上方へ移動した場合において、ピストン2
がロツド側端へ当接する若干手前でクツシヨン作
用が行われるとともに、第2可動シリンダ5への
流路の切替えが行われる。
Here, the piston 2 of the first movable cylinder 4 is provided with an annular groove 14 corresponding to the opening to the outer periphery of the flow passage 10 provided in the radial direction. The piston 2 is provided with one or more throttle holes 15 that communicate with the moving side oil chamber 12 . On the other hand, thick wall portions 1b are formed at both ends of the tube 1a of the basic cylinder 1, and two head side supply/discharge ports 16,
16 and a rod side supply/discharge port 17 are provided.
This rod side supply/discharge port 17 is connected to the double-acting side oil chamber 12.
It opens inward at a position slightly closer to the head side than the rod side end, and when the first movable cylinder 4 moves toward the rod side, that is, upward in the figure, the piston 2
A cushioning action is performed slightly before the rod comes into contact with the rod side end, and the flow path to the second movable cylinder 5 is switched.

また、第2可動シリンダ5のチユーブ5aに設
けた流通孔11a,11b,11cは、軸方向に
複数個併設されており、ピストン側から順次径大
となつている。したがつて第2可動シリンダ5が
往動してピストン3がロツド側端に達する若干手
前において流通孔11a,11b,11cが径大
のものから順次ロツドカバー4aに嵌入して閉塞
され、復動側油室13の排出流路が絞られてクツ
シヨン効果が得られる。
Further, a plurality of communication holes 11a, 11b, and 11c provided in the tube 5a of the second movable cylinder 5 are arranged side by side in the axial direction, and the diameters become larger sequentially from the piston side. Therefore, slightly before the second movable cylinder 5 moves forward and the piston 3 reaches the rod side end, the communication holes 11a, 11b, and 11c are fitted into the rod cover 4a in order from the largest diameter to be closed, and the second movable cylinder 5 moves forward and is closed by the rod cover 4a. The discharge flow path of the oil chamber 13 is constricted to provide a cushioning effect.

さて、第1可動シリンダ4のピストン2には、
往動側油室7に面する側中央にクツシヨンボス1
8を形成し、ヘツドカバー1dにはクツシヨンボ
ス18と微少間隙を有して嵌合するクツシヨン穴
19を設けてある。クツシヨンボス18は円柱状
物の端面中央に凹所18aを有しかつピストン2
との接続部分が径小となつた形状で、このクツシ
ヨンボス8の軸方向長さはクツシヨン穴10の深
さよりも長くしてあり、さらに凹所18aから外
周方向へ貫通する貫通孔18bと、貫通孔18b
と往動側油室7とに貫通する径小の絞り孔18c
とを有している。したがつてピストン2が復動し
てクツシヨンボス18がクツシヨン穴19へ嵌入
すると、クツシヨン穴19内の流体は絞り孔18
cによつて排出流路が絞られてクツシヨン効果が
得られるとともにクツシヨンボス18先端がクツ
シヨン穴19の底部に当接してストツパの作用を
なす。
Now, in the piston 2 of the first movable cylinder 4,
A cushion boss 1 is located in the center of the side facing the forward oil chamber 7.
8, and the head cover 1d is provided with a cushion hole 19 which fits into the cushion boss 18 with a slight gap therebetween. The cushion boss 18 has a recess 18a in the center of the end surface of the cylindrical member, and
The axial length of the cushion boss 8 is longer than the depth of the cushion hole 10, and the through hole 18b extends from the recess 18a toward the outer circumference. Hole 18b
and a small-diameter throttle hole 18c that penetrates the forward oil chamber 7.
It has Therefore, when the piston 2 moves back and the cushion boss 18 fits into the cushion hole 19, the fluid in the cushion hole 19 flows through the throttle hole 18.
c narrows the discharge flow path to obtain a cushion effect, and the tip of the cushion boss 18 comes into contact with the bottom of the cushion hole 19 to act as a stopper.

第1可動シリンダ4のピストン2と基本シリン
ダ1のヘツドカバー1dとの間に形成した上述の
クツシヨン装置と同様のものを、第2可動シリン
ダ5のピストン3と第1可動シリンダ4のピスト
ン2との間に形成してある。ただし、ピストン2
には円管状の送通管9を突設しこの送通管9がピ
ストン3を貫通しているので、ピストン3には円
環状のクツシヨンボス20を、またピストン2に
はこれに嵌合するクツシヨン穴21を形成してあ
り、クツシヨンボス20には径小の絞り孔20a
を設けてある。
A cushion device similar to the above-described cushion device formed between the piston 2 of the first movable cylinder 4 and the head cover 1d of the basic cylinder 1 is connected to the piston 3 of the second movable cylinder 5 and the piston 2 of the first movable cylinder 4. It is formed in between. However, piston 2
A circular passage tube 9 is provided protruding from the piston 3, and this passage tube 9 passes through the piston 3. Therefore, the piston 3 is provided with a circular cushion boss 20, and the piston 2 is provided with a cushion that fits therein. A hole 21 is formed in the cushion boss 20, and a small diameter aperture hole 20a is formed in the cushion boss 20.
is provided.

ところで、各可動シリンダ4,5の復動側油室
の面積及び送通管9の面積を考慮することによつ
て、各復動側有効断面積を同一にすることができ
る。しかし現実には材料寸法または加工誤差等の
関係から全く同一にすることは困難であり、また
その必要もなく、通常数パーセント乃至十数パー
セントの面積の差異は許容されるであろう。
By the way, by considering the area of the reciprocating side oil chamber of each movable cylinder 4, 5 and the area of the passage pipe 9, the effective cross-sectional area of each reciprocating side can be made the same. However, in reality, it is difficult to make them exactly the same due to material dimensions, processing errors, etc., and it is not necessary, and a difference in area of several percent to ten-odd percent is usually acceptable.

次に油圧回路について説明すると第2図におい
て、多段形複動油圧シリンダ22の往動側油室
7,8に通じる一方のヘツド側給排ポート16、
及び復動側油室12,13に通じるロツド側給排
ポート17は、それぞれ方向切換弁23に接続し
てあり、かつロツド側給排ポート17と方向切換
弁23との間には、二個の圧力補償付流量制御弁
24a,24bを互いに逆方向に直列接続したも
のを介在させている。この圧力補償付流量制御弁
24a,24bは、回路圧力が変化してもほぼ一
定の流量を保つもので、外部からその流量を調整
できるようになつている。また逆止弁を内蔵して
おり、一方向へは自由流となる。したがつてこれ
ら二個を互いに逆方向に直列接続することによつ
て、正逆各流れ方向の流量をそれぞれ別個に調整
することができる。
Next, to explain the hydraulic circuit, in FIG.
The rod side supply and discharge ports 17 that communicate with the reciprocating side oil chambers 12 and 13 are each connected to the directional switching valve 23, and there are two ports between the rod side supply and discharge port 17 and the directional switching valve 23. A pressure-compensated flow control valve 24a, 24b connected in series in opposite directions is interposed. The pressure-compensated flow rate control valves 24a and 24b maintain a substantially constant flow rate even if the circuit pressure changes, and can adjust the flow rate from the outside. It also has a built-in check valve, allowing free flow in one direction. Therefore, by connecting these two in series in opposite directions, the flow rates in the forward and reverse flow directions can be adjusted separately.

また方向切換弁23には、減圧弁25を介して
油圧ポンプ26を、逆止弁27を介して油タンク
28を、それぞれ接続してある。減圧弁25は、
ヘツド側給排ポート16に供給する圧力を制限す
るものであり、また逆止弁27は自由流れ方向の
クラツキング圧力を利用して一定の背圧を発生さ
せるためのものである。符号29はリリーフ弁で
ある。他方のヘツド側給排ポート16と油タンク
28との間には、開閉弁30を有した戻り流路3
1が形成されている。戻り流路31は、油圧シリ
ンダ22が復動する際に、往動側油室7,8内の
油をこの戻り流路31を通して油タンク28へ速
かに排出し、往動側油室7,8内に生じる背圧を
最小限におさえるためのものであつて、開閉弁3
0は油圧シリンダ22が復動するときのみ開とな
るように制御されている。
Further, a hydraulic pump 26 and an oil tank 28 are connected to the directional switching valve 23 via a pressure reducing valve 25 and a check valve 27, respectively. The pressure reducing valve 25 is
The check valve 27 is used to limit the pressure supplied to the head side supply/discharge port 16, and the check valve 27 is used to generate a constant back pressure using cracking pressure in the free flow direction. Reference numeral 29 is a relief valve. A return passage 3 having an on-off valve 30 is provided between the other head-side supply/discharge port 16 and the oil tank 28.
1 is formed. The return flow path 31 quickly discharges the oil in the forward oil chambers 7 and 8 to the oil tank 28 through the return flow path 31 when the hydraulic cylinder 22 moves backward. , 8 to minimize the back pressure generated within the on-off valve 3.
0 is controlled to open only when the hydraulic cylinder 22 moves backward.

したがつて方向切換弁23を切換えることによ
つて、各給排ポート16,17には選択的に油圧
源または油タンクが接続されるとともにその時の
流量は圧力補償付流量制御弁24a,24bによ
り制御され、常にほぼ一定の調整された流量が流
れる。そして、油圧シリンダ22が復動するとき
には、開閉弁30が開き、往動側油室7,8内の
油は両方のヘツド側給排ポート16,16から流
路23a及び戻り流路31を通つて背圧をほとん
ど発生することなく油タンク28へ排出され、油
圧シリンダ22の復動方向の出力の低下が防止さ
れる。
Therefore, by switching the directional switching valve 23, a hydraulic power source or an oil tank is selectively connected to each supply/discharge port 16, 17, and the flow rate at that time is controlled by the pressure compensated flow control valves 24a, 24b. A controlled and nearly constant regulated flow rate flows at all times. When the hydraulic cylinder 22 moves backward, the on-off valve 30 opens, and the oil in the forward oil chambers 7, 8 flows from both head side supply/discharge ports 16, 16 through the flow path 23a and the return flow path 31. As a result, the oil is discharged into the oil tank 28 without generating almost any back pressure, and a decrease in the output of the hydraulic cylinder 22 in the backward movement direction is prevented.

ここに用いた方向切換弁23は、4ポート3位
置のものであるが、上述した機能を満たすもので
あればこれに限定されず、例えば5ポート3位置
のもの、4ポート2位置のものまたは3ポート2
位置を2個使用してもよい。開閉弁30は2ポー
ト2位置のものを用いたが、3ポート又は4ポー
トのものでもよい。第2図に示す油圧回路は配管
によつて接続してもよいし、ベース用のマニホー
ルドに所要のモジユール弁を積み重ねることによ
つて実現してもよい。一般的に、モジユール弁を
積み重ねるにはこれらの全ての弁に同一の口径の
弁を使用しなければならないので、仮に開閉弁3
0を使用せず方向切換弁23の口径を大きなもの
にして大流量に対応しようとすれば、他の全ての
弁も同様に口径の大きなものを使用しなければな
らず全体として非常に高価なものについてしま
う。したがつて本考案は、モジユール弁を使用す
る場合に特に効果があるといえる。また逆止弁2
7によつて一定の低い背圧が確実に発生するが、
これによつて多段形複動シリンダ22の各可動シ
リンダ4,5の動作順序が確保される。すなわ
ち、第1可動シリンダ4のピストン2と第2可動
シリンダ5のピストン3とが軸方向に離間した状
態にあるときには第1可動シリンダ4は、その復
動側油室12,13の圧力がそれぞれ逆方向に働
いてバランスするので往動側油室7に圧力があれ
ばこれによつて往動する。したがつて往動時は油
圧ポンプ26により、復動時には逆止め27のク
ラツキング圧力により往動側油室7に圧力が加わ
るので、第1可動シリンダ4は第2可動シリンダ
5に比して先に往動しかつ後に復動する。各可動
シリンダ4,5の復動時に往動側油室7に加える
べき背圧の大きさは、各可動シリンダ4,5の復
動側有効面積のばらつき、各摺動部分の摩擦抵抗
の相異、内部流路による圧力降下または往動側有
効面積の大きさ等の諸要因を考慮して決定されな
ければならない。逆止弁のクラツキング圧力は通
常数Kg/cm2であつてこれにより各可動シリンダの
動作順序が確保されるが、上述の諸要因によつて
は特に逆止弁27を用いず、方向切換弁23及び
配管抵抗による背圧のみによつても同様の効果を
得ることができる場合もある。
The directional switching valve 23 used here has 4 ports and 3 positions, but is not limited to this as long as it satisfies the above-mentioned functions. For example, it may be 5 ports with 3 positions, 4 ports with 2 positions, or 3 ports 2
Two positions may be used. Although a 2-port, 2-position on-off valve 30 is used, it may be a 3-port or 4-port valve. The hydraulic circuit shown in FIG. 2 may be connected by piping, or may be realized by stacking required modular valves on a base manifold. Generally, in order to stack modular valves, valves with the same diameter must be used for all of these valves, so if the on-off valve 3
If you try to cope with a large flow rate by increasing the diameter of the directional control valve 23 without using a 0, you will have to use large diameters for all other valves as well, which will result in a very expensive overall design. I get attached to things. Therefore, it can be said that the present invention is particularly effective when using a modular valve. Also check valve 2
7 ensures that a constant low back pressure is generated, but
This ensures the order of operation of each movable cylinder 4, 5 of the multi-stage double-acting cylinder 22. That is, when the piston 2 of the first movable cylinder 4 and the piston 3 of the second movable cylinder 5 are in a state separated from each other in the axial direction, the pressures in the reciprocating side oil chambers 12 and 13 of the first movable cylinder 4 are Since it works in the opposite direction for balance, if there is pressure in the oil chamber 7 on the forward side, this will cause forward movement. Therefore, pressure is applied to the forward-side oil chamber 7 by the hydraulic pump 26 during forward movement and by the cracking pressure of the non-return check 27 during backward movement, so that the first movable cylinder 4 is placed earlier than the second movable cylinder 5. It moves forward and returns later. The amount of back pressure that should be applied to the forward oil chamber 7 during the backward movement of each movable cylinder 4, 5 is determined by the variation in the effective area of the backward movement side of each movable cylinder 4, 5, and the relationship between the frictional resistance of each sliding part. It must be determined in consideration of various factors such as the pressure drop due to the internal flow path and the size of the effective area on the forward side. The cracking pressure of the check valve is normally several kg/ cm2 , which ensures the operating order of each movable cylinder, but depending on the factors mentioned above, the check valve 27 may not be used and the directional control valve may be used. In some cases, the same effect can be obtained by using only the back pressure caused by 23 and piping resistance.

上述のように構成した多段形複動油圧シリンダ
装置は、方向切換弁23を切換えることによつて
多段形複動油圧シリンダ22が往復動するととも
に、その速度は往動時は圧力補償付流量制御弁2
4aによつて、復動時は圧力補償付流量制御弁2
4bによつて、それぞれ調整され、しかも各可動
シリンダ4,5の復動側有効面積を略同一として
いるから、各可動シリンダ4,5が順次切換わつ
て作動しても負荷の駆動速度はほぼ一定に保たれ
る。したがつて各可動シリンダの作動切換わり時
の衝撃を著しく軽減することができる。さらに、
開閉弁30及び戻り流路31の動きによつて往動
側油室7,8には背圧がほとんど発生せず、可動
シリンダ4,5の作動が円滑でほぼ一定の速度を
保つことができる。
In the multi-stage double-acting hydraulic cylinder device configured as described above, the multi-stage double-acting hydraulic cylinder 22 reciprocates by switching the directional control valve 23, and its speed is controlled by pressure-compensated flow rate control during forward movement. valve 2
4a, the pressure compensated flow control valve 2 is activated during double operation.
4b, and since the effective areas on the return side of each movable cylinder 4 and 5 are approximately the same, even if each movable cylinder 4 and 5 are sequentially switched and operated, the drive speed of the load is approximately the same. is kept constant. Therefore, the impact when switching the operation of each movable cylinder can be significantly reduced. moreover,
Due to the movement of the on-off valve 30 and the return passage 31, almost no back pressure is generated in the forward oil chambers 7, 8, and the movable cylinders 4, 5 can operate smoothly and maintain a substantially constant speed. .

以上のように本考案は、基本シリンダ内に、ピ
ストンをそれぞれ基端部側に有しそれぞれの復動
側油室の有効断面積を互に略同一とした複数の可
動シリンダを順次嵌装し、最小径の可動シリンダ
を除く可動シリンダの各ピストンに軸方向に流通
路を設けて各可動シリンダの往動側油室を相互に
連通させ、最小径の可動シリンダを除く可動シリ
ンダの各ピストンに軸方向の送通管及び半径方向
の流通路を設けて各可動シリンダの復動側油室を
相互に連通させてなる多段複動油圧シリンダを有
しており、上記往動側油室及び復動側油室をそれ
ぞれ油圧源または油タンクへ選択的に接続する方
向切換弁に接続し、上記復動側油室と上記方向切
換弁との間に、圧力補償付流量制御弁を介在接続
してなるので、多段形複動油圧シリンダの作動速
度をほぼ一定にできるとともに、各可動シリンダ
の作動切換わり時の衝撃を著しく軽減することが
できる。そして、開閉弁を有する戻り流路を形成
し、該開閉弁を上記多段形複動油圧シリンダが復
動するときのみ開とするようにしたので、復動方
向の出力低下を防止して一定の速度での作動をよ
り一層確実なものとすることができる。また、圧
力補償付流量制御弁を正逆各流れ方向の流量をそ
れぞれ別個に調整可能に接続すれば、往動及び復
動の各作動速度を別個に調整できかつ往復動共同
一速度とすることができる。また方向切換弁と油
タンクとの間に、逆止弁を油タンク方向に自由流
となるように介在接続することによつて、各可動
シリンダの動作順序が確保され、作動が安定す
る。
As described above, the present invention sequentially fits into a basic cylinder a plurality of movable cylinders each having a piston on the base end side and each having a reciprocating side oil chamber with substantially the same effective cross-sectional area. , a flow passage is provided in the axial direction in each piston of the movable cylinder except for the movable cylinder with the smallest diameter, so that the forward oil chambers of each movable cylinder are communicated with each other, and each piston of the movable cylinder except the movable cylinder with the smallest diameter is provided with a flow passage in the axial direction. It has a multi-stage double-acting hydraulic cylinder in which an axial passage pipe and a radial flow passage are provided to allow the reciprocating side oil chambers of each movable cylinder to communicate with each other, and the reciprocating side oil chambers and the reciprocating side oil chambers The movable side oil chambers are each connected to a directional control valve that selectively connects to a hydraulic power source or an oil tank, and a pressure-compensated flow control valve is interposed and connected between the double-movement side oil chamber and the directional control valve. Therefore, the operating speed of the multi-stage double-acting hydraulic cylinder can be kept almost constant, and the impact when switching the operation of each movable cylinder can be significantly reduced. In addition, a return flow path having an on-off valve is formed, and the on-off valve is opened only when the multi-stage double-acting hydraulic cylinder moves backward, thereby preventing a decrease in output in the backward movement direction and maintaining a constant level of output. The operation at high speed can be made even more reliable. In addition, by connecting a pressure-compensated flow control valve so that the flow rate in each of the forward and reverse flow directions can be adjusted separately, the forward and reverse operating speeds can be adjusted separately, and the reciprocating motion can be made to operate at the same speed. Can be done. Furthermore, by intervening and connecting a check valve between the directional control valve and the oil tank so as to allow a free flow toward the oil tank, the operating order of each movable cylinder is ensured and the operation is stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例であつて、第1図は多段
形複動油圧シリンダの断面図、第2図は油圧回路
図である。 1……基本シリンダ、2,3……ピストン、
4,5……可動シリンダ、6……流通路、7,8
……往動側油室、9……送通管、10……流通
路、12,13……復動側油室、22……多段形
複動油圧シリンダ、23……方向切換弁、24
a,24b……圧力補償付流量制御弁、26……
油圧ポンプ(油圧源)、27……逆止弁、28…
…油タンク、30……開閉弁、31……戻り流
路。
The drawings show an embodiment of the present invention, in which FIG. 1 is a sectional view of a multi-stage double-acting hydraulic cylinder, and FIG. 2 is a hydraulic circuit diagram. 1... Basic cylinder, 2, 3... Piston,
4, 5...Movable cylinder, 6...Flow path, 7,8
...Forward side oil chamber, 9...Transmission pipe, 10...Flow passage, 12, 13...Return side oil chamber, 22...Multi-stage double-acting hydraulic cylinder, 23...Direction switching valve, 24
a, 24b...Flow control valve with pressure compensation, 26...
Hydraulic pump (hydraulic source), 27... Check valve, 28...
...Oil tank, 30...Opening/closing valve, 31...Return flow path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基本シリンダ内に、ピストンをそれぞれ基端部
側に有しそれぞれの復動側油室の有効断面積を互
に略同一とした複数の可動シリンダを順次嵌装
し、最小径の可動シリンダを除く可動シリンダの
各ピストンに軸方向に流通路を設けて各可動シリ
ンダの往動側油室を相互に連通させ、最小径の可
動シリンダを除く可動シリンダの各ピストンに軸
方向の送通管及び半径方向の流通路を設けて各可
動シリンダの複動側油室を相互に連通させてなる
多段形複動油圧シリンダを有しており、上記往動
側油室及び復動側油室をそれぞれ油圧源または油
タンクへ選択的に接続する方向切換弁に接続し、
上記復動側油室と上記方向切換弁との間に、圧力
補償付流量制御弁を介在接続するとともに、上記
往動側油室と上記油タンクとの間に開閉弁を有す
る戻り流路を形成し、該開閉弁を上記多段形複動
油圧シリンダが復動するときのみ開とするように
してなる多段形複動油圧シリンダ装置。
A plurality of movable cylinders each having a piston on the base end side and the effective cross-sectional area of each reciprocating side oil chamber being approximately the same are fitted in sequence into the basic cylinder, excluding the movable cylinder with the smallest diameter. An axial flow passage is provided in each piston of the movable cylinder to allow the forward oil chambers of each movable cylinder to communicate with each other, and an axial flow passage and a radius are provided in each piston of the movable cylinder except for the smallest diameter movable cylinder It has a multistage double-acting hydraulic cylinder in which the double-acting side oil chambers of each movable cylinder are communicated with each other by providing a flow path in the direction, and the forward-acting side oil chamber and the backward-acting side oil chamber are respectively connected to hydraulic pressure. connection to a directional valve that selectively connects to a source or oil tank;
A flow rate control valve with pressure compensation is interposed and connected between the backward-moving side oil chamber and the above-mentioned directional switching valve, and a return passage having an on-off valve is connected between the forward-moving side oil chamber and the oil tank. A multi-stage double-acting hydraulic cylinder device in which the on-off valve is opened only when the multi-stage double-acting hydraulic cylinder moves backward.
JP12307784U 1984-08-10 1984-08-10 Multi-stage double-acting hydraulic cylinder device Granted JPS6138304U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12307784U JPS6138304U (en) 1984-08-10 1984-08-10 Multi-stage double-acting hydraulic cylinder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12307784U JPS6138304U (en) 1984-08-10 1984-08-10 Multi-stage double-acting hydraulic cylinder device

Publications (2)

Publication Number Publication Date
JPS6138304U JPS6138304U (en) 1986-03-10
JPH0217203Y2 true JPH0217203Y2 (en) 1990-05-14

Family

ID=30681828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12307784U Granted JPS6138304U (en) 1984-08-10 1984-08-10 Multi-stage double-acting hydraulic cylinder device

Country Status (1)

Country Link
JP (1) JPS6138304U (en)

Also Published As

Publication number Publication date
JPS6138304U (en) 1986-03-10

Similar Documents

Publication Publication Date Title
KR20070106759A (en) Switching valve device and fluid pressure cylinder device
US10895269B2 (en) Double acting hydraulic pressure intensifier
KR0155989B1 (en) Directional control valve
KR0159422B1 (en) Hydraulic operated valve
US3216446A (en) Spool valve assembly with dual check valve assembly
JPH0217203Y2 (en)
CN108331792B (en) Hydraulic module for controlling the hydraulic fluid flow of a connecting rod of an internal combustion engine with variable compression ratio, and connecting rod
US5857381A (en) Hydraulic operating device and gearbox provided with such an operating device
JPH0353483B2 (en)
JP2500378Y2 (en) Directional control valve
JP3683096B2 (en) Automatic telescopic cylinder device
JPH11230106A (en) Hydraulic control device
JPS6230562Y2 (en)
US6295917B1 (en) Lost motion cylinder
JPH01303303A (en) Multi-stage type double acting cylinder device
JPS6222033B2 (en)
WO2023032576A1 (en) Pressure compensation valve
JPS642808B2 (en)
JPS5918561B2 (en) Pressure control servo device
CN109253005B (en) Oil inlet valve for high-pressure oil pump and corresponding high-pressure oil pump
JPH0712397Y2 (en) Operating valve
JP2531833Y2 (en) Spool valve
JPS6339431Y2 (en)
JPH077601Y2 (en) Confluence controller
JPS6139551B2 (en)