JPH02170803A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH02170803A
JPH02170803A JP32362288A JP32362288A JPH02170803A JP H02170803 A JPH02170803 A JP H02170803A JP 32362288 A JP32362288 A JP 32362288A JP 32362288 A JP32362288 A JP 32362288A JP H02170803 A JPH02170803 A JP H02170803A
Authority
JP
Japan
Prior art keywords
titanium
compound
polymerization
polyolefin
prepolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32362288A
Other languages
Japanese (ja)
Other versions
JPH0747604B2 (en
Inventor
Yoshiyuki Kitajima
北島 佳幸
Kuniyoshi Ogaki
大垣 邦義
Eitaro Asaeda
朝枝 英太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP32362288A priority Critical patent/JPH0747604B2/en
Publication of JPH02170803A publication Critical patent/JPH02170803A/en
Publication of JPH0747604B2 publication Critical patent/JPH0747604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a polymer of high stereoregularity, broad molecular weight distribution and good moldability by polymerizing an olefin in the presence of a polyolefin containing titanium, resulting from preliminary polymerization, an organoaluminum specific, a specific organosilicon compound and ethyl silicate. CONSTITUTION:The polymerization of an olefin such as ethylene, propylene or butene-1 is conducted in the presence of (A) a preliminarily polymerized polyolefin containing titanium such as preliminary polymerization product of an olefin in the presence of a titanium compound and an organoaluminum compound, (B) an organoaluminum compound, preferably triethylaluminum, (C) an organosilicon compound of the formula (R, R' are hydrocarbon; n is 1 to 3) such as trimethylmethoxysilane, and (D) ethyl silicate to give the subject polyolefin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オレフィンを重合してポリオレフィンを製造
する方法に関し、更に詳しくは、高い立体規制性を有し
、かつ広い分子量分布を有する成形性の改良されたポリ
オレフィンを提供するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a polyolefin by polymerizing olefins, and more specifically to a method for producing polyolefins that have high stereoregulatory properties and a wide molecular weight distribution. The present invention provides an improved polyolefin.

(従来技術及び発明が解決しようとする課題)オレフィ
ンの重合触媒としてチーグラー型触媒は周知のものであ
り、その活性及び立体規則性を改善する方法が提案され
ている。中でも活性についての改善はチタン成分として
チタン、マグネシウム、及びハロゲンを必須成分とする
ことにより大幅な改善がなされている。しかし、この触
媒を用いてプロピレンなどの重合を行う場合、活性は非
常に高いものの得られる重合体の立体規則性がきわめて
低いことから、実用的価値が失われることも知られてい
る。一般に成形品の剛性、強度は重合体の結晶化度に強
く依存し、同時に固体結晶化度は重合体の立体規則性に
より決定される。従って、より高い剛性、強度の成形品
を得るために、より高結晶性のポリプロピレンが望まれ
ていた。
(Prior Art and Problems to be Solved by the Invention) Ziegler type catalysts are well known as olefin polymerization catalysts, and methods for improving their activity and stereoregularity have been proposed. Among these, significant improvement in activity has been achieved by using titanium, magnesium, and halogen as essential titanium components. However, when polymerizing propylene or the like using this catalyst, it is known that although the activity is very high, the stereoregularity of the resulting polymer is extremely low, so that it loses its practical value. Generally, the rigidity and strength of a molded article strongly depend on the crystallinity of the polymer, and at the same time, the solid crystallinity is determined by the stereoregularity of the polymer. Therefore, in order to obtain molded products with higher rigidity and strength, polypropylene with higher crystallinity has been desired.

そこでチタン、マグネシウム、及びハロゲン含有のチタ
ン成分に種々のエステル、エーテル、アミンなどの電子
供与体を含有させることにより立体規則性を向上さセる
方法が提案されている。一方でこのようなチタン成分と
有機アルミニウムとによる重合においてエステル、エー
テル、アミン、有機ケイ素化合物などを添加する方法も
提案されている。このような方法により重合体の立体規
則性はかなり改善されてきた。しかしながら、これらの
触媒系を用いてオレフィンを重合して得られるポリオレ
フィンは、一般に分子量分布が狭く溶融時の流動性に劣
り、流動配向性が失われることから成形品の配向強度が
著しく低下する。その結果、射出成形品では、一般に剛
性の低下や又フィルムに於いては腰が弱い等の難点があ
った。
Therefore, a method has been proposed in which the stereoregularity is improved by incorporating various electron donors such as esters, ethers, and amines into titanium, magnesium, and halogen-containing titanium components. On the other hand, methods have also been proposed in which esters, ethers, amines, organosilicon compounds, etc. are added to the polymerization of titanium components and organic aluminum. Such methods have significantly improved the stereoregularity of polymers. However, the polyolefins obtained by polymerizing olefins using these catalyst systems generally have a narrow molecular weight distribution and poor fluidity during melting, and because the flow orientation is lost, the orientation strength of molded articles is significantly reduced. As a result, injection molded products generally have drawbacks such as a decrease in rigidity, and films have weak stiffness.

(課題を解決するための手段) 本発明者らは、上記の課題についてポリオレフィンに高
い立体規則性と広い分子量分布を付与することによつい
て鋭意検討を行った結果、オレフィンの予備重合により
得られたチタン含有ポリオレフィンを用いて本重合する
際に、特定の有機ゲイ素化合物とケイ酸エチルを同時に
用いることにより、所期の目的が達成されることを見い
だし本発明を完成した。
(Means for Solving the Problems) The present inventors have conducted intensive studies to solve the above problems by imparting high stereoregularity and wide molecular weight distribution to polyolefins. The present invention was completed based on the discovery that the desired object could be achieved by simultaneously using a specific organic gay compound and ethyl silicate during main polymerization using a titanium-containing polyolefin.

即ち、本発明は、 八 予備重合で得られたチタン含有ポリオレフィン B 有機アルミニウム化合物 C−@ 式 〔夏〕 R,1Si(OR’)4−a        (1)で
示される有機ケイ素化合物 D ケイ酸エチル の存在下にオレフィンを重合することを特徴とするポリ
オレフィンの製造方法である。
That is, the present invention provides: 8. Titanium-containing polyolefin B obtained by prepolymerization Organoaluminum compound C-@Organosilicon compound D represented by the formula [Summer] R,1Si(OR')4-a (1) Ethyl silicate This is a method for producing a polyolefin, which is characterized by polymerizing an olefin in the presence of.

本発明では、オレフィンの本重合に先だって予備重合を
行なうことが、広い分子量分布と高い立体規則性を有す
るポリオレフィンを得るために重要である。予備重合は
、公知の方法が何ら制限なく採用し得る、例えば、チタ
ン化合物と有機アルミニウム化合物の存在下にオレフィ
ンを予備重合する方法が一般的である。
In the present invention, it is important to perform prepolymerization prior to the main polymerization of the olefin in order to obtain a polyolefin having a wide molecular weight distribution and high stereoregularity. For the prepolymerization, any known method may be employed without any restriction, for example, a method in which an olefin is prepolymerized in the presence of a titanium compound and an organoaluminum compound is generally used.

予備重合で用いられるチタン化合物は、プロピレンの重
合に使用されることが公知の化合物が何ら制限なく採用
される。特に、チタン、マグネシウム及びハロゲンを成
分とする触媒活性の高いチタン化合物が好適である。こ
のような触媒活性の高いチタン化合物は、ハロゲン化チ
タン、特に四塩化チタンを種々のマグネシウム化合物に
担持させたものとなっている。
As the titanium compound used in the prepolymerization, any compound known to be used in propylene polymerization can be used without any restriction. In particular, titanium compounds with high catalytic activity containing titanium, magnesium, and halogen are suitable. Such titanium compounds with high catalytic activity are those in which titanium halide, particularly titanium tetrachloride, is supported on various magnesium compounds.

この触媒の製法は、公知の方法が何ら制限なく採用され
る。例えば、四塩化チタンを塩化マグネシウムのような
マグネシウム化合物と共粉砕する方法、アルコール、エ
ーテル、エステル、ケトン又はアルデヒド等の電子供与
体の存在下にハロゲン化チタンとマグネシウム化合物と
を共粉砕する方法、又は、溶媒中でハロ・ゲン化チタン
、マグネシウム化合物及び電子供与体を接触させる方法
等が挙げられる。
For the production of this catalyst, any known method may be employed without any restriction. For example, a method of co-milling titanium tetrachloride with a magnesium compound such as magnesium chloride, a method of co-milling a titanium halide and a magnesium compound in the presence of an electron donor such as an alcohol, ether, ester, ketone or aldehyde, Alternatively, a method may be mentioned in which a titanium halide, a magnesium compound, and an electron donor are brought into contact with each other in a solvent.

次に有機アルミニウム化合物も、プロピレンの重合に使
用されることが公知の化合物が何ら制限なく採用される
。例えば、トリメチルアルミニウム、トリエチルアルミ
ニウム、トリーnブチルアルミニウム、トリーnブチル
アルミニウム、トリーnブチルアルミニウム、トリーn
ブチルアルミニウム、トリーnオクチルアルミニウム、
トリーnデシルアルミニウム等のトリアルキルアルミニ
ウム類;ジエチルアルミニウムモノクロライド等のジエ
チルアルミニウムモノハライド類;メチルアルミニウム
セスキクロライド、エチルアルミニウムセスキクロライ
ド、エチルアルミニウムジクロライド等のアルキルアル
ミニウムハライド類などがあげられる。他にモノエトキ
シジエチルアルミニウム、ジェトキシモノエチルアルミ
ニウム等のアルコキシアルミニウム類を用いることがで
きる。中でもトリエチルアルミニウムが最も好ましい。
Next, as the organoaluminum compound, any compound known to be used in the polymerization of propylene can be employed without any restriction. For example, trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tri-n-butylaluminum, tri-n-butylaluminum, tri-n-butylaluminum
Butyl aluminum, tri-octyl aluminum,
Examples include trialkylaluminums such as tri-n-decylaluminum; diethylaluminum monohalides such as diethylaluminum monochloride; and alkylaluminum halides such as methylaluminum sesquichloride, ethylaluminum sesquichloride, and ethylaluminum dichloride. In addition, alkoxyaluminums such as monoethoxydiethylaluminum and jetoxymonoethylaluminum can be used. Among them, triethylaluminum is most preferred.

有機アルミニウム化合物の使用量はチタン化合物中のT
t原子に対しN、/Ti(モル比)で1〜100好まし
くは2〜20であることが好適である。
The amount of organic aluminum compound used is T in the titanium compound.
It is suitable that N/Ti (mole ratio) is 1 to 100, preferably 2 to 20, with respect to t atoms.

本発明の予備重合においては、上記したチタン化合物、
有機アルミニウム化合物に加えて、下記−儀式(n) R“−1(II) 〔但し、R′はヨウ素原子又は炭化水素基である。
In the prepolymerization of the present invention, the above titanium compound,
In addition to the organoaluminum compound, the following formula (n) R''-1 (II) [wherein R' is an iodine atom or a hydrocarbon group] can be used.

で示されるヨウ素化合物を用いることが、得られるポリ
オレフィンの結晶性がさらに高くなるために好ましい。
It is preferable to use an iodine compound represented by the following formula because the crystallinity of the obtained polyolefin is further increased.

前記−儀式(II)中、R“は、アルキル基、アルケニ
ル基、アルキニル基又はアリール基等の炭化水素基であ
る。本発明で好適に使用し得るヨウ素化合物を具体的に
示すと次のとおりである。例えばヨウ素、ヨウ化メチル
、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨー
ドベンゼン、pヨウ化トルエン等である。中でもヨウ化
メチル、ヨウ化エチルが好ましい。ヨウ素化合物の使用
量はチタン化合物中のチタン原子に対し、I/、Ti(
モル比)で、0.1〜100、好ましくは0.5〜50
である。
In the above-mentioned formula (II), R" is a hydrocarbon group such as an alkyl group, an alkenyl group, an alkynyl group, or an aryl group. Specific examples of iodine compounds that can be suitably used in the present invention are as follows. For example, iodine, methyl iodide, ethyl iodide, propyl iodide, butyl iodide, iodobenzene, p-iodized toluene, etc. Among them, methyl iodide and ethyl iodide are preferable.The amount of the iodine compound to be used is For the titanium atom in the titanium compound, I/, Ti(
molar ratio) from 0.1 to 100, preferably from 0.5 to 50
It is.

予備重合で用いるオレフィン類としては、エチレン、プ
ロピレン、1−ブテン、l−ペンテン、〕 l−ヘキセン、4−メチルペンテン=1などがあげられ
る。また、上記のオレフィンを2種類以上同時に使用す
ることも可能であるが、立体規則性゛の向上を勘案する
と1種のオレフィンを90モル%以上用いることが好ま
しい。予備重合では水素を共存させることも可能である
。予備重合での重合量はチタン化合物1g当り1〜10
0gが好ましく、工業的には2〜50gの範囲が好適で
ある。
Examples of the olefins used in the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methylpentene=1. It is also possible to use two or more of the above-mentioned olefins at the same time, but in consideration of improvement in stereoregularity, it is preferable to use 90 mol % or more of one type of olefin. It is also possible to coexist hydrogen in the prepolymerization. The amount of polymerization in prepolymerization is 1 to 10 per gram of titanium compound.
0 g is preferable, and the range of 2 to 50 g is industrially suitable.

予備重合は通常スラリー重合を適用させるのが好ましく
、溶媒として、ヘキサン、ヘプタン、シクロヘキサン、
ベンゼン、トルエンなどの飽和脂肪族炭化水素若しくは
芳香族炭化水素を単独で、またはこれらの混合?容・媒
を用いることができる。
Prepolymerization is usually preferably carried out by slurry polymerization, using hexane, heptane, cyclohexane,
Saturated aliphatic hydrocarbons or aromatic hydrocarbons such as benzene and toluene alone or in combination? A container/medium can be used.

予備重合温度は、−20〜100℃、特に0〜60℃の
温度が好ましい。予備重合時間は、予備重合温度及び予
備重合での重合量に応じ適宜決定すれば良く、予備重合
における圧力は、限定されるものではないが、スラリー
の重合の場合は、般に大気圧〜5 kg / co!程
度である。また予備重合時に、エーテル、アミン、アミ
ド、ニトリル、カルボン酸、含硫黄化合物、酸アミド、
酸エステル、酸無水物、有機ケイ素化合物などの電子供
与体を共存させてもよい。予備重合終了後には、ヘキサ
ン、ヘプタン、シクロヘキサン、ベンゼン、トルエン等
の飽和脂肪族炭化水素若しくは芳香族炭化水素を単独で
、またはこれらの混合溶媒で洗浄することが好ましく、
洗浄回数は通常の場合5〜6回が好ましい。
Prepolymerization temperature is preferably -20 to 100°C, particularly 0 to 60°C. The prepolymerization time may be appropriately determined depending on the prepolymerization temperature and the polymerization amount in the prepolymerization, and the pressure in the prepolymerization is not limited, but in the case of slurry polymerization, it is generally atmospheric pressure to 5. kg/co! That's about it. Also, during prepolymerization, ether, amine, amide, nitrile, carboxylic acid, sulfur-containing compound, acid amide,
Electron donors such as acid esters, acid anhydrides, and organosilicon compounds may also be present. After completion of prepolymerization, it is preferable to wash with a saturated aliphatic hydrocarbon or aromatic hydrocarbon such as hexane, heptane, cyclohexane, benzene, toluene alone or with a mixed solvent thereof,
The number of washings is usually preferably 5 to 6 times.

上記予備重合の後に本重合が行なわれる。本重合は、上
記の予備重合により得られたチタン含有ポリオレフィン
、有機アルミニウム化合物、有機ケイ素化合物及びケイ
酸エチルの存在下に行なわれる。
Main polymerization is performed after the above preliminary polymerization. The main polymerization is carried out in the presence of the titanium-containing polyolefin, organoaluminum compound, organosilicon compound, and ethyl silicate obtained by the above prepolymerization.

本重合で用いられる有機アルミニウム化合物は、前述の
予備重合に用いたものが使用でき、最も好ましくはトリ
エチルアルミニウムである。有機アルミニウム化合物の
使用量はチタン含有ポリオレフィン中のチタン原子に対
し、#!/Ti(モル比)で、10〜1000、好まし
くは、50〜500である。
As the organoaluminum compound used in the main polymerization, those used in the prepolymerization described above can be used, and triethylaluminum is most preferred. The amount of organoaluminum compound used is #! with respect to the titanium atom in the titanium-containing polyolefin. /Ti (mole ratio) is 10 to 1000, preferably 50 to 500.

さらに、有機ケイ素化合物は、前記−儀式〔!〕で示さ
れる化合物が何ら制限なく採用される。
In addition, organosilicon compounds can be used in the above-mentioned rituals [! ] Compounds represented by the following are employed without any restriction.

儀式C1)中のR及びR′は、アルキル基、アルケニル
基、アルキニル基及びアリール基等の炭化水素基である
。本発明において好適に用いられる有機ケイ素化合物を
例示すると、次のとおりである。
R and R' in formula C1) are hydrocarbon groups such as alkyl, alkenyl, alkynyl and aryl groups. Examples of organosilicon compounds preferably used in the present invention are as follows.

例えば、トリメチルメトキシシラン、トリメチルエトキ
シシラン、ジメチルメトキシシラン、ジメチルジェトキ
シシラン、ジフェニルジメトキシシラン、メチルフエニ
ルジメトキシシラン、ジフェニルジェトキシシラン、エ
チルトリメトキシシラン、メチルトリメトキシシラン、
ビニルトリメトキシシラン、フェニルトリメトキシシラ
ン、メチルトリエトキシシラン、エチルトリエトキシシ
ラン、ビニルトリエトキシシラン、シクロヘキシルメチ
ルジメトキシシラン、プチルトリエトギシシラン、フェ
ニルトリエトキシシラン、6−ドリエトキシシリル2−
ノルボルネンなどである。
For example, trimethylmethoxysilane, trimethylethoxysilane, dimethylmethoxysilane, dimethyljethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, diphenyljethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane,
Vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, cyclohexylmethyldimethoxysilane, butyltriethoxysilane, phenyltriethoxysilane, 6-driethoxysilyl 2-
Such as norbornene.

重合で用いる有機ケイ素化合物の使用量はチタン含有ポ
リオレフィン中のTi原子に対しSi/Ti(モル比)
で0.1〜tooo、好ましくは0.5〜500である
The amount of organosilicon compound used in polymerization is Si/Ti (molar ratio) relative to Ti atoms in the titanium-containing polyolefin.
is from 0.1 to too much, preferably from 0.5 to 500.

ケイ酸エチルは、テトラエト:トシシランとも呼ばれる
化合物である。その他のテトラアルコキシシランを用い
ても本発明の効果は得ることができない。ケイ酸エチル
の使用量は、チタン含有ポリオレフィン中のTi原子に
対しSi/Ti(モル比)で0.1〜1000、好まし
くは0.5〜500である。
Ethyl silicate is a compound also called tetraeth:tosisilane. Even if other tetraalkoxysilanes are used, the effects of the present invention cannot be obtained. The amount of ethyl silicate used is 0.1 to 1000, preferably 0.5 to 500, in Si/Ti (molar ratio) to Ti atoms in the titanium-containing polyolefin.

本発明では、上記の有機ケイ素化合物とケイ酸エチルと
の組合せにおいて、有機ケイ素化合物の複数個とケイ酸
エチルとを組み合わせてもよい。
In the present invention, in the combination of the above organosilicon compound and ethyl silicate, a plurality of organosilicon compounds and ethyl silicate may be combined.

有機ケイ素化合物とケイ酸エチルのモル比は、使用する
有機ケイ素化合物の種類及び目的とする分子量分布、立
体規則性により適宜決定できるが、一般には、有機ケイ
素化合物をケイ酸エチルに対して0.01〜10倍モル
、好ましくは0.05〜5倍モル使用することが好適で
ある。
The molar ratio of the organosilicon compound to ethyl silicate can be appropriately determined depending on the type of organosilicon compound used, the desired molecular weight distribution, and the stereoregularity, but generally, the molar ratio of the organosilicon compound to ethyl silicate is 0. It is suitable to use 0.01 to 10 times the mole, preferably 0.05 to 5 times the mole.

これらの触媒成分の添加順序は特に限定されず、有機ケ
イ素化合物とケイ酸エチルを同時に混合供給しても、ま
たは別々に供給してもよい。またこれらは、予め有機ア
ルミニウム化合物と接触、或いは混合させた後に供給す
ることもできる。
The order of addition of these catalyst components is not particularly limited, and the organosilicon compound and ethyl silicate may be mixed and fed simultaneously or separately. Moreover, these can also be supplied after being brought into contact with or mixed with the organoaluminum compound in advance.

その他の重合条件は、本発明の効果が認められる限り、
特に制限はされないが一般には次の条件が好ましい。重
合温度は、20〜200℃、好ましくは50〜150℃
であり、分子量調節剤として水素を共存させることもで
きる。また、重合は、スラリー重合、無溶媒重合、及び
気相重合等が適用でき、回分式、半回分式、連続式の何
れの方法でもよく、更に重合を条件の異なる2段以上に
分けて行うこともできる。重合を行うオレフィン類とし
ては、エチレン、プロピレン、ブテン−1、ペンテン−
1,ヘキセン−1,4−メチクペンテンー1などであり
、これらの七ツマ−を単独で、又は2種以上を混合して
用いることができる。、2種以上のオレフィンを用いる
場合は、特定の一種を90モル%以上用いることが得ら
れるポリオレフィンの立体規則性の向上の点から好まし
い。
Other polymerization conditions are as long as the effects of the present invention are recognized.
Although not particularly limited, the following conditions are generally preferred. Polymerization temperature is 20-200°C, preferably 50-150°C
and hydrogen can also be present as a molecular weight regulator. In addition, slurry polymerization, solvent-free polymerization, gas phase polymerization, etc. can be applied to the polymerization, and any method such as a batch method, a semi-batch method, or a continuous method may be used, and the polymerization is further divided into two or more stages with different conditions. You can also do that. Olefins to be polymerized include ethylene, propylene, butene-1, and pentene-1.
1,hexene-1,4-methicpentene-1, etc., and these hexamers can be used alone or in combination of two or more. When two or more types of olefins are used, it is preferable to use 90 mol % or more of the specific type from the viewpoint of improving the stereoregularity of the resulting polyolefin.

(効果) 本発明の方法を採用することにより、立体規則性が良く
且つ分子量分布の広いポリオレフィンが得られる。従っ
て、得られたポリオレフィンは流動性、剛性に優れ、射
出成形やフィルム成形に好適な材料である。
(Effects) By employing the method of the present invention, a polyolefin with good stereoregularity and a wide molecular weight distribution can be obtained. Therefore, the obtained polyolefin has excellent fluidity and rigidity, and is a material suitable for injection molding and film molding.

本発明のオレフィン重合方法に於いて、特定の触媒系を
用いて得られるポリオレフィンの分子量分布の広がる理
由は未だ明らかではないが、本発明者らは以下のように
考えている。すなわち、本発明者らは、−儀式(1)で
表される有機ケイ素化合物を単独で用いた場合に高分子
量成分が生成し、一方、ケイ酸エチルを単独で用いた場
合に低分子量成分が生成するという興味ある事実を見い
だし、この2種を同時に用いることで同一系内に2種の
異なる活性点が生成し分子量分布が広くなることに成功
したと推定している。同時に本発明では有機ケイ素化合
物とケイ酸エチルに起因する2種の活性点が、いずれも
アイツタクチイックなものであり、このことが広分子量
分布化と高立体規則性化の同時達成につながったと考え
ている。
In the olefin polymerization method of the present invention, the reason why the molecular weight distribution of the polyolefin obtained using a specific catalyst system is broadened is not yet clear, but the present inventors think as follows. That is, the present inventors have found that when the organosilicon compound represented by formula (1) is used alone, a high molecular weight component is generated, whereas when ethyl silicate is used alone, a low molecular weight component is generated. They found the interesting fact that these two types of active sites are generated, and believe that by using these two types at the same time, two different types of active sites are generated in the same system, resulting in a broader molecular weight distribution. At the same time, in the present invention, the two types of active sites originating from the organosilicon compound and ethyl silicate are both highly active, and this is believed to have led to the simultaneous achievement of a wide molecular weight distribution and high stereoregularity. thinking.

(実施例) 以下実施例及び比較例を掲げて本発明を説明するが、本
発明はこれら実施例に限定されるものではない。
(Examples) The present invention will be explained below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

以下の実施例において測定方法について説明する。The measurement method will be explained in the following examples.

(1) p−キシレン可溶分 ポリマー1gをp−キシレン100ccに加え攪はんし
ながら、120℃まで昇温した後、更に30分撹はんを
続け、ポリマーを完全に溶かした後、p−キシレン溶液
を23℃、24時間放置した。
(1) Add 1 g of p-xylene soluble polymer to 100 cc of p-xylene, raise the temperature to 120°C while stirring, continue stirring for another 30 minutes, completely dissolve the polymer, and add p-xylene to 100 cc of p-xylene. -The xylene solution was left at 23°C for 24 hours.

析出物は濾別し、p−キシレン溶液を完全に濃縮するこ
とで可溶分をえた。
The precipitate was separated by filtration, and the p-xylene solution was completely concentrated to obtain a soluble component.

室温p−キシレン可溶分(%)= (p−キシレン可溶
分(g)/ポリマー1g)X100で表される。
Room temperature p-xylene soluble content (%) = (p-xylene soluble content (g)/1 g of polymer) x 100.

(2)メルトインデックス(以下、M+と略す)AST
M  0790に準拠 (3)曲げ弾性率(以下、Fmと略す)日本製鋼所 J
I20SAn型射出成形機により63.6 am X 
12.7 am X O,31+nの試験片を作成し、
ASTM:D−790に準じて行った。
(2) Melt index (hereinafter abbreviated as M+) AST
Based on M 0790 (3) Flexural modulus (hereinafter abbreviated as Fm) Japan Steel Works J
63.6 am X by I20SAn type injection molding machine
12.7 am X O, create a 31+n test piece,
It was performed according to ASTM:D-790.

(4)分子量分布(以下、pJ w / pJi nと
略す)重量平均分子量(Mw)と数平均分子l(Mn)
の比でGPc(ゲルバーミニ、−ジョンクロマトグラフ
ィー)法により測定した。ウォーターズ社製GPC−1
50CによりO−ジクロルベンゼンを溶媒とし、135
℃で行った。
(4) Molecular weight distribution (hereinafter abbreviated as pJ w / pJin) Weight average molecular weight (Mw) and number average molecular l (Mn)
The ratio was measured by GPc (Gelvermini-John Chromatography) method. Waters GPC-1
50C using O-dichlorobenzene as a solvent, 135
It was carried out at ℃.

(5)スパイラルフロー スパイラル金型を取り付けた8オンス射出成形機により
230℃で射出成型を行い、金型冷却後、ウェルド部か
らの樹脂長を測定した。
(5) Injection molding was performed at 230° C. using an 8-ounce injection molding machine equipped with a spiral flow spiral mold, and after cooling the mold, the resin length from the weld portion was measured.

実施例1 〔チタン化合物の調製〕 チタン成分の調製方法は、特開昭58−83006号公
報の実施例1の方法に準じて行った。すなわち無水塩化
マグネシウム0.95 g (10mmol) 、デカ
ン10d、及び2−エチルヘキシルアルコール4、7 
d (305sol)を125℃で2時間加熱攪はんし
た後、この溶液中に無水フタル酸0.55g(3,75
mmol)を添加し、125℃にてさらに1時間攪はん
混合を行い、均一?霧液とした。室温まで冷却した後、
−20℃に保持された四塩化チタン40 d (0,3
6su++ol)中に1時間にわたって全量滴下装入し
た。装入終了後、この混合液の温度を2時間かけて11
0℃に昇温し、110℃に達したところでジイソブチル
フタレート0.54d(2,5mmol)を添加し、こ
れより2時間、同温度にて攪はん下保持した。2時間の
反応終了後熱濾過にて固体部を採取し、この固体部20
0dのTi C1,4にて再懸濁させた後、再び110
℃で2時間、加熱反応を行なった。反応終了後、再び熱
濾過にて固体部を採取し、デカン及びヘキサンにて、洗
液中に遊離のチタン化合物が検出されな(なる迄、充分
洗浄した。以上の製造方法にて調製された固体Ti触媒
成分は、ヘプタンスラリーとして保存した。固体Ti触
媒成分の組成はチタン2.1重量%、塩素57重量%、
マグネシウム18.0重量%、及びジイソブチルフタレ
ート21.9重量%であった。
Example 1 [Preparation of titanium compound] The titanium component was prepared according to the method of Example 1 of JP-A-58-83006. That is, 0.95 g (10 mmol) of anhydrous magnesium chloride, 10 d of decane, and 4,7 ml of 2-ethylhexyl alcohol.
After heating and stirring d (305 sol) at 125°C for 2 hours, 0.55 g of phthalic anhydride (3,75 sol) was added to this solution.
mmol) and stirred and mixed at 125°C for an additional hour until the mixture was homogeneous. It was made into a liquid mist. After cooling to room temperature,
Titanium tetrachloride 40 d (0,3
6su++ol) over 1 hour. After charging, the temperature of this mixture was increased to 11% over 2 hours.
The temperature was raised to 0°C, and when the temperature reached 110°C, 0.54 d (2.5 mmol) of diisobutyl phthalate was added, and the mixture was maintained at the same temperature for 2 hours with stirring. After the completion of the 2-hour reaction, a solid portion was collected by hot filtration, and this solid portion 20
After resuspending in 0 d of Ti C1,4, again at 110
The heating reaction was carried out at ℃ for 2 hours. After the reaction was completed, the solid portion was collected again by hot filtration and thoroughly washed with decane and hexane until no free titanium compound was detected in the washing solution. The solid Ti catalyst component was stored as a heptane slurry.The composition of the solid Ti catalyst component was 2.1% by weight of titanium, 57% by weight of chlorine,
Magnesium was 18.0% by weight, and diisobutyl phthalate was 21.9% by weight.

〔予備重合〕[Prepolymerization]

N2置換を施した1zオートクレーブ中に精製へブタン
200d、トリエチルアルミニウム15nimol、固
体Ti触媒成分をTi原子換算で5flImol装入し
た後、プロピレンを全体でチタン成分1gに対し10g
となるように1時間連続的に反応器に導入した。なおこ
の間の温度は15℃に保持した。
After charging 200 d of purified hebutane, 15 nmol of triethylaluminum, and 5 flImol of solid Ti catalyst component in terms of Ti atom into a 1z autoclave subjected to N2 substitution, a total of 10 g of propylene was added per 1 g of titanium component.
The mixture was continuously introduced into the reactor for 1 hour. Note that the temperature during this time was maintained at 15°C.

1時間後プロピレンの導入を停止し、反応器内をN2で
充分に置換した。得られたスラリーの固体部分を精製へ
ブタンで6回洗浄し、チタン含有ポリオレフィンを得た
After 1 hour, the introduction of propylene was stopped, and the inside of the reactor was sufficiently purged with N2. The solid portion of the obtained slurry was washed six times with purified hemobutane to obtain a titanium-containing polyolefin.

(重合〕 NzM換を施した内容量400 /のオートクレーブに
、プロピレン200Ilを装入し、トリエチルアルミニ
ウム219mmoLジフェニルジメトキシシラン6.6
11mol、ケイ酸エチル26.3 mmol、更に、
水素2.0 N 1を装入した後、オートクレーブの内
湯を65℃に昇温し、チタン含有ポリオレフィンをチタ
ン原子で0.885uaol装入し、続いてオートクレ
ーブの内湯を70℃まで昇温し、3時間のプロピレンの
重合を行った。重合圧力31kg/d、この間の温度は
70℃に保持し、水素濃度をガスクロマトグラフで確認
しながらQ、2molχに保持した。3時間後未反応の
プロピレンをパージし、白色顆粒状の重合体を得た。続
いて得られた重合体は、2001のへブタンで60℃、
30分間洗浄し、十分に乾燥を行った。
(Polymerization) 200 Il of propylene was charged into an autoclave with an internal capacity of 400 μl that had been subjected to NzM conversion, and 219 mmol of triethylaluminum and 6.6 mmol of diphenyldimethoxysilane were added.
11 mol, ethyl silicate 26.3 mmol, and
After charging 2.0 N 1 of hydrogen, the temperature of the inner hot water of the autoclave was raised to 65 ° C., 0.885 uaol of titanium-containing polyolefin was charged with titanium atoms, and then the inner hot water of the autoclave was heated to 70 ° C. Polymerization of propylene was carried out for 3 hours. The polymerization pressure was 31 kg/d, the temperature was maintained at 70° C., and the hydrogen concentration was maintained at Q and 2 molχ while checking with a gas chromatograph. After 3 hours, unreacted propylene was purged to obtain a white granular polymer. The resulting polymer was then heated with 2001 hebutane at 60°C.
It was washed for 30 minutes and thoroughly dried.

全重合体の収量は、32kgであり、この時の活性は1
6000 g  pp/g  cat  ・3hrであ
った。
The total polymer yield was 32 kg, and the activity was 1
It was 6000 g pp/g cat ・3 hr.

上記重合体に酸化防止剤を添加し十分に混合したのち造
粒機によりベレット状とした。
After adding an antioxidant to the above polymer and thoroughly mixing it, it was formed into pellets using a granulator.

Ml、p−キシレン可溶分、Mw/Mn、Fm。Ml, p-xylene soluble content, Mw/Mn, Fm.

スパイラルフロー長の結果を表1に示す。Table 1 shows the results of spiral flow length.

実施例2 実施例1の重合に於いて、ジフェニルジメトキシシラン
の代わりにシクロヘキシルメチルジメトキシシラン、メ
チルフエニルジメトキシシラン、ジメチルジメトキシシ
ランを用いた以外は実施例1と同様の操作を行った。結
果を表1に示す。
Example 2 The same procedure as in Example 1 was performed except that cyclohexylmethyldimethoxysilane, methylphenyldimethoxysilane, and dimethyldimethoxysilane were used in place of diphenyldimethoxysilane. The results are shown in Table 1.

実施例3 実施例1の重合に於いて、ジフェニルジメトキシシラン
とケイ酸エチルのモル比を表1の割合で用いた以外は実
施例1と同様の操作を行った。結果を表1に示す。
Example 3 In the polymerization of Example 1, the same operations as in Example 1 were performed except that the molar ratios of diphenyldimethoxysilane and ethyl silicate were used as shown in Table 1. The results are shown in Table 1.

実施例4 実施例1の予備重合に於いてチタン成分を添加する前に
ヨウ素5++iolを添加した以外は実施例1と同様の
操作を行った。結果を表1に示す。
Example 4 The same operation as in Example 1 was performed except that 5++ iol of iodine was added before adding the titanium component in the prepolymerization of Example 1. The results are shown in Table 1.

実施例5 実施例1の予備重合に於いてチタン成分を添加する前に
ヨウ化エチル5101を添加した以外は実施例1と同様
の操作を行った。結果を表1に示す。
Example 5 The same operation as in Example 1 was performed except that ethyl iodide 5101 was added before adding the titanium component in the prepolymerization of Example 1. The results are shown in Table 1.

比較例1 実施例1の重合に於いて、ケイ酸エチルを用いなかった
以外は実施例1と同様の操作を行った。
Comparative Example 1 In the polymerization of Example 1, the same operation as in Example 1 was performed except that ethyl silicate was not used.

結果を表2に示す。The results are shown in Table 2.

比較例2 実施例1の重合に於いて、ジフェニルジメトキシシラン
を用いなかった以外は実施例1と同様の操作を行った。
Comparative Example 2 In the polymerization of Example 1, the same operation as in Example 1 was performed except that diphenyldimethoxysilane was not used.

結果を表2に示す。The results are shown in Table 2.

比較例3 実施例1に於いて、予備重合を施さなかった以外は実施
例1と同様の操作を行った。結果を表2に示す。
Comparative Example 3 The same operation as in Example 1 was performed except that preliminary polymerization was not performed. The results are shown in Table 2.

比較例4 実施例1の重合に於いて、ケイ酸エチルの代わりにメチ
ルトリエトキシシラン、ケイ酸メチル、ケイ酸イソプロ
ピル、ケイ酸ブチルを用いた以外は実施例1と同様の操
作を行った。結果を表2に示す。
Comparative Example 4 In the polymerization of Example 1, the same operation as in Example 1 was performed except that methyltriethoxysilane, methyl silicate, isopropyl silicate, and butyl silicate were used instead of ethyl silicate. The results are shown in Table 2.

手続補正書Procedural amendment

Claims (1)

【特許請求の範囲】[Claims] (1)A 予備重合で得られたチタン含有ポリオレフィ
ン B 有機アルミニウム化合物 C 一般式 R_nSi(OR′)_4_−_n 〔但し、RおよびR′は、同種又は異種 の炭化水素基であり、nは1〜3の整数 である。〕 で示される有機ケイ素化合物 D ケイ酸エチル の存在下にオレフィンを重合することを特徴とするポリ
オレフィンの製造方法。
(1) A Titanium-containing polyolefin obtained by prepolymerization B Organoaluminum compound C General formula R_nSi(OR')_4_-_n [However, R and R' are the same or different hydrocarbon groups, and n is 1 It is an integer of ~3. ] Organosilicon compound D represented by: A method for producing a polyolefin, which comprises polymerizing an olefin in the presence of ethyl silicate.
JP32362288A 1988-12-23 1988-12-23 Method for producing polyolefin Expired - Fee Related JPH0747604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32362288A JPH0747604B2 (en) 1988-12-23 1988-12-23 Method for producing polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32362288A JPH0747604B2 (en) 1988-12-23 1988-12-23 Method for producing polyolefin

Publications (2)

Publication Number Publication Date
JPH02170803A true JPH02170803A (en) 1990-07-02
JPH0747604B2 JPH0747604B2 (en) 1995-05-24

Family

ID=18156792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32362288A Expired - Fee Related JPH0747604B2 (en) 1988-12-23 1988-12-23 Method for producing polyolefin

Country Status (1)

Country Link
JP (1) JPH0747604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244794B2 (en) 2005-03-29 2007-07-17 Samsung Total Petrochemicals Co., Ltd. Method for producing propylene polymer having a very high melt-flowability
US7619048B2 (en) 2005-09-30 2009-11-17 Samsung Total Petrochemicals Co., Ltd. Method for producing propylene polymer using alkoxysilane compound containing trialkysilyl group in molecular structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244794B2 (en) 2005-03-29 2007-07-17 Samsung Total Petrochemicals Co., Ltd. Method for producing propylene polymer having a very high melt-flowability
US7619048B2 (en) 2005-09-30 2009-11-17 Samsung Total Petrochemicals Co., Ltd. Method for producing propylene polymer using alkoxysilane compound containing trialkysilyl group in molecular structure

Also Published As

Publication number Publication date
JPH0747604B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JP3255173B2 (en) Catalyst system for production of amide transition metal compounds and isotactic polypropylene
KR860001090B1 (en) Propylene-ethylene copolymers for high-rigidity moled products and process for producing the same
JPH0370710A (en) Production of alpha-olefin polymer
JPH04110308A (en) Method for polymerizing alpha-olefin
US6686433B1 (en) Dual donor catalyst system for the polymerization of olefins
JPH02170803A (en) Production of polyolefin
JPS63168408A (en) Preparation of polyolefin
JP2691023B2 (en) Ultra high molecular weight polypropylene and method for producing the same
JPS63168407A (en) Preparation of polyolefin
CA2256493C (en) Catalyst for .alpha.-olefin polymerization
JP2553246B2 (en) Method for producing propylene ethylene copolymer
JP2000186109A (en) Production of polypropylene
JP2594381B2 (en) Method for producing polypropylene
JPH02170802A (en) Preliminary polymerization of olefin
JPH0496907A (en) Prepolymerization of olefin
JP2680741B2 (en) Propylene ethylene copolymer
JP2954322B2 (en) Production method of α-olefin polymer
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JP2904871B2 (en) Method for producing propylene polymer
JPH07179513A (en) Production of polypropylene
JP3492455B2 (en) Olefin polymerization catalyst and method for producing olefin polymer using the same
JPH1025323A (en) Production of alpha-olefin block copolymer
JP3294112B2 (en) Olefin polymerization catalyst and method for producing olefin polymer using the same
JPS63234003A (en) Production of olefin polymer
JPH0280407A (en) Polymerization of olefin

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees