JPH02168180A - Method for optically measuring magnetic field and detection element - Google Patents

Method for optically measuring magnetic field and detection element

Info

Publication number
JPH02168180A
JPH02168180A JP32203288A JP32203288A JPH02168180A JP H02168180 A JPH02168180 A JP H02168180A JP 32203288 A JP32203288 A JP 32203288A JP 32203288 A JP32203288 A JP 32203288A JP H02168180 A JPH02168180 A JP H02168180A
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
magnetic field
magnetic core
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32203288A
Other languages
Japanese (ja)
Inventor
Kanji Nakanishi
中西 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP32203288A priority Critical patent/JPH02168180A/en
Publication of JPH02168180A publication Critical patent/JPH02168180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To easily measure magnetization by guiding a magnetic field to be measured to a magnetic core and performing the reflection of laser beam many times between the reflecting surface formed to the surface of the magnetic core and the reflecting surface arranged in opposed relation thereto. CONSTITUTION:The polarized beam having a definite plane of polarization generated from a laser beam device passes through an optical waveguide 7 to transmit through the pinholes 8 formed on both of a substrate 4 and a reflecting film 5 and further passes through a transparent SiO2 layer 9 to be incident on the reflecting surface formed on a magnetic core 1. The intensity of laser beam receives traverse Kerr effect and the reflected beam is further again reflected by a reflecting film 6 to be incident on the core 1. After receiprocating reflection is repeated many times, the beam again passes through a pinhole 8' being an emitting passage and transmitted through the substrate 4 enters an optical waveguide 7'. The reflected beam is incident on a reflected beam intensity measuring device to measure the intensity of reflected beam and the magnetization of a magnetic medium is read on the basis of the intensi ty of said reflected beam.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、空間の磁界を光学的方法により検出する方法
、及びその用途に供される検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting a spatial magnetic field by an optical method, and a detection element used for the method.

[従来技術] 空間磁界を検出する方法としては1例えばまずホール素
子が挙げられる。これはN形半導体に流れる電流とこの
電流に印加される磁界とにより。
[Prior Art] One example of a method for detecting a spatial magnetic field is a Hall element. This is due to the current flowing through the N-type semiconductor and the magnetic field applied to this current.

これらに北例する電圧が前記電流と印加磁界のいずれに
も直交する方向に表われることを利用するものである。
This method takes advantage of the fact that voltages north of these appear in a direction perpendicular to both the current and the applied magnetic field.

さらには媒体上の磁化を検出するヘッドもこの一例とも
いえる。これには媒体上の記録磁化により形成された磁
界を、接近したヘッドに導入しこれを抵抗の変化ととら
える磁気抵抗効果型ヘッドと、磁束の変化としてとらえ
る磁束変化検出型磁気ヘッドとがある。
Furthermore, a head that detects magnetization on a medium is also an example of this. These include a magnetoresistive head, which introduces a magnetic field formed by recording magnetization on a medium into a nearby head and interprets this as a change in resistance, and a magnetic flux change detection type magnetic head, which captures this as a change in magnetic flux.

一方磁化の光学的検出方法として、磁気カー効果を利用
し、媒体上の磁化自体を1反射された偏光の偏光面の回
転角度を測定することにより検出する方法がある。この
方法自体は空間磁界を測定するものとはいえないが5磁
化記録の再生に用いられている方式である。
On the other hand, as an optical detection method of magnetization, there is a method of detecting magnetization itself on a medium by measuring the rotation angle of the plane of polarization of reflected polarized light using the magnetic Kerr effect. Although this method itself cannot be said to measure a spatial magnetic field, it is a method used for reproducing 5-magnetization recording.

[発明が解決しようとする課題] これらの磁界或は磁化の検出方法は、夫々に長所があり
、或は夫々に欠点があるため特色に応じて応用分野を異
にし、用いられているものである。例えばホール素子は
モータの磁束検知に用いられているが、媒体上の磁化検
知素子としてはその構造上、現在のところは必ずしも適
しているとは言いがたい。
[Problems to be Solved by the Invention] Each of these magnetic field or magnetization detection methods has advantages and disadvantages, so they are used in different fields of application depending on their characteristics. be. For example, Hall elements are used to detect magnetic flux in motors, but due to their structure, they are currently not necessarily suitable as magnetization sensing elements on media.

磁気抵抗効果型の磁気ヘッドは、磁束応答型であるので
低速回転する媒体ディスクの磁化検出には適するが1例
えば直線性に欠ける点或は温度特性上の欠点がある。
Since magnetoresistive magnetic heads are magnetic flux responsive, they are suitable for detecting the magnetization of medium disks rotating at low speeds, but they have drawbacks such as lack of linearity and temperature characteristics.

磁束変化検出型の磁気ヘッドは最も多く用いられている
磁化の検出方法であるが、信号を磁束の変化としてとら
えるため媒体ディスクとの相対速度が一定以上必要であ
る。
A magnetic flux change detection type magnetic head is the most commonly used method for detecting magnetization, but in order to capture a signal as a change in magnetic flux, a relative speed with the medium disk is required to be above a certain level.

更に磁気カー効果を応用し、媒体上の磁化を読みとる従
来の光学的再生方法は、媒体上の磁化に直接偏光を照射
する必要があり、媒体が高速回転している場合にはこれ
に正確かつ迅速にアクセスするための自動トラッキング
装置が不可欠であり、記録磁化へのアクセスが、この精
度、応答性に依存するという欠点がある。
Furthermore, the conventional optical reproduction method that applies the magnetic Kerr effect to read the magnetization on the medium requires irradiating polarized light directly onto the magnetization on the medium, and when the medium is rotating at high speed, it is difficult to accurately and An automatic tracking device for quick access is essential, and the disadvantage is that access to recorded magnetization depends on its accuracy and responsiveness.

本発明の目的は、かかる従来の磁界或は媒体上の磁化を
測定する方法に加えて、他の一つの方法、及びその用途
に供される素子を提供することにある。
An object of the present invention is to provide, in addition to the conventional method of measuring a magnetic field or magnetization on a medium, another method and an element used for the method.

〔課題を解決するための手段] 本発明の前記目的は m 、DI定磁界を磁気コア部に導くこと。[Means to solve the problem] The above object of the present invention is m, guiding the DI constant magnetic field to the magnetic core.

磁気コア表面上に形成された反射面に光ビームを投射す
ること。
Projecting a light beam onto a reflective surface formed on the surface of a magnetic core.

3反射面と、これにあい対して配設される反射鏡との間
において前記光ビームの反射を多数回行わせた後その反
射光の強度を測定することを特徴とする磁界の光学的測
定方法によって達成される。
3. Optical measurement of a magnetic field, characterized in that the light beam is reflected many times between a reflecting surface and a reflecting mirror disposed opposite thereto, and then the intensity of the reflected light is measured. achieved by the method.

さらにこの方法を使用するにあたっては少なくとも一方
の表面が反射而として形成される軟磁性材料からなる磁
気コア部と。
Furthermore, when using this method, a magnetic core portion made of a soft magnetic material having at least one surface formed as a reflective material is used.

光の入路及び出路を備え、前記反射而とあい対して配さ
れる鏡面を備えた多重反射鏡部と。
A multi-reflection mirror section including an input path and an exit path for light, and a mirror surface disposed opposite to the reflector.

から基本的に構成される。磁界の光学的検出素子が供さ
れる。
It basically consists of An optical detection element for the magnetic field is provided.

本発明は下記の考え方にもとづくものである。The present invention is based on the following idea.

即ち、最近垂直磁化記録が可能となったことから、極力
−効果を利用する光磁気再生方式は非常に脚光を浴びて
いる。しかし、前記の如く磁化記録へのアクセスが自動
トラッキング方法によって行われるため、ディスクに溝
を形成する必要があり、且つ、自動トラッキングの駆動
機構がサーボ方式を利用するため応答性に問題があった
。従って本発明ではこれを解決するため他の磁気ヘッド
と同様、磁気コアに一旦記録磁化による磁束を導入し、
これを磁気カー効果で検出することによりアクセス性を
改善するものである。
That is, since perpendicular magnetization recording has recently become possible, magneto-optical reproducing methods that utilize the -effect as much as possible are attracting much attention. However, as mentioned above, since access to magnetization recording is performed by the automatic tracking method, it is necessary to form grooves on the disk, and the automatic tracking drive mechanism uses a servo system, which causes problems in response. . Therefore, in the present invention, in order to solve this problem, like other magnetic heads, magnetic flux due to recording magnetization is once introduced into the magnetic core.
Accessibility is improved by detecting this using the magnetic Kerr effect.

この変更により、ヘッドの一部として構成した磁気コア
部の磁化をM1定するにあたって、3種類の磁気カー効
果、即ち極カー効果、縦カー効果。
With this change, three types of magnetic Kerr effects, ie, polar Kerr effect and longitudinal Kerr effect, are used to determine the M1 magnetization of the magnetic core portion configured as a part of the head.

横カー効果の内縦カー効果又は横カー効果を用いること
が効率的に有利となる。しかしこれらのカー効果は極力
−効果に比べると数分の一程度の出力しか得られないの
で、信号対ノイズの比、即ちSN比の観点からはM1定
上きわめて不利となる。
It is efficiently advantageous to use the vertical Kerr effect or the horizontal Kerr effect among the horizontal Kerr effects. However, since these Kerr effects provide an output that is only about a fraction of that of the Minimum effect, they are extremely disadvantageous in terms of the signal-to-noise ratio, that is, the S/N ratio.

そこでこのカー効果を多数回反射して生せしめることと
し、SN比の改善を図ったものである。
Therefore, it was decided to generate this Kerr effect by reflecting it many times to improve the signal-to-noise ratio.

尚この縦カー効果、横カー効果は従来においても、特定
の測定装置においては、楕円偏光利用により十分に検出
されていたものである。ここでirt来の縦カー効果、
構カー効果を実際に測定した例を第3図に示す。
Note that the vertical Kerr effect and the horizontal Kerr effect have been sufficiently detected in the past by using elliptically polarized light in a specific measuring device. Here, the vertical car effect since irt,
Figure 3 shows an example of actually measuring the structural car effect.

この方法では直線偏光板24の後に1/4λ波長板をお
いてレーザ光を円偏光としていること、力効果により偏
光面角度を変えられたため楕円偏光となった反射光をビ
ームスプリッタ14で正確に50%づつに分割すること
、差湯増幅器28により系統のノイズを消去すること、
がその特徴である。
In this method, a 1/4 wavelength plate is placed after the linear polarizing plate 24 to make the laser beam into circularly polarized light, and the beam splitter 14 accurately converts the reflected light, which has become elliptically polarized light because the polarization plane angle is changed by the force effect. dividing into 50% each, eliminating noise in the system using the differential hot water amplifier 28;
is its characteristic.

この方法は、ノイズ除去にきわめて1効であるが、 A
Jl定系の構成がきわめて複雑となり、量産に適さない
ことが大きな欠点である。
This method is extremely effective in removing noise, but A
A major drawback is that the structure of the Jl constant system is extremely complicated and is not suitable for mass production.

しかし本発明の構成である。複数回の反射を行わせるこ
とにより 磁気カー効果を結果的に増幅することとすれ
ば、このような測定系よりも経済的に宜利な構成となり
得る。
However, this is the configuration of the present invention. If the magnetic Kerr effect is amplified by performing multiple reflections, the configuration can be more economically advantageous than such a measurement system.

即ち1通常の直線偏光のみでの測定も可能となるのでカ
ー効果利用による磁化11$1定が容易となることが期
待できるものである。
That is, since it becomes possible to measure using only normal linearly polarized light, it is expected that the magnetization 11$1 constant will be easily determined by utilizing the Kerr effect.

[作用] 本発明の構成において、磁界が導入される磁気コア部を
設けることにより1例えば媒体りの磁化に容易に、nつ
精度よくアクセスすることができる。又、光ビームを照
射し、この光ビームの反射強度を測定するとしたことに
より、媒体ディスク上の記録磁化に対して磁束応答型の
検出が可能となる。
[Function] In the configuration of the present invention, by providing a magnetic core portion into which a magnetic field is introduced, it is possible to easily and accurately access the magnetization of a medium, for example. Further, by emitting a light beam and measuring the reflection intensity of the light beam, it becomes possible to perform magnetic flux responsive detection of recorded magnetization on the medium disk.

更に磁気コア表面と、これにあい対する鏡面との間で多
数回の往復反射を行わせるとしたことにより、磁気カー
効果を多数回行わせることができ、−回のみの反射の場
合に比べ、増幅効果が生じ、SN比の向上が可能となる
Furthermore, by causing multiple round trip reflections between the magnetic core surface and the opposing mirror surface, the magnetic Kerr effect can be generated multiple times, compared to the case where the magnetic core is reflected only - times. An amplification effect occurs, and it becomes possible to improve the S/N ratio.

[実施例] 本発明に係る好適な実施例の1つとして1本発明の方法
を磁気光学的再生ヘッドに応用することができる。
[Embodiment] As one of the preferred embodiments of the present invention, the method of the present invention can be applied to a magneto-optic reproducing head.

この実施例について図をもとに説明する。This embodiment will be explained based on the drawings.

第1図は、ヘッドの磁気コアl、1′が媒体ディスク3
1−の記録面に空隙2を介してアクセスする様を示して
いる。尚この図ではコア部に付随して光磁気再生を実際
に行う機構は説明のため省略している。媒体3上の磁化
は空隙と直角方向。
In FIG. 1, the magnetic cores l and 1' of the head are connected to the media disk 3.
The figure shows how the recording surface 1- is accessed through the gap 2. In this figure, a mechanism accompanying the core portion that actually performs magneto-optical reproduction is omitted for the sake of explanation. The magnetization on medium 3 is perpendicular to the air gap.

即ち媒体の進行方向と一致して記録されている。In other words, it is recorded in accordance with the traveling direction of the medium.

この磁化はアクセスされた再生ヘッドに1通常の磁束−
電流変換式(磁束変化検出方式)のヘッドと同様、磁気
コア内を貫流する磁束を形成する。
This magnetization is applied to the accessed playback head by 1 normal magnetic flux -
Similar to a current conversion type (magnetic flux change detection type) head, a magnetic flux is created that flows through the magnetic core.

第2図は本実施例に係る光再生ヘッドにおける偏光の反
射についての原理図を示している。ガラス基板4上に形
成され、ピンホール8.8′を有し、基板と反対側の面
に鏡面6が形成された反射薄膜5の上には、厚みdをU
する透明な8102層9が形成され、その上には2枚の
磁気薄膜コア1.1′が磁気絶縁膜lOを間にはさんで
形成される。
FIG. 2 shows a principle diagram of reflection of polarized light in the optical reproducing head according to this embodiment. A reflective thin film 5 formed on a glass substrate 4, having a pinhole 8.8' and a mirror surface 6 formed on the surface opposite to the substrate has a thickness d of U.
A transparent 8102 layer 9 is formed, on which two magnetic thin film cores 1.1' are formed with a magnetic insulating film lO sandwiched therebetween.

先導波路7.7′の夫々は1図示しない他端において光
ビームの発生装置及び反射光強度Mj定装置に接続され
ている。
Each of the leading waveguides 7,7' is connected at the other end (not shown) to a light beam generator and a device for determining the reflected light intensity Mj.

次に同図に基づいてこの光再生ヘッドの動作原理を説明
する。
Next, the principle of operation of this optical reproducing head will be explained based on the same figure.

光ビーム装置で発生した一定の偏光面を存する偏光は、
先導波路7内を通り、j!板4及び反射膜5に形成され
たピンホール8を透過し、更に透明S iO2層9を通
過し、磁気コア1に形成された反η・J而に入射する。
Polarized light with a constant plane of polarization generated by a light beam device is
Pass through the leading waveway 7, j! The light passes through the pinhole 8 formed in the plate 4 and the reflective film 5, further passes through the transparent SiO2 layer 9, and enters the anti-η·J formed in the magnetic core 1.

光ビーム強度が横カー効果により変化を受けて反射され
た光ビームは更に反射膜6で再び反射され、磁気コア1
に入射する。多数回反射往復を繰り返した後再び出路で
あるピンホール8′を抜け、J!板4を通過して、先導
波路7′に入射する。
The light beam that is reflected as the light beam intensity changes due to the transverse Kerr effect is further reflected again by the reflective film 6, and is reflected by the magnetic core 1.
incident on . After repeating the reflection back and forth many times, it passes through pinhole 8' which is the exit route again, and J! It passes through the plate 4 and enters the leading wavepath 7'.

この反射された光ビームは反射光強tt 測定装置によ
り1反射光の光強度が14J11定され、この反射光の
光強度から磁気媒体上の磁化が読みとられることとなる
The reflected light beam has a reflected light intensity tt.The light intensity of one reflected light beam is determined by the reflected light intensity tt measuring device, and the magnetization on the magnetic medium is read from the light intensity of this reflected light beam.

本発明においては、磁気カー効果を多数回、少くとも3
回以上行なわせることとしているので。
In the present invention, the magnetic Kerr effect is applied multiple times, at least 3 times.
We are planning to have them do it more than once.

極力−効果に比べ、出力の小さい横カー効果をも利用で
きることとなり、上記実施例のような磁気コア表面上で
のいわゆる面内磁化の読みとりが容易となるものである
It is possible to utilize the transverse Kerr effect, which has a smaller output than the maximum effect, and it becomes easier to read the so-called in-plane magnetization on the surface of the magnetic core as in the above embodiment.

[発明の効果] 本発明の構成により、磁気光学的効果(カー効果)利用
の磁界測定方法を採用し、更に磁界を導入する磁気コア
部を設けたことにより、迅速且つ精密に1 all定磁
界にアクセスすることが可能となるので、再生ヘッドに
応用した場合には自動トラッキング装置不要の光磁気再
生ヘッドとすることができる。
[Effects of the Invention] With the configuration of the present invention, a magnetic field measurement method using the magneto-optical effect (Kerr effect) is adopted, and a magnetic core part for introducing a magnetic field is provided, so that one constant magnetic field can be quickly and accurately measured. When applied to a reproducing head, it is possible to create a magneto-optical reproducing head that does not require an automatic tracking device.

又磁束応答型の検出方法を使用するため、媒体との相対
速度に影響されないヘッドの提供が可能となる。
Furthermore, since a magnetic flux responsive detection method is used, it is possible to provide a head that is not affected by the relative speed with respect to the medium.

磁気カー効果を多数回行わせるのでSN比の向上が可能
となり、tll11カー効果応用の磁化測定方法では従
来困難であった。SN比の大きい正確な測定が可能とな
った。
Since the magnetic Kerr effect is performed many times, it is possible to improve the S/N ratio, which was previously difficult to do with magnetization measurement methods that apply the tll11 Kerr effect. Accurate measurement with a high signal-to-noise ratio is now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を応用した一実施例に係る。磁気
コアが媒体」−の磁化ヘアドレスする様子を。 第2図は磁気コアトでの磁気カー効果利用による磁気−
光変換部を。 第3図は従来例のカー効果の測定系の一例を。 夫々示す図である。 12、12’ ・・・集光レンズ ■4・・・ビームスプリッタ 24、24’・・・111線偏光板 25・・・■ハλ波長板  26・・・l/2λ波長板
27・・・反射ミラー   28・・・差動アンプ出願
人   富士写真フィルム株式会社代理人   弁理士
  加 藤 朝 道(41名) 符号説明 1.1′・・・磁気コア 2・・・空隙3・・・磁気デ
ィスク  4・・・ガラス基板5・・・反射膜    
 6・・・鏡面7.7′・・・先導波路 8,8′・・
・ピンホール9・・・透明SiO□膜 IO・・・磁気
絶縁層11・・・半導体レーザ装置 第1図 第3図 第2図
FIG. 1 relates to an embodiment to which the principle of the present invention is applied. How the magnetic core addresses the magnetization of the medium. Figure 2 shows the magnetic force produced by utilizing the magnetic Kerr effect in the magnetic core.
light conversion section. Figure 3 shows an example of a conventional Kerr effect measurement system. FIG. 12, 12'...Condensing lens ■4...Beam splitter 24, 24'...111 line polarizing plate 25...■Cλ wavelength plate 26...l/2λ wavelength plate 27... Reflection mirror 28...Differential amplifier applicant Fuji Photo Film Co., Ltd. agent Patent attorney Asami Kato (41 people) Symbol explanation 1.1'...Magnetic core 2...Gap 3...Magnetic disk 4... Glass substrate 5... Reflective film
6... Mirror surface 7.7'... Leading wave path 8,8'...
・Pinhole 9...Transparent SiO□ film IO...Magnetic insulating layer 11...Semiconductor laser device Fig. 1 Fig. 3 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)被測定磁界を磁気コア部に導くこと、磁気コア表
面上に形成された反射面に光ビームを投射すること、 該反射面と、これにあい対して配設される反射鏡との間
において前記光ビームの反射を多数回行わせた後その反
射光の強度を測定すること を特徴とする磁界の光学的測定方法。
(1) Directing the magnetic field to be measured to the magnetic core, projecting a light beam onto a reflective surface formed on the surface of the magnetic core, and connecting the reflective surface and a reflecting mirror disposed opposite thereto. 1. A method for optically measuring a magnetic field, comprising: reflecting the light beam many times during a period of time, and then measuring the intensity of the reflected light.
(2)少なくとも一方の表面が反射面として形成される
軟磁性材料からなる磁気コア部と、 光の入路及び出路を備え、前記反射面とあい対して配さ
れる鏡面を備えた多重反射鏡部と、から基本的に構成さ
れる、磁界の光学的検出素子。
(2) A multi-reflector comprising a magnetic core made of a soft magnetic material with at least one surface formed as a reflective surface, and a mirror surface arranged opposite to the reflective surface, with an entrance and exit path for light. An optical detection element for a magnetic field, which basically consists of a part and a part.
JP32203288A 1988-12-22 1988-12-22 Method for optically measuring magnetic field and detection element Pending JPH02168180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32203288A JPH02168180A (en) 1988-12-22 1988-12-22 Method for optically measuring magnetic field and detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32203288A JPH02168180A (en) 1988-12-22 1988-12-22 Method for optically measuring magnetic field and detection element

Publications (1)

Publication Number Publication Date
JPH02168180A true JPH02168180A (en) 1990-06-28

Family

ID=18139163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32203288A Pending JPH02168180A (en) 1988-12-22 1988-12-22 Method for optically measuring magnetic field and detection element

Country Status (1)

Country Link
JP (1) JPH02168180A (en)

Similar Documents

Publication Publication Date Title
US5199090A (en) Flying magnetooptical read/write head employing an optical integrated circuit waveguide
US20040013077A1 (en) Optical pickup device and recording/reproducing device
KR920007294B1 (en) Optical head for magneto-optical memory
JPS5982646A (en) Optomagnetic storage device
US4654837A (en) Magneto-optic transducer with enhanced signal performance
JP3362912B2 (en) Beam shaping and beam separation equipment
JPH02168180A (en) Method for optically measuring magnetic field and detection element
JPH02165077A (en) Optical measurement of magnetic field and detector
US6246657B1 (en) Fiber bundle switch
US5101393A (en) Optical position error detection using complementary steep angle reflections/transmissions
US6688743B1 (en) Method and apparatus to determine fly height of a recording head
US5327413A (en) Ruggedized homogeneous thin dielectric film focus sensor
US3609723A (en) Piezoreflective-magnetostrictive film transducer
JPH0355894B2 (en)
JP2629812B2 (en) Optical playback pickup
JPH01307934A (en) Optical head
JPH11250484A (en) Monitor optical system and optical recording and reproducing device
JPH07334887A (en) Positioning method for magnetic head
JPH0646215B2 (en) Coercive force measuring device
JPS58169358A (en) Optical reproducing device
JPS61237241A (en) Photomagnetic recording and reproducing device
JPH06290500A (en) Magneto-optical composite sensor
JP3359787B2 (en) Magneto-optical recording / reproducing device
JPH07130024A (en) Magneto-optical detector
JPH109831A (en) Fly height measuring apparatus for magnetic recorder