JPH02167411A - Method for measuring distance between parallel planes - Google Patents

Method for measuring distance between parallel planes

Info

Publication number
JPH02167411A
JPH02167411A JP32254088A JP32254088A JPH02167411A JP H02167411 A JPH02167411 A JP H02167411A JP 32254088 A JP32254088 A JP 32254088A JP 32254088 A JP32254088 A JP 32254088A JP H02167411 A JPH02167411 A JP H02167411A
Authority
JP
Japan
Prior art keywords
light
optical
parallel
distance
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32254088A
Other languages
Japanese (ja)
Inventor
Yasuji Hattori
服部 保次
Susumu Inoue
享 井上
Masaichi Mobara
政一 茂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32254088A priority Critical patent/JPH02167411A/en
Publication of JPH02167411A publication Critical patent/JPH02167411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To speedily measure the distance between parallel planes placed opposite to each other with high accuracy by arranging an optical system and a movable Michelson interferometer at a distance. CONSTITUTION:The light emitted by a white light source 31 is converged 32, passed through a pinhole 33, and converted by a collimator lens 34 into parallel light. This parallel light is reflected by a beam splitter 35 and made incident on optical parallels 1 and 1'. Light reflected by the measurement surfaces 11 and 11' of the parallels 1 and 1' is transmitted through the splitter 35, converged 36, and made incident on an optical fiber 4. Then the light which is propagated by the fiber 4 to the movable Michelson interferometer 5 is converted by a collimator lens 51 into parallel light, which is branched by a beam splitter 52 to a fixed mirror 53 and a movable mirror 54. This movable mirror 54 reflects the light to the splitter 52 while moving at a constant speed in parallel to the direction of the light. Then the light which is reflected by the fixed mirror 53 and movable mirror 54 to return to the splitter 52 is made incident on a condenser lens 55 and then on a detector 56, which measures variation in the intensity of the light reflected by the fixed mirror 53 and movable mirror 54 due to interference.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、平行平面間距離の測定方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for measuring distance between parallel planes.

より詳細には、光学的に透明で屈折率が既知である物質
の被検体の対向する平行平面間距離を、非接触で高精度
に測定する方法に関する。また、本発明は、円柱体の外
径、たとえば光ファイバの外径を高精度で測定する方法
に対する、上記の方法の応用にも関する。
More specifically, the present invention relates to a method for non-contact and highly accurate measurement of the distance between opposing parallel planes of an optically transparent material with a known refractive index. The invention also relates to the application of the method described above to a method for measuring the outer diameter of a cylindrical body, for example the outer diameter of an optical fiber, with high precision.

従来の技術 平行平面間の距離を光学的に非接触な方法で測定する方
法としては、等傾角干渉縞のフリンジによる方法が公知
である。この方法の一例として、JMIテクニカルvo
l、 2 No、 6 (1988)第21頁〜第25
頁゛光ファイバ外径の絶対測定″に開示されている方法
を第3図を参照して説明する。第3図は、上記の方法を
利用して、光ファイバの外径を測定する場合の原理を示
す概略図である。第3図において、一対のオプティカル
パラレル1および1′は、測定面11および11′が向
かい合い、2本の外径の等しい光ファイバ2および2′
が測定面11および11′の間に挟まれている。単色光
の光源31から発せられた光は、ハーフミラ−14を透
過してオプティカルパラレル■および1′に入射し、そ
れぞれ測定面11および11′で反射した光aおよびb
は、ハーフミラ−14により反射され結像レンズ13へ
入射する。光aおよびbは結像レンズ13の焦点面で重
なり合い、干渉する。干渉光の強度Iは、光aおよびb
の強度をそれぞれ11および1゜、光路差をδ、光の波
長をλとすると、式 1式% で表すことができる。干渉縞はレンズ■3の光軸をよぎ
る点を中心とした多数の同心円群よりなり、これをハイ
ディンガーフリンジという。この干渉縞の暗い縞の中心
から1番目の環の半径をr、とすると、 1=krt2+ (1−ε〉 ここで、εは、レンズ13の光軸上における干渉次数δ
/λの端数値である。オプティカルパラレル1および1
′間の間隔をdとすると、 δ−2d であり、干渉次数の整数部をNとすると、干渉次数N+
εは、 N十ε=2d/λ で表せる。一般に干渉次数の整数部Nを直ちに求めるこ
とはできないため、測定時間がかかるという問題点があ
る。
2. Description of the Related Art As a method for measuring the distance between parallel planes in an optical non-contact manner, a method using fringes of isoclinal interference fringes is known. As an example of this method, JMI technical vo
l, 2 No. 6 (1988) pp. 21-25
The method disclosed in the page "Absolute measurement of the outer diameter of an optical fiber" will be explained with reference to FIG. 3. FIG. 3 is a schematic diagram showing the principle. In FIG. 3, a pair of optical parallels 1 and 1' have measurement surfaces 11 and 11' facing each other, and two optical fibers 2 and 2' having the same outer diameter.
is sandwiched between measuring surfaces 11 and 11'. The light emitted from the monochromatic light source 31 passes through the half mirror 14 and enters the optical parallels 1 and 1', and the lights a and b are reflected by the measurement surfaces 11 and 11', respectively.
is reflected by the half mirror 14 and enters the imaging lens 13. Lights a and b overlap and interfere at the focal plane of the imaging lens 13. The intensity I of interference light is equal to the intensity I of light a and b
Let the intensities of 11 and 1°, respectively, the optical path difference be δ, and the wavelength of light be λ, then it can be expressed as Equation 1. The interference fringes consist of a large number of concentric circles centered on a point that crosses the optical axis of the lens 3, and these are called Heidinger fringes. If the radius of the first ring from the center of the dark fringe of this interference fringe is r, then 1=krt2+ (1-ε>) Here, ε is the interference order δ on the optical axis of the lens 13.
/λ is a fractional value. Optical parallel 1 and 1
If the interval between
ε can be expressed as N+ε=2d/λ. Generally, it is not possible to immediately obtain the integer part N of the interference order, so there is a problem that measurement time is required.

上記の方法で光ファイバの外径を測定した場合、現在光
ファイバの外径測定に要求されている±0.1μmを超
える精度で結果が得られる。これは、接触式測長器を用
いてファイバ外径を求める方法よりも1桁以上精度が高
い。また、上記の方法は、レーザ光でファイバを掃引し
、レーザ光がファイバにより遮られる時間からファイバ
の外径を求める方法のように、ファイバ外径の絶対値の
較正を必要としない。
When the outer diameter of an optical fiber is measured using the above method, results can be obtained with an accuracy exceeding ±0.1 μm, which is currently required for measuring the outer diameter of an optical fiber. This method is more than one order of magnitude more accurate than the method of determining the fiber outer diameter using a contact length measuring device. Further, the above method does not require calibration of the absolute value of the fiber outer diameter, unlike the method of sweeping the fiber with a laser beam and determining the outer diameter of the fiber from the time during which the laser beam is interrupted by the fiber.

発明が解決しようとする課題 上記のように、従来の等傾角干渉縞を利用する方法では
、干渉次数を求めなければならない。この場合、オプテ
ィカルパラレル1および1′間の間隔dの概略値が光の
波長程度の精度でわかっている場合には、複数のスペク
トル線から干渉次数を合致法により求めることが可能で
ある。しかしながら、そうでない場合は、上記従来の装
置では、干渉次数を求めることが困難であり、平行平面
間距離dの測定も正確にはできない。
Problems to be Solved by the Invention As described above, in the conventional method using equi-inclined interference fringes, the order of interference must be determined. In this case, if the approximate value of the distance d between the optical parallels 1 and 1' is known with an accuracy comparable to the wavelength of light, it is possible to determine the interference order from a plurality of spectral lines by a matching method. However, if this is not the case, it is difficult to obtain the order of interference with the conventional apparatus described above, and the distance d between parallel planes cannot be accurately measured.

従って、本発明の目的は、上記従来技術の問題点を解決
した、干渉法により高精度で短時間に平行平面間の距離
を測定する方法を提供することにある。
Therefore, an object of the present invention is to provide a method of measuring the distance between parallel planes with high precision and in a short time by interferometry, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、光学的に透明で屈折率が既知である物
質の対向する平行平面間距離の測定方法において、白色
平行光を前記平行平面に垂直に照射し、対向するそれぞ
れの平面の反射光を可動式マイケルソン干渉計に導き、
前記可動式マイケルソン干渉計の可動鏡を動かしてイン
ターフェログラムを測定し、前記インターフェログラム
のピークに対応する前記可動鏡の位置から前記対向する
平行平面間距離を測定することを特徴とする平行平面間
距離の測定方法が提供される。
Means for Solving the Problems According to the present invention, in a method for measuring the distance between opposing parallel planes of a substance that is optically transparent and has a known refractive index, white parallel light is irradiated perpendicularly to the parallel planes, and The reflected light from each plane is guided to a movable Michelson interferometer,
The movable mirror of the movable Michelson interferometer is moved to measure an interferogram, and the distance between the opposing parallel planes is measured from a position of the movable mirror corresponding to a peak of the interferogram. A method for measuring distance between parallel planes is provided.

本発明の方法では、前記白色平行光の光源が、前記可動
式マイケルソン干渉計の光源であることが好ましく、前
記平面の反射光を光ファイバにより、前記可動式マイケ
ルソン干渉計に、伝搬することが好ましい。また、前記
可動式マイケルソン干渉計の出力光を光ファイバにより
、前記平行平面に伝搬することが好ましい。
In the method of the present invention, it is preferable that the light source of the white parallel light is a light source of the movable Michelson interferometer, and the light reflected from the plane is propagated to the movable Michelson interferometer through an optical fiber. It is preferable. Further, it is preferable that the output light of the movable Michelson interferometer is propagated to the parallel plane through an optical fiber.

さらに、本発明に従うと、2本の平行に配置された同一
の円柱体を光学的な厚さが前記円柱体外径と異なる一対
のオプティカルパラレルまたはオプティカルウェッヂで
挟み、前記一対のオプティカルパラレルまたはオプティ
カルウェッヂの前記円柱体を挟んだ対向する平行平面間
の距離を上記の方法で測定し、前記円柱体の外径を求め
ることを特徴とする円柱体の外径測定方法が提供される
Further, according to the present invention, two identical cylindrical bodies arranged in parallel are sandwiched between a pair of optical parallels or optical wedges having an optical thickness different from the outer diameter of the cylindrical body, and the pair of optical parallels or optical wedges Provided is a method for measuring the outer diameter of a cylindrical body, characterized in that the distance between opposing parallel planes sandwiching the cylindrical body is measured by the method described above, and the outer diameter of the cylindrical body is determined.

亦1 本発明の方法は、白色平行光を平行平面に垂直に照射し
、対向する平面のそれぞれの反射光を可動式マイケルソ
ン干渉計に導き、前記可動式マイケルソン干渉計の可動
鏡を動かしてインターフェロクラムを測定し、前記イン
ターフェログラムのピークに対応する前記可動鏡の位置
から前記対向する平行平面間距離を測定するところにそ
の主要な特徴がある。
(1) The method of the present invention irradiates white parallel light perpendicularly to parallel planes, guides each reflected light from the opposing planes to a movable Michelson interferometer, and moves a movable mirror of the movable Michelson interferometer. The main feature is that the interferogram is measured using the interferogram, and the distance between the opposing parallel planes is measured from the position of the movable mirror corresponding to the peak of the interferogram.

従来の等傾角干渉縞を利用する方法では、集光レンズの
焦点面に生じる干渉縞の間隔を測定し、干渉次数を利用
して対向する平行平面間距離を求めていた。本発明の方
法では、対向する平行平面のそれぞれ反射光の干渉によ
るピークが、あたかも可動式マイケルソン干渉計の可動
鏡の移動する方向に平行に、測定する平行平面間距離と
等しい間隔で生じているように観測される。インターフ
ェログラムは、可動式マイケルソン干渉計の出力を、マ
イケルソン干渉計の可動鏡の位置の関数として表したも
のである。従って、測定されるインターフェログラムの
隣接するピークにそれぞれ対応する可動鏡の位置の差が
、求める平行平面間距離となり、可動鏡の位置を正確に
測定することで平行平面間距離が求められるものである
In the conventional method using equi-inclined interference fringes, the distance between the interference fringes generated on the focal plane of the condenser lens is measured, and the distance between opposing parallel planes is determined using the interference order. In the method of the present invention, peaks due to interference of respective reflected lights from opposing parallel planes occur parallel to the moving direction of the movable mirror of a movable Michelson interferometer at intervals equal to the distance between the parallel planes to be measured. It is observed that there are An interferogram is a representation of the output of a movable Michelson interferometer as a function of the position of the movable mirror of the Michelson interferometer. Therefore, the difference in the positions of the movable mirrors corresponding to adjacent peaks of the measured interferogram is the distance between the parallel planes to be sought, and the distance between the parallel planes can be found by accurately measuring the position of the movable mirror. It is.

本発明の方法で白色光を用いる理由は、インターフェロ
グラムのピークを鋭くし、分解能を向上させるためであ
る。また、本発明の方法においては、上記の白色光の光
源は、必ずしも専用の光源である必要はなく、前記可動
式マイケルソン干渉計の光源であってもよい。また、本
発明の方法では、前記平面の反射光を光ファイバにより
、前記可動式マイケルソン干渉計に伝搬すること、およ
び可動式マイケルソン干渉計の光源を利用する場合には
可動式マイケルソン干渉計の光源の出力光を光ファイバ
により、前記平行平面に伝搬することが好ましい。光フ
ァイバを用いることにより、本発明の装置の配置の融通
性が高くなり、フィルム、プラスチックシート等の製造
ラインにおける厚さの計測・制御が可能になる。
The reason why white light is used in the method of the present invention is to sharpen the peaks of the interferogram and improve resolution. Furthermore, in the method of the present invention, the white light source does not necessarily need to be a dedicated light source, and may be the light source of the movable Michelson interferometer. Further, in the method of the present invention, the reflected light from the plane is propagated to the movable Michelson interferometer through an optical fiber, and when a light source of the movable Michelson interferometer is used, the movable Michelson interferometer is Preferably, the output light from the light source of the meter is propagated to the parallel plane by an optical fiber. The use of optical fibers provides greater flexibility in the arrangement of the apparatus of the present invention, and enables thickness measurement and control in production lines for films, plastic sheets, and the like.

また、本発明の方法は、2本の平行に配置された同一の
円柱体を光学的な厚さが前記円柱体外径と異なる一対の
オプティカルパラレルまたはオプティカルウェッヂで挟
み、前記一対のオプティカルパラレルまたはオプティカ
ルウェッヂの前記円柱体を挟んだ対向する平行平面間の
距離を測定することで、円柱体の外径測定にも応用でき
る。この方法で用いるオプティカルパラレルは、光学的
に透明で屈折率が一様で既知の材料で構成され、対向す
る面が、光学的に十分平滑に且つ平行に仕上げられた光
学部品である。また、オプティカルウェッヂは、同様な
材料で構成され、対向する面が、光学的に十分平滑で互
いに角度をもって対向するような形状の光学部品である
Further, the method of the present invention includes sandwiching two identical cylindrical bodies arranged in parallel between a pair of optical parallels or optical wedges having an optical thickness different from the outer diameter of the cylindrical bodies, and By measuring the distance between opposing parallel planes that sandwich the cylindrical body of the wedge, it can also be applied to measuring the outer diameter of the cylindrical body. The optical parallel used in this method is an optical component made of a known material that is optically transparent and has a uniform refractive index, and whose opposing surfaces are finished to be optically sufficiently smooth and parallel. Further, an optical wedge is an optical component made of a similar material and shaped such that opposing surfaces are optically sufficiently smooth and face each other at an angle.

上記の方法で、オプティカルパラレルの光学的な厚さを
円柱体外径と異なる寸法にする理由は、測定面以外の面
から、の反射光の影響を除くためである。オプティカル
パラレルにかえてオプティカルウェッヂを用い、測定面
以外の面からの反射光の軸を外すことにより、その影響
を除いても効果は同様である。本発明の方法は、特に光
ファイバ外径の高精度測定に応用すると有利である。
In the above method, the reason why the optical thickness of the optical parallel is made different from the outer diameter of the cylindrical body is to eliminate the influence of reflected light from surfaces other than the measurement surface. The same effect can be obtained even if an optical wedge is used instead of an optical parallel to remove the axis of the reflected light from a surface other than the measurement surface. The method of the present invention is particularly advantageous when applied to high-precision measurement of the outer diameter of an optical fiber.

実施例 第1図に本発明の方法を実現するための装置の概略図を
示す。第1図の装置は、オプティカルパラレル1および
1′それぞれの測定面11および11′の間に挟まれた
2本の同一の外径の光ファイバ2および2′の外径を前
記測定面11および11’の間の距離を測定することで
求めるものである。
Embodiment FIG. 1 shows a schematic diagram of an apparatus for implementing the method of the present invention. The apparatus shown in FIG. 1 measures the outer diameters of two optical fibers 2 and 2' having the same outer diameter sandwiched between measurement surfaces 11 and 11' of optical parallels 1 and 1', respectively. This is determined by measuring the distance between 11'.

第1図の装置において、光学系3は、白色光源31と、
白色光源31が発する光をピンホール33に集光するレ
ンズ32と、ピンホール33を通過した光を平行光とす
るコリメータレンズ34と、該平行光をオプティカルパ
ラレル1.1′へ反射するビームスプリッタ35と、オ
プティカルパラレル1.1′の各面よりの反射光を集光
して光ファイバ4に入射する集光レンズ36とを具備す
る。光ファイバ4は、入射された光を可動式マイケルソ
ン干渉計5に伝搬する。
In the apparatus shown in FIG. 1, the optical system 3 includes a white light source 31,
A lens 32 that focuses the light emitted by the white light source 31 onto a pinhole 33, a collimator lens 34 that converts the light that has passed through the pinhole 33 into parallel light, and a beam splitter that reflects the parallel light to the optical parallel 1.1'. 35, and a condensing lens 36 which condenses the reflected light from each surface of the optical parallel 1.1' and inputs it into the optical fiber 4. The optical fiber 4 propagates the incident light to a movable Michelson interferometer 5.

可動式マイケルソン干渉計5は、光ファイバ4により伝
搬された光を平行光にするコリメーク51と、該平行光
を固定鏡53および可動鏡54に分岐させ、固定鏡53
および可動鏡54よりの反射光を集光レンズ55へ入射
させるビームスプリッタ52と、集光レンズ55が焦点
を結ぶ位置に配置され、固定鏡53および可動鏡54そ
れぞれの反射光の干渉を測定する検出器56を具備する
The movable Michelson interferometer 5 includes a collimator 51 that converts the light propagated by the optical fiber 4 into parallel light, and a collimator 51 that branches the parallel light into a fixed mirror 53 and a movable mirror 54.
and a beam splitter 52 that makes the reflected light from the movable mirror 54 enter the condensing lens 55, and is arranged at a position where the condensing lens 55 focuses, and measures the interference of the reflected light from the fixed mirror 53 and the movable mirror 54. A detector 56 is provided.

可動鏡54は、光が入射する方向と平行に動かすことが
可能である。検出器56の出力は、可動鏡54の位置を
測定する光波干渉型測長器6の可動鏡54が単位長さだ
け移動するごとに発する出力信号をタイミングパルスと
してA/D変換器7を介してCPU8に入力され、可動
鏡54の位置の関数として出力される。上記の装置では
、可動鏡54の位置の関数として得られた検出器56の
信号がインターフェログラムとなる。
The movable mirror 54 can be moved in parallel to the direction in which light is incident. The output of the detector 56 is transmitted through the A/D converter 7 using an output signal as a timing pulse, which is generated every time the movable mirror 54 of the light wave interference type length measuring device 6 moves by a unit length, which measures the position of the movable mirror 54. is input to the CPU 8 and output as a function of the position of the movable mirror 54. In the device described above, the signal of the detector 56 obtained as a function of the position of the movable mirror 54 becomes an interferogram.

第1図の装置は、以下のように動作して本発明の方法を
実現する。白色光源31から発せられた光は、集光レン
ズ32で集光され、ピンホール33を通過してコリメー
タレンズ34で平行光となる。この平行光はビームスプ
リッタ35で反射され、オプティカルパラレル1および
■′に入射される。オプティカルパラレル1および↓′
それぞれの測定面11および11’で反射された光は、
ビームスプリッタ35を透過し、集光レンズ36で集光
され光ファイバ4に入射する。光ファイバ4により、可
動式マイケルソン干渉計5に伝搬された光は、コリメー
タレンズ51で平行光にされ、ビームスプリッタ52で
固定鏡53と可動鏡54とに向かって分岐される。
The apparatus of FIG. 1 operates as follows to implement the method of the invention. The light emitted from the white light source 31 is focused by a condenser lens 32, passes through a pinhole 33, and becomes parallel light by a collimator lens 34. This parallel light is reflected by the beam splitter 35 and is incident on the optical parallels 1 and 2'. Optical parallel 1 and ↓′
The light reflected by each measurement surface 11 and 11' is
The light passes through the beam splitter 35, is focused by the condenser lens 36, and enters the optical fiber 4. Light propagated to the movable Michelson interferometer 5 through the optical fiber 4 is made into parallel light by the collimator lens 51, and is split toward a fixed mirror 53 and a movable mirror 54 by the beam splitter 52.

可動鏡54は、一定の速度で光の方向と平行に移動しな
がら、ビームスプリッタ52へ光を反射する。
The movable mirror 54 reflects the light to the beam splitter 52 while moving parallel to the direction of the light at a constant speed.

固定鏡53および可動鏡54でそれぞれ反射され、ビー
ムスプリッタ52へ戻った光は、集光レンズ55に入射
され、集光された後に検出器56へ入射される。
The light reflected by the fixed mirror 53 and the movable mirror 54 and returned to the beam splitter 52 is incident on the condensing lens 55, and after being condensed, the light is incident on the detector 56.

検出器56は、固定鏡53および可動鏡54でそれぞれ
反射された光の干渉による強度変化を測定する。
The detector 56 measures intensity changes due to interference of the lights reflected by the fixed mirror 53 and the movable mirror 54, respectively.

検出器56の出力は、上述のように可動鏡54が単位長
さだけ移動するごとに発せられる光波干渉型測長器6の
出力信号をタイミングパルスとしてA/D変換器7を介
してCPU8に入力され、処理され、インターフェログ
ラムが得られる。
The output of the detector 56 is sent to the CPU 8 via the A/D converter 7 using the output signal of the optical interference type length measuring device 6, which is emitted every time the movable mirror 54 moves by a unit length, as a timing pulse, as described above. It is input, processed and an interferogram is obtained.

第2図に、上記の装置で観測されるインターフェログラ
ムの測定例を示す。第2図に示されたピーク(イ〉、(
ロ)、(ハ)において、ピーク(ロ)は、ビームスプリ
ッタ52と固定鏡53との間の距離と、ビームスプリッ
タ52と可動鏡54との間の距離が一致した場合に対応
する。ピーク(イ)および(ハ)は、それらの距離の差
がオプティカルパラレル1および1′の面11と11′
との間の距離に等しくなった場合に対応する。ピーク(
イ〉が得られる可動鏡の位置とピーク(ロ)が得られる
可動鏡の位置との間隔と、ピーク(ロ)が得られる可動
鏡の位置とピーク(ハ)が得られる可動鏡の位置との間
隔とは等しく、この間隔Xが、オプティカルパラレル1
および1′の測定面11および11’間の距離である。
FIG. 2 shows a measurement example of an interferogram observed with the above device. The peaks shown in Figure 2 (A), (
In (b) and (c), the peak (b) corresponds to the case where the distance between the beam splitter 52 and the fixed mirror 53 matches the distance between the beam splitter 52 and the movable mirror 54. Peaks (A) and (C) have a difference in distance between surfaces 11 and 11' of optical parallels 1 and 1'.
This corresponds to the case where the distance between peak(
The distance between the position of the movable mirror where the peak (b) is obtained and the position of the movable mirror where the peak (b) is obtained, and the position of the movable mirror where the peak (b) is obtained and the position of the movable mirror where the peak (c) is obtained. is equal to the interval of optical parallel 1, and this interval
and 1' is the distance between measurement surfaces 11 and 11'.

尚、第1図の装置で、光源31と検出器56との位置を
入れ換えても、全く同様のインターフェログラムが得ら
れる。
Incidentally, even if the positions of the light source 31 and the detector 56 are exchanged in the apparatus shown in FIG. 1, a completely similar interferogram can be obtained.

第1図の装置を用いて、本発明の方法で、既知の光ファ
イバの外径の測定を行った。白色光源31として50W
のハロゲンランプ、検出器56にはシリコンフォトダイ
オードを用いた。オプティカルパラレル1および1′は
、厚さ10 mm 、表面積度λ/20とし、光波干渉
型測長器6としてHe−Ne2周波レーザを用いたドプ
ラー式測長器を用い、Xを求めた。オプティカルパラレ
ル1および1′の厚さを10mmとしたのは、面12お
よび12′ における反射光の影響を排除するためであ
る。オプティカルパラレル1および1′の光学的な厚さ
が、測定面11および11′間の光学的距離よりも十分
大きければ上記の寸法でなくてもよい。また、オプティ
カルパラレルに代えてオプティカルウェッヂを用いても
上記の反射光の影響を排除することができる。
Using the apparatus shown in FIG. 1 and the method of the present invention, the outer diameter of a known optical fiber was measured. 50W as white light source 31
A halogen lamp was used, and a silicon photodiode was used as the detector 56. The optical parallels 1 and 1' had a thickness of 10 mm and a surface area of λ/20, and X was determined using a Doppler length measuring device using a He--Ne 2 frequency laser as the optical interference type length measuring device 6. The reason why the thickness of the optical parallels 1 and 1' is set to 10 mm is to eliminate the influence of reflected light on the surfaces 12 and 12'. As long as the optical thickness of the optical parallels 1 and 1' is sufficiently larger than the optical distance between the measurement surfaces 11 and 11', it is not necessary to have the above dimensions. Further, even if an optical wedge is used instead of an optical parallel, the influence of the reflected light can be eliminated.

サンプルとして125μmφの石英ファイバを用い、同
一ファイバに対し10回繰返し測定を行ったところ、測
定値の再現性(標準偏差〉として0.04μmを得た。
Using a quartz fiber with a diameter of 125 μm as a sample, measurements were repeated 10 times on the same fiber, and the reproducibility (standard deviation) of the measured values was 0.04 μm.

従って、本発明の方法は、現在光ファイバの外径測定に
対して要求されている精度±0.1 μmを超える測定
精度を有し、光ファイバの外径測定に十分応用可能なも
のである。
Therefore, the method of the present invention has a measurement accuracy exceeding ±0.1 μm, which is currently required for measuring the outer diameter of optical fibers, and is fully applicable to measuring the outer diameter of optical fibers. .

また、本実施例では、光ファイバの外径測定への応用に
ついて説明したが、本発明の方法は、屈折率(n)が既
知の平行平板、例えばフィルム、シリコンウェハ、オプ
ティカルパラレル等の厚さの測定も可能となる。この場
合、オプティカルパラレル1.1′に代えて測定する平
行平板をおけばよい。この場合平行平板の厚さは、x 
/ nで求められる。
In addition, in this example, the application to measuring the outer diameter of an optical fiber was explained, but the method of the present invention can be applied to the thickness of a parallel plate with a known refractive index (n), such as a film, a silicon wafer, an optical parallel plate, etc. It also becomes possible to measure In this case, a parallel plate for measurement may be provided in place of the optical parallel 1.1'. In this case, the thickness of the parallel plate is x
/ n.

発明の効果 本発明の方法により、光学的に透明で屈折率が既知であ
る物質の対向する平行平面間距離の高精度測定が、従来
の方法よりも迅速且つ簡単に行なえる。また、本発明の
方法では、光学系と可動式マイケルソン干渉計を離して
配置することが可能なため、従来不可能であったフィル
ム、プラスチックシート等の製造ラインにおける厚さの
高精度計測および制御にも応用できるものである。
Effects of the Invention The method of the present invention allows high-precision measurement of the distance between opposing parallel planes of an optically transparent material with a known refractive index to be performed more quickly and easily than conventional methods. Furthermore, since the method of the present invention allows the optical system and movable Michelson interferometer to be placed apart, it is possible to perform highly accurate thickness measurement on production lines for films, plastic sheets, etc., which was previously impossible. This can also be applied to control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実現する装置の一例の概略図
であり、 第2図は、第1図の装置で測定されるインターフェログ
ラムを示す図であり、 第3図は、従来の等傾角干渉縞のフリンジを利用した測
定方法の原理を示す概略図である。 〔主な参照番号〕 1・・オプティカルパラレル、 2・・光ファイバ、 3・・光学系、 4・・光ファイバ、 5・・可動式マイケルソン干渉計、 6・・光波干渉型測長器、 7・・A/D変換器、 8・・CPU。 31・・光源、 32.36.55・・集光レンズ、 33・・ピンホール、 34.51・・コリメータレンズ、 35.52・・ビームスプリッタ、 53・・固定鏡、 54・・可動鏡、 56・・検出器
FIG. 1 is a schematic diagram of an example of an apparatus for realizing the method of the present invention, FIG. 2 is a diagram showing an interferogram measured with the apparatus of FIG. 1, and FIG. FIG. 2 is a schematic diagram showing the principle of a measurement method using fringes of isoblique interference fringes. [Main reference numbers] 1. Optical parallel, 2. Optical fiber, 3. Optical system, 4. Optical fiber, 5. Movable Michelson interferometer, 6. Lightwave interferometric length measuring device, 7...A/D converter, 8...CPU. 31...Light source, 32.36.55...Condensing lens, 33...Pinhole, 34.51...Collimator lens, 35.52...Beam splitter, 53...Fixed mirror, 54...Movable mirror, 56...Detector

Claims (5)

【特許請求の範囲】[Claims] (1)光学的に透明で屈折率が既知である物質の対向す
る平行平面間距離の測定方法において、白色平行光を前
記平行平面に垂直に照射し、対向するそれぞれの平面の
反射光を可動式マイケルソン干渉計に導き、前記可動式
マイケルソン干渉計の可動鏡を動かしてインターフェロ
グラムを測定し、前記インターフェログラムのピークに
対応する前記可動鏡の位置から前記対向する平行平面間
距離を測定することを特徴とする平行平面間距離の測定
方法。
(1) In a method for measuring the distance between opposing parallel planes of a substance that is optically transparent and has a known refractive index, white parallel light is irradiated perpendicularly to the parallel planes, and the reflected light from each of the opposing planes is moved. A movable mirror of the movable Michelson interferometer is moved to measure an interferogram, and the distance between the opposing parallel planes is measured from the position of the movable mirror corresponding to the peak of the interferogram. A method for measuring distance between parallel planes, characterized by measuring the distance between parallel planes.
(2)前記白色平行光の光源が、前記可動式マイケルソ
ン干渉計の光源であることを特徴とする請求項(1)に
記載の平行平面間距離の測定方法。
(2) The method for measuring the distance between parallel planes according to claim (1), wherein the light source of the white parallel light is a light source of the movable Michelson interferometer.
(3)前記平面の反射光を光ファイバにより、前記可動
式マイケルソン干渉計に伝搬することを特徴とする請求
項(1)または(2)に記載の平行平面間距離の測定方
法。
(3) The method for measuring the distance between parallel planes according to claim 1 or 2, characterized in that the reflected light from the plane is propagated to the movable Michelson interferometer through an optical fiber.
(4)前記可動式マイケルソン干渉計の光源の出力光を
光ファイバにより、前記平行平面に伝搬することを特徴
とする請求項(2)に記載の平行平面間距離の測定方法
(4) The method for measuring the distance between parallel planes according to claim 2, characterized in that the output light from the light source of the movable Michelson interferometer is propagated to the parallel planes through an optical fiber.
(5)2本の平行に配置された同一の円柱体を光学的な
厚さが前記円柱体外径と異なる一対のオプティカルパラ
レルまたはオプティカルウェッヂで挟み、前記一対のオ
プティカルパラレルまたはオプティカルウェッヂの前記
円柱体を挟んだ対向する平行平面間の距離を請求項(1
)〜(4)のいずれか1項に記載の方法で測定すること
により前記円柱体の外径を求めることを特徴とする円柱
体の外径測定方法。
(5) Two identical cylindrical bodies arranged in parallel are sandwiched between a pair of optical parallels or optical wedges whose optical thickness is different from the outer diameter of the cylindrical bodies, and the cylindrical bodies of the pair of optical parallels or optical wedges are The distance between the opposing parallel planes sandwiching the
A method for measuring the outer diameter of a cylindrical body, characterized in that the outer diameter of the cylindrical body is determined by measuring by the method described in any one of (4) to 4).
JP32254088A 1988-12-21 1988-12-21 Method for measuring distance between parallel planes Pending JPH02167411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32254088A JPH02167411A (en) 1988-12-21 1988-12-21 Method for measuring distance between parallel planes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32254088A JPH02167411A (en) 1988-12-21 1988-12-21 Method for measuring distance between parallel planes

Publications (1)

Publication Number Publication Date
JPH02167411A true JPH02167411A (en) 1990-06-27

Family

ID=18144807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32254088A Pending JPH02167411A (en) 1988-12-21 1988-12-21 Method for measuring distance between parallel planes

Country Status (1)

Country Link
JP (1) JPH02167411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341205A (en) * 1991-01-15 1994-08-23 The United States Of America As Represented By The Secretary Of The Navy Method for characterization of optical waveguide devices using partial coherence interferometry
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140607B2 (en) * 1982-09-25 1986-09-10 Sony Corp
JPS63172910A (en) * 1987-01-13 1988-07-16 Yokogawa Electric Corp Diameter measuring instrument for columnar body
JPS63193003A (en) * 1987-02-06 1988-08-10 Japan Spectroscopic Co Apparatus for measuring depth of recessed part and thickness of film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140607B2 (en) * 1982-09-25 1986-09-10 Sony Corp
JPS63172910A (en) * 1987-01-13 1988-07-16 Yokogawa Electric Corp Diameter measuring instrument for columnar body
JPS63193003A (en) * 1987-02-06 1988-08-10 Japan Spectroscopic Co Apparatus for measuring depth of recessed part and thickness of film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341205A (en) * 1991-01-15 1994-08-23 The United States Of America As Represented By The Secretary Of The Navy Method for characterization of optical waveguide devices using partial coherence interferometry
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device

Similar Documents

Publication Publication Date Title
US5943134A (en) Method of measuring thickness and refractive indices of component layers of laminated structure and measuring apparatus for carrying out the same
US5157458A (en) Polarization interferometer spectrometer
JP3582311B2 (en) Medium measuring method and measuring device
US5285261A (en) Dual interferometer spectroscopic imaging system
Jan et al. Optical interference system for simultaneously measuring refractive index and thickness of slim transparent plate
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
Wang et al. Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry
JPH02167411A (en) Method for measuring distance between parallel planes
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JPS5979104A (en) Optical device
JPH10253892A (en) Phase interference microscope
JPH08271337A (en) Spectroscope
Lunazzi et al. Fabry-Perot laser interferometry to measure refractive index or thickness of transparent materials
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
RU2085843C1 (en) Optical roughness indicator
JPH08193805A (en) Interferometer and method for using it
JPH02228512A (en) Highly accurate laser measurement method and apparatus for surface of solid
JPS61155902A (en) Interference measuring apparatus
JPH11237209A (en) High sensitivity space-positioning method
RU2085840C1 (en) Optical roughness indicator
JPH0244204A (en) Optical fiber type interference film thickness meter
RU2083969C1 (en) Interference method of measurement of refractive index in specimens with refractive index gradient
JP2510418B2 (en) Beam scanning interferometry film thickness measuring device
JPH03156305A (en) Aspherical-shape measuring apparatus