JPH02166282A - Three-pole discharge chemical reactor - Google Patents

Three-pole discharge chemical reactor

Info

Publication number
JPH02166282A
JPH02166282A JP31995688A JP31995688A JPH02166282A JP H02166282 A JPH02166282 A JP H02166282A JP 31995688 A JP31995688 A JP 31995688A JP 31995688 A JP31995688 A JP 31995688A JP H02166282 A JPH02166282 A JP H02166282A
Authority
JP
Japan
Prior art keywords
electrode
discharge
vacuum vessel
plasma
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31995688A
Other languages
Japanese (ja)
Inventor
Tatsuo Asamaki
麻蒔 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP31995688A priority Critical patent/JPH02166282A/en
Publication of JPH02166282A publication Critical patent/JPH02166282A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform formation of a good-quality thin film and surface modification, etc., at low pressure and high velocity by performing discharge among an electrode equipped with a magnetic means generating a curved magnetic field, the wall of a vessel utilized for the other electrode and an electrode with a base placed thereon, decomposing and allowing compd. vapor to react. CONSTITUTION:Magnets 22, 23 are provided to the rear of an electrode 25 of a discharge source 20 in a vacuum vessel 11 and the curved lines 21 of magnetic force are formed on the surface of the electrode 25. Highdensity plasma 28 is generated by discharge between the electrode 25 and the vacuum vessel 11 utilized for a third electrode and many amount of radicals and active species are produced by this magnetic field. Reactive gas introduced through a conduit 62 is decomposed by these radicals. Formation of a thin film on a base board 51, etching and modification, etc., are formed by this decomposition, reaction and the above-mentioned active species. In this case, weak plasma 29 is generated by discharge between an electrode 53 with the base plate 51 placed thereon and the vacuum vessel 11. Ions are drawn out from the above-mentioned plasma 28 and reaction is promoted and also discharge is regulated so that destruction or damage, etc., of crystal on the base board 51 are not generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空中で放電により化学反応を行わせ、薄膜
の作成、表面の改質、エツチングまたはこれらの組合わ
せの反応を行う三極放電化学反応装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to a three-electrode system in which a chemical reaction is performed by electric discharge in a vacuum to create a thin film, to modify a surface, to perform an etching reaction, or a combination thereof. Regarding a discharge chemical reaction device.

(従来の技術発及び本発明が解決しようとする問題点) 従来この種の技術として特公昭59−15982号公報
所載の発明が知られている他、多方面に使用されてきた
(Conventional Techniques and Problems to be Solved by the Present Invention) Conventionally, as this type of technique, the invention disclosed in Japanese Patent Publication No. 15982/1982 is known, and it has also been used in various fields.

しかしながら、薄膜を作製する場合、被処理体(以下、
基板という)にイオンを入射させたり、そのエネルギー
を制御することが考えられていないため、良質で所望の
薄膜を作成することが出来なかった。ざらに、エツチン
グまたは表面改質の場合にも同様な問題があった。成膜
の場合、圧力を上昇させ、熱プラズマとして例えばダイ
ヤモンドなどの薄膜を作成することが出来なかった。工
ッチングの場合、プラズマの密度が低下し、より高速化
することが出来なかった。表面改質の場合も同様である
。磁場の方向に対する留意が不足していたため、イオン
や電子の入射エネルギーを制御することが出来なかった
。ちなみに、電子のエネルギー0.1evというのは放
電現象においては問題にならないくらいの低エネルギー
である。しかし、温度に換算すると実に1000℃に相
当する。
However, when producing a thin film, the object to be processed (hereinafter referred to as
Because no consideration has been given to injecting ions into a substrate (called a substrate) or controlling their energy, it has been impossible to create a desired thin film of good quality. Similar problems also occur in the case of etching or surface modification. In the case of film formation, it has not been possible to increase the pressure and use a thermal plasma to form a thin film of, for example, diamond. In the case of etching, the plasma density decreased and it was not possible to increase the processing speed. The same applies to surface modification. Due to lack of attention to the direction of the magnetic field, it was not possible to control the incident energy of ions and electrons. Incidentally, the electron energy of 0.1 ev is so low that it does not pose a problem in the discharge phenomenon. However, when converted into temperature, it actually corresponds to 1000°C.

(本発明の目的) 本発明の目的は、上記問題を解決し、低圧で、高速かつ
良質な薄膜の作成、エツチング及び表面改質などを行う
ことのできる三極放電化学反応装置を提供することにあ
る。
(Objective of the present invention) The object of the present invention is to provide a triode discharge chemical reaction device capable of solving the above-mentioned problems and performing high-speed, high-quality thin film formation, etching, surface modification, etc. at low pressure. It is in.

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のように構成さ
れている。すなわち、所定の圧力に排気した真空容器と
、該真空容器内に配置された電極と、該電極の表面上の
一交点から出て湾曲して進み、表面上の他の一交点に入
る磁力線を生ぜしめるため電極の近くに設けられた磁気
手段、前記磁力線と直交する電界を生ぜしめ電極も近く
に第3の電極との間に放電を起こさせる手段とからなる
プラズマ及びラジカルを発生させる放電源、前記放電源
の近くに配置された被処理体とこの被処理体に電力を供
給し、第3または第4の電極との間に放電をおこさせる
手段、前記放電源の近くへ放電により分解しやすい化合
物蒸気を送り込む手段と、前記電極のまわりの圧力を調
整する手段とを有し、前記送り込まれた化合物自身また
は化合物または化合物と被処理体との間で反応を行わせ
ることを特徴とする三極放電化学反応装置である。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. In other words, a vacuum vessel evacuated to a predetermined pressure, an electrode placed inside the vacuum vessel, and a line of magnetic force that exits from one intersection point on the surface of the electrode, curves, and enters another intersection point on the surface. a discharge source for generating plasma and radicals, comprising a magnetic means provided near an electrode to generate plasma, and a means for generating an electric field perpendicular to the magnetic field lines and causing a discharge between the electrode and a third electrode nearby. , a means for supplying electric power to an object to be processed disposed near the discharge source and a third or fourth electrode to cause a discharge to occur between the object to be processed and a third or fourth electrode; and a means for adjusting the pressure around the electrode to cause a reaction to occur between the fed compound itself, the compound, or the compound and the object to be treated. This is a three-electrode discharge chemical reaction device.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の第1実施例を示したものである。FIG. 1 shows a first embodiment of the present invention.

−3〜 図中符号10は真空容器系、11が真空容器、12が排
気系で到達圧力は1(1”Torr以下の低圧が得られ
る排気系を用いることが望ましい。
-3~ In the figure, reference numeral 10 is a vacuum container system, 11 is a vacuum container, and 12 is an exhaust system, and the ultimate pressure is 1 (it is preferable to use an exhaust system that can obtain a low pressure of 1 Torr or less).

勿論必要により高い圧力で動作させるようにしても良い
。13は予備排気室、14は弁、15はドア、矢印16
は基板搬送系、17は予備排気室の排気系である。当該
真空系は予備排気室を搬送系までもち、真空容器11を
常に真空に保つという、かなり高度な系になっているが
、常に真空に保つ必要のない場合、弁14のところにド
ア16を設けて真空容器11の内部を大気にして基板の
交換を行っても良い。
Of course, it may be operated at a higher pressure if necessary. 13 is a preliminary exhaust chamber, 14 is a valve, 15 is a door, arrow 16
1 is a substrate transfer system, and 17 is an exhaust system for the preliminary exhaust chamber. The vacuum system is a fairly sophisticated system that carries a preliminary evacuation chamber to the transfer system and keeps the vacuum container 11 in a vacuum at all times. However, if it is not necessary to always maintain a vacuum, a door 16 may be installed at the valve 14. Alternatively, the substrate may be replaced while the inside of the vacuum container 11 is exposed to the atmosphere.

次に第2図及び第3図は第1図の真空容器11の内部を
より詳しく説明するための図である。図中符号20はプ
ラズマとラジカルを発生させる放電源、25は電極、2
1は電極の一交点から出て湾曲して進み表面上の他の一
交点に入る磁力線、22及び23は磁石、24はヨーク
である。26は導入管であり、矢印27の方向に該導入
管26内に冷却水、または場合によって各種ガスを基板
搬送のための各種の動作機構を導入する。40は放電電
源で電極25と第3電極(この場合接地された真空容器
11を用いている。)の間に放電を起こす。電源として
は交流、直流、高周波いずれでもよく、必要により選択
される。60はガス導入系で、バリアプルリークパルプ
61を介し、所定の反応ガスが導入される。該反応ガス
は別々に導入されても、混合されて導入されてもよく、
また電極の近くに多数の穴を持つ導入管62から矢印6
3の如(吹き出すようにしてもよい。
Next, FIGS. 2 and 3 are views for explaining the inside of the vacuum container 11 shown in FIG. 1 in more detail. In the figure, 20 is a discharge source that generates plasma and radicals, 25 is an electrode, 2
Reference numeral 1 denotes a line of magnetic force that exits from one intersection of the electrodes, curves, and enters another intersection on the surface, 22 and 23 are magnets, and 24 is a yoke. Reference numeral 26 denotes an introduction pipe, into which cooling water, or various gases as the case may be, are introduced into the introduction pipe 26 in the direction of an arrow 27, and various operating mechanisms for transporting the substrate. Reference numeral 40 denotes a discharge power source that generates a discharge between the electrode 25 and the third electrode (in this case, the grounded vacuum vessel 11 is used). The power source may be alternating current, direct current, or high frequency, and is selected according to necessity. Reference numeral 60 denotes a gas introduction system into which a predetermined reaction gas is introduced via a barrier pull leak pulp 61. The reaction gases may be introduced separately or in a mixed manner,
Also, from the introduction tube 62 which has many holes near the electrode, the arrow 6
As in 3 (you can also make it blow out).

当該装置は、通常の真空化学反応装置(例えば前述の特
公昭59−15982号公報所載の装置)におけるとほ
ぼ同様に運転し、化学反応を行わせる。即ち、真空室1
1の内部を真空にし、基板搬入機構16により基板51
を搬入し、電源40及び52を動作させ、電極25と第
三電極である真空容器11、電極53と第3の電極の間
で放電を起こさせる。どのようにすると、電極25の表
面近傍には、高密度プラズマ28が発生する。ここで帯
電体が多数作られるが、放電により作られた多量の活性
種が基板51に向けて放射される。活性種は電気的には
中性であるので、はぼ−様に基板上に分布する。一方、
電極53と第3電極11との間に放電により弱いプラズ
マ29が発生する。弱いプラズマ29は電極25と第3
電極11との間の放電と共有する。基板に必要なエネル
ギーの帯電体をプラズマ29から引き出せるように電源
52を選んで用いる。例えば、高温酸化物超電導薄膜を
作る場合、成長する結晶を破壊しないように一100〜
OvO間の最適な値に設定される。平滑な表面を持った
ダイヤモンド薄膜を作成する場合にも成長する結晶体薄
膜を破壊しない程度が望まれる。従来、磁場が基板と直
交する成分が主となる磁場が用いられてきた。しかし、
この場合、はぼ磁力線に沿って運動する高速粒子が基板
51に突入し、結晶を破壊することが多かったが、本実
施例においてはこのようなことは極めて少なく秀れた結
晶膜を得ることができる。
The apparatus is operated in substantially the same manner as a normal vacuum chemical reaction apparatus (for example, the apparatus described in Japanese Patent Publication No. 59-15982 mentioned above) to carry out a chemical reaction. That is, vacuum chamber 1
1 is vacuumed, and the substrate 51 is transferred by the substrate loading mechanism 16.
is carried in, the power supplies 40 and 52 are operated, and discharge is caused between the electrode 25 and the vacuum vessel 11, which is the third electrode, and between the electrode 53 and the third electrode. How can high-density plasma 28 be generated near the surface of electrode 25? A large number of charged bodies are created here, and a large amount of active species created by the discharge is emitted toward the substrate 51. Since the active species are electrically neutral, they are distributed in a pattern on the substrate. on the other hand,
A weak plasma 29 is generated between the electrode 53 and the third electrode 11 due to the discharge. The weak plasma 29 is connected to the electrode 25 and the third
This is shared with the discharge between the electrode 11. The power source 52 is selected and used so that a charged body having the energy necessary for the substrate can be extracted from the plasma 29. For example, when making a high-temperature oxide superconducting thin film, it is necessary to
It is set to the optimum value between OvO. Even when creating a diamond thin film with a smooth surface, it is desired that the growing crystalline thin film be not destroyed. Conventionally, a magnetic field whose main component is perpendicular to the substrate has been used. but,
In this case, high-speed particles moving along the magnetic field lines often rush into the substrate 51 and destroy the crystal, but in this example, this is extremely rare and an excellent crystal film can be obtained. Can be done.

一方、エツチングの場合も基板表面には大量の活性種が
−様に分布し、更に基板の電位を的確な値に設定するこ
とにより、ダメージの少ないエツチングを行うことがで
きた。マグネトロン放電は、磁場の選び方によっては1
0−’To r r以下の圧力においても放電を行わせ
ることができるので、極めて低い圧力においてもエツチ
ングを行うことができる。また、電源52−の選定によ
り、秀れた異方性を持った分布の良いダメージの少ない
エツチングを行うことができる。厳密な意味において、
基板方向の磁場に沿って運動するイオンを全く除きたい
場合、電極531を用いればよい。
On the other hand, in the case of etching, a large amount of active species were distributed in a uniform manner on the substrate surface, and by setting the potential of the substrate to an appropriate value, etching could be performed with less damage. Depending on how the magnetic field is selected, the magnetron discharge can be 1
Since discharge can be performed even at pressures below 0-' Torr, etching can be performed even at extremely low pressures. Further, by selecting the power source 52-, it is possible to perform etching with excellent anisotropy, good distribution, and little damage. In the strict sense,
If it is desired to completely remove ions moving along the magnetic field in the direction of the substrate, the electrode 531 may be used.

第4図には別の実施例を示している。該実施例では、放
電源の電極を矩形にして、ループ磁場によりプラズマ領
域31を図示のような形状にしたもので、長方形の基板
に用いて作動である。
FIG. 4 shows another embodiment. In this embodiment, the electrode of the discharge source is rectangular, and the plasma region 31 is shaped as shown in the figure by means of a loop magnetic field, and the plasma region 31 is operated using a rectangular substrate.

第5図は前述の放電源30を用いて多数の基板51を基
板ホルダで電極を兼ねる電極53の周りに配し、この電
極53を矢印56方向に回転してより秀れた放電化学反
応装置を得ようとするものである。
FIG. 5 shows a more excellent discharge chemical reaction device in which a large number of substrates 51 are arranged around an electrode 53 which also serves as an electrode in a substrate holder using the above-mentioned discharge source 30, and this electrode 53 is rotated in the direction of an arrow 56. It is an attempt to obtain.

第6図にはさらに別の放電源の実施例を示している。当
該実施例は、放電を数百Torrと云った高い圧力にお
いて行わせる場合に適している。
FIG. 6 shows yet another embodiment of the discharge source. This embodiment is suitable for the case where discharge is performed at a high pressure of several hundred Torr.

58は電極の不必要なところで、放電を行わせないため
の絶縁物、57はシールドである。
Reference numeral 58 is an insulator for preventing discharge from occurring at unnecessary portions of the electrode, and reference numeral 57 is a shield.

第7図には別の放電源の実施例を示しである。FIG. 7 shows another embodiment of the discharge source.

該実施例においては、より広い面積にわたって放電を行
わせるために複数の放電ゾーン31L312を設けた場
合の実施例である。
This embodiment is an embodiment in which a plurality of discharge zones 31L312 are provided in order to cause discharge to occur over a wider area.

第8図には他の放電源の実施例を示しである。FIG. 8 shows an embodiment of another discharge source.

該実施例においては、反応気体を吹き出すための多数の
吹き出し口59を持っている。分布の良い、より効率的
なエツチングを行うことができる。
This embodiment has a large number of blow-off ports 59 for blowing out the reaction gas. Etching can be performed more efficiently with better distribution.

第9図にはさらに別の放電源52の実施例を示している
。該実施例においては放電源を矢印561方向に回転さ
せることにより広い面積にわたって放電化学反応を行わ
せる。
FIG. 9 shows yet another embodiment of the discharge source 52. In this embodiment, the discharge source is rotated in the direction of arrow 561 to cause the discharge chemical reaction to occur over a wide area.

第10図には別の放電源の実施例を示している。FIG. 10 shows another embodiment of the discharge source.

該実施例には円板において−様な分布をもって反応を行
わせるため、はぼ扇状のプラズマ領域81を持つ電極を
矢印562に示すように回転させる。
In this embodiment, an electrode having a fan-shaped plasma region 81 is rotated as shown by an arrow 562 in order to cause a reaction to occur with a -like distribution in the disk.

第11図には更に別に乾電源の実施例を示し,ている。FIG. 11 shows another embodiment of a dry power source.

該実施例は、長方形の放電源52を矢,印563方向に
移動させることにより広い面積に渡って反応を行わせる
場に適している。
This embodiment is suitable for a place where a reaction is carried out over a wide area by moving the rectangular discharge source 52 in the direction of the arrow and mark 563.

第12図には別の放電源の実施例を示している。FIG. 12 shows another embodiment of the discharge source.

該実施例には広大な面積を持つ基板51上で反応を行わ
せたい場合に適している。多数の筒状の放電源52を配
し、事実上二点鎖線521でで示すような大形の長方形
の放電源と同様な効果を得ることが出来る。
This embodiment is suitable when it is desired to perform a reaction on a substrate 51 having a large area. By arranging a large number of cylindrical discharge sources 52, it is possible to obtain substantially the same effect as a large rectangular discharge source as shown by the two-dot chain line 521.

第13図には更に別の放電源の実施例を示している。該
実施例は電極25が円錐形をしている場合である。
FIG. 13 shows yet another embodiment of the discharge source. In this embodiment, the electrode 25 has a conical shape.

第14図には更に別の実施例を示している。該実施例は
、ゾーン25L  252及び253が設けてあり、各
々から別の反応気体を吹き出し反応を行わせることが出
来る。
FIG. 14 shows yet another embodiment. In this embodiment, zones 25L 252 and 253 are provided, and different reaction gases can be blown out from each zone to carry out a reaction.

第15図にはさらに別の実施例を示している。FIG. 15 shows yet another embodiment.

該実施例は磁場調整手段としての磁石231が設けであ
ることが他の例と異なる。この磁場調整手−l〇− 段は磁石231から出る磁力線212により、磁力線2
11の基板と平行な部分を増大せしめた例である。もっ
とも、磁石でなく磁性体を用いても磁力線211の凸の
部分を減らすことにより基板と平行な部分を増大させる
ことができる。
This embodiment differs from other examples in that a magnet 231 is provided as a magnetic field adjusting means. This magnetic field adjusting means -l〇- stage uses the magnetic field lines 212 coming out from the magnet 231 to adjust the magnetic field lines 2
This is an example in which the portion parallel to the substrate No. 11 is increased. However, even if a magnetic material is used instead of a magnet, the portion parallel to the substrate can be increased by reducing the convex portion of the magnetic lines of force 211.

第16図にはさらに別の実施例を示している。FIG. 16 shows yet another embodiment.

該実施例は別の格子状第4電極703を設けている。7
1は格子、72は格子の中に設けられた空間で、プラズ
マ28中の帯電体が基板51の方に飛行するのを一層減
じることができる。
This embodiment provides another grid-like fourth electrode 703. 7
Reference numeral 1 designates a grid, and 72 designates a space provided within the grid, which can further reduce the flight of charged bodies in the plasma 28 toward the substrate 51.

第17図には更に別の実施例を示している。該実施例で
は二つの格子701.702間に電圧を印加し、磁場7
3(矢印の方向に設定)によりマグネトロン放電を行わ
せ、基板51と53近傍で化学反応を行わせるようにす
るものである。
FIG. 17 shows yet another embodiment. In this embodiment, a voltage is applied between two grids 701 and 702, and a magnetic field 7
3 (set in the direction of the arrow), a magnetron discharge is caused to occur, and a chemical reaction is caused near the substrates 51 and 53.

(発明の効果) 本発明の装置によれば、高速で(例えば、成膜やエツチ
ングにおいては数千A/win) 、10−6Torr
と云った低圧で帯電体の流入を極度に少なくしたり、そ
のエネルギーの大きさを制御することにより結晶性の秀
れた薄膜やダメージの少ないエツチングを行うことがで
きる。また、大量の活性種と帯電体の衝撃により高速か
つ良質の表面改質を行うことが出来る。
(Effects of the Invention) According to the apparatus of the present invention, high speed (for example, several thousand A/win in film formation and etching), 10-6 Torr
By minimizing the inflow of charged bodies at such low pressures and controlling the amount of energy, thin films with excellent crystallinity and etching with little damage can be achieved. In addition, high-speed and high-quality surface modification can be performed by the impact of a large amount of active species and charged bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の概略図、第2図は真空容器
内を示した概略断面図、第3図、第15図は磁力発生手
段を示した部分概略図、第4菌、第7図、第8図、第1
2図は別の実施例を示した放電源の斜視図、第5図及び
第13図は別の実施例を示した放電源の概略断面図、第
6図は別の実施例を示した放電源の概略断面図、第9図
乃至第11図は別の実施例を示した放電源の平面図、第
14図は反応気体吹き出し部の平面図、第16図、第1
7図は別の実施例を示した放電源の概略図である。 11・・拳真空容器(第3電極)、20・・・放電源、
21・・・磁力線、40・・・電解発生用電源、51.
52・・・被処理体、60・・・化合物上記を送り込む
手段。 特許出願人 日電アネルバ株式会社 手続補正帯(方式) 平成1年4月10日 特許庁長官 吉田文毅 殿 平成1年り月]1月差出1
、事件の表示 昭和63年特許願第319956号 2、発明の名称   二極放電化学反応装置3、補正を
する者 事件との関係   特許出願人 住所 東京都府中市四谷5−8−1 5、補正命令の日イマj 平成1年3月28日(発送臼) (なお、 明細書の内容に変更はない。
Fig. 1 is a schematic diagram of the device according to the present invention, Fig. 2 is a schematic sectional view showing the inside of the vacuum container, Figs. 3 and 15 are partial schematic diagrams showing the magnetic force generating means, the fourth bacteria, Figure 7, Figure 8, Figure 1
2 is a perspective view of a discharge source showing another embodiment, FIGS. 5 and 13 are schematic sectional views of a discharge source showing another embodiment, and FIG. 6 is a perspective view of a discharge source showing another embodiment. A schematic sectional view of the power source, FIGS. 9 to 11 are plan views of the discharge source showing another embodiment, FIG. 14 is a plan view of the reaction gas blowing part, FIGS.
FIG. 7 is a schematic diagram of a discharge source showing another embodiment. 11...Fist vacuum container (third electrode), 20...Discharge source,
21... Lines of magnetic force, 40... Power source for electrolysis generation, 51.
52... Object to be treated, 60... Means for feeding the above compound. Patent Applicant Nichiden Anelva Co., Ltd. Procedural Amendment Band (Method) April 10, 1999 Commissioner of the Patent Office Mr. Fumiki Yoshida Date of 1999] January Submission 1
, Indication of the case Patent Application No. 319956, filed in 1988 2, Title of the invention Bipolar discharge chemical reaction device 3, Person making the amendment Relationship to the case Patent applicant address 5-8-1 Yotsuya, Fuchu-shi, Tokyo 5, Amendment The date of the order is now March 28, 1999 (shipment date) (The contents of the statement have not changed.

Claims (1)

【特許請求の範囲】[Claims] 所定の圧力に排気した真空容器と、該真空容器内に配置
された電極と、該電極の表面上の一交点から出て湾曲し
て進み、表面上の他の一交点に入る磁力線を生ぜしめる
ため電極の近くに設けられた磁気手段、前記磁力線と直
交する電界を生ぜしめ電極も近くに第3の電極との間に
放電を起こさせる手段とからなるプラズマ及びラジカル
を発生させる放電源、前記放電源の近くに配置された被
処理体とこの被処理体に電力を供給し、第3または第4
の電極との間に放電をおこさせる手段、前記放電源の近
くへ放電により分解しやすい化合物蒸気を送り込む手段
と、前記電極のまわりの圧力を調整する手段とを有し、
前記送り込まれた化合物自身または化合物または化合物
と被処理体との間で反応を行わせることを特徴とする三
極放電化学反応装置。
A vacuum vessel evacuated to a predetermined pressure, an electrode placed in the vacuum vessel, and a line of magnetic force that exits from one intersection point on the surface of the electrode, curves, and enters another intersection point on the surface. a discharge source for generating plasma and radicals, comprising a magnetic means provided near the electrode, and a means for generating an electric field perpendicular to the magnetic field lines and causing a discharge between the electrode and a third electrode nearby; An object to be processed placed near the discharge source and a third or fourth
means for causing a discharge between the discharge source and the electrode, means for sending compound vapor that is easily decomposed by the discharge into the vicinity of the discharge source, and means for adjusting the pressure around the electrode,
A three-electrode discharge chemical reaction apparatus characterized in that a reaction is caused between the fed compound itself, the compound, or the compound and the object to be treated.
JP31995688A 1988-12-19 1988-12-19 Three-pole discharge chemical reactor Pending JPH02166282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31995688A JPH02166282A (en) 1988-12-19 1988-12-19 Three-pole discharge chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31995688A JPH02166282A (en) 1988-12-19 1988-12-19 Three-pole discharge chemical reactor

Publications (1)

Publication Number Publication Date
JPH02166282A true JPH02166282A (en) 1990-06-26

Family

ID=18116125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31995688A Pending JPH02166282A (en) 1988-12-19 1988-12-19 Three-pole discharge chemical reactor

Country Status (1)

Country Link
JP (1) JPH02166282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433786A (en) * 1993-08-27 1995-07-18 The Dow Chemical Company Apparatus for plasma enhanced chemical vapor deposition comprising shower head electrode with magnet disposed therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433786A (en) * 1993-08-27 1995-07-18 The Dow Chemical Company Apparatus for plasma enhanced chemical vapor deposition comprising shower head electrode with magnet disposed therein
US5494712A (en) * 1993-08-27 1996-02-27 The Dow Chemical Company Method of forming a plasma polymerized film

Similar Documents

Publication Publication Date Title
US5204144A (en) Method for plasma deposition on apertured substrates
AU746645C (en) Method and apparatus for deposition of biaxially textured coatings
JP2970654B1 (en) Thin film forming equipment
JPS61213377A (en) Method and apparatus for plasma deposition
JPH02166282A (en) Three-pole discharge chemical reactor
JP2564895B2 (en) Plasma processing device
JPH01302645A (en) Discharging device
JP2010047780A (en) Vacuum treatment apparatus and vacuum treatment method
JP2626339B2 (en) Thin film forming equipment
JPS62204520A (en) Manufacture of thin film
JPH08165563A (en) Electron-beam annealing device
JPH068510B2 (en) Plasma / ion generator and plasma / ion processing device
JPH06116724A (en) Thin film forming device
JPH06188206A (en) Plasma cvd device
JP3319971B2 (en) Plasma processing equipment
JPH09153486A (en) Plasma processing method and device
JPS63143273A (en) Ecr device
JPH02123640A (en) Discharge device
JPH0244720A (en) Microwave plasma treatment device
JPH08264519A (en) Plasma generator and plasma processor
JPH03275594A (en) Method and device for sputtering with reactive gas utilized therefor
JP2610477B2 (en) Plasma processing equipment
JPH03253561A (en) Sputtering type particle supplying source and processing device using this source
JP2832256B2 (en) Plasma deposition equipment
JPH0525622A (en) Sputtering device integrated with ion source