JPH02165576A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH02165576A
JPH02165576A JP63321034A JP32103488A JPH02165576A JP H02165576 A JPH02165576 A JP H02165576A JP 63321034 A JP63321034 A JP 63321034A JP 32103488 A JP32103488 A JP 32103488A JP H02165576 A JPH02165576 A JP H02165576A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
positive electrode
battery
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63321034A
Other languages
Japanese (ja)
Other versions
JP2707664B2 (en
Inventor
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Hiromi Okuno
奥野 博美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18128061&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02165576(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63321034A priority Critical patent/JP2707664B2/en
Publication of JPH02165576A publication Critical patent/JPH02165576A/en
Application granted granted Critical
Publication of JP2707664B2 publication Critical patent/JP2707664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To restrain the creation of dendrite on a lithium negative electrode so as to obtain a better recharge and discharge cycle life by using a positive electrode plate which is formed by coat-depositing or pressure-depositing a positive electrode piling agent on a metal film and a negative electrode plate which is formed by pressure-depositing lithium on both faces of a metal film. CONSTITUTION:A positive electrode plate 1 is used which is formed by coat- depositing or pressure-depositing a positive electrode piling agent on a metal film 2, and a negative electrode plate is used which is formed by pressure- depositing lithium on both faces of a metal film 5. Then, by eliminating a subtle difference in electric resistance between respective collecting terminal portions in each part on the surfaces of the respective electrode plates 1, 4, uniform reaction is performed on the lithium surface of a negative electrode during battery charge. It is thus possible to restrain the occurrence of dendrite and have the property of a better recharge and discharge cycle life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器のメモリー保持電源もしくはボータプ
ル電子機器の駆動用電源としての有機電解質リチウム二
次電池の充放電特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in the charging and discharging characteristics of an organic electrolyte lithium secondary battery used as a memory storage power source for electronic equipment or as a power source for driving multiple electronic equipment.

従来の技術 エネルギー密度が大きく、保存性、自己放電特性、耐漏
液性にすぐれるなどの特長を持つリチウム−次電池はす
でにフッ化黒鉛・リチウム電池。
Conventional technology Lithium secondary batteries with features such as high energy density, excellent storage stability, self-discharge characteristics, and leakage resistance are already fluorinated graphite lithium batteries.

二酸化マンガン・リチウム電池、塩化チオニル・リチウ
ム電池などが実用化されている。
Manganese dioxide lithium batteries, thionyl chloride lithium batteries, etc. have been put into practical use.

一方、最近の電子機器の小形化、ポータプル化に伴い、
それに使用する電源としての電池も小形化、軽量化が要
求され、そのため電池の電気容量が十分に確保されない
という問題が生じてきた。
On the other hand, with the recent miniaturization and portability of electronic devices,
Batteries used as a power source are also required to be smaller and lighter, which has led to the problem that sufficient electric capacity of the batteries cannot be secured.

これに対し前記のリチウム電池の特長を維持しつつ、且
つ充電しさえすれば何回でもくり返し使用できるという
、リチウム二次電池への要望が高まってきている。
On the other hand, there is an increasing demand for a lithium secondary battery that maintains the above-mentioned features of the lithium battery and can be used repeatedly as long as it is charged.

リチウム二次電池としては2例えば特開昭61−526
2号公報にみられる如く、正極活物質として二硫化モリ
ブデンを用いるものが一部実用化されているが、より高
エネルギー密度、良好な充放電サイクル特性を目指し、
現在なお盛んに研究がおこなわれている。
As a lithium secondary battery, 2, for example, JP-A-61-526
As seen in Publication No. 2, some methods using molybdenum disulfide as the positive electrode active material have been put into practical use, but with the aim of achieving higher energy density and better charge/discharge cycle characteristics,
Currently, active research is still being conducted.

リチウム二次電池の正極活物質としては、この二硫化モ
リブデンを始めとして、二硫化チタン。
In addition to molybdenum disulfide, titanium disulfide is used as a positive electrode active material for lithium secondary batteries.

二酸化マンガン、バナジウム酸化物、クロム酸化物など
の無機化合物あるいはポリアニリン、ポリピロール、ポ
リアセチレンなどの有機ポリマーがすぐれた可逆性を有
するものとして知られている。
Inorganic compounds such as manganese dioxide, vanadium oxide, and chromium oxide, and organic polymers such as polyaniline, polypyrrole, and polyacetylene are known to have excellent reversibility.

それにもかかわらず、現在リチウム二次電池が本格的に
実用化されない最も大きな理由として、負極活物質であ
るリチウムの貧困な充放電可逆性が挙げられる。
Despite this, the most important reason why lithium secondary batteries are not put into full-scale practical use is the poor charge-discharge reversibility of lithium, which is the negative electrode active material.

リチウム極では放電時にリチウムが負極からイオンとし
て電解質中に溶解し、充電時には逆に電解質中のリチウ
ムイオンが再び負極上に析出するという形態をとる。問
題は充電時にリチウムイオンが負極上にリチウムとして
析出する際、樹枝状の生成物(デンドライト)が生成し
、充放電をくり返すにつれて負極からはがれて電池の電
気容量が低下する。あるいは特定部分にデンドライトが
過料に成長し、セパレータを突き破って正極と短絡し、
電池の充放電サイクル寿命が尽きるなどの現象が生じる
ということである。
In a lithium electrode, lithium is dissolved in the electrolyte as ions from the negative electrode during discharging, and conversely, lithium ions in the electrolyte are deposited on the negative electrode again during charging. The problem is that when lithium ions precipitate as lithium on the negative electrode during charging, dendrites are formed, which peel off from the negative electrode as charging and discharging are repeated, reducing the battery's electrical capacity. Or, dendrites grow into a supercharge in a specific part, break through the separator, and short-circuit with the positive electrode.
This means that phenomena such as the battery's charge/discharge cycle life running out may occur.

デンドライトの生成する原因としては、まずリチウム極
の表面に電解質中のリチウムイオンが偏在して析出し、
更にその上のより析出し易い部分に優先的に次々とリチ
ウムが析出するため、その部分が異常に成長する結果お
こるものであると考えられている。従ってこの現象を抑
制するためには、セパレータを介して相対する正極板、
負極板の各部分での反応が均一、言いかえれば反応の電
流分布が一定であればよい。即ち実際の電池の充放電時
には、微視的に見れば正極板・負極板の各部分でわずか
な電位差が認められるものの、一般的には等電位の方向
に動くはずであるから、正極板・負極板の表面の各部分
のそれぞれの集電端子部分からの電気抵抗が一定となる
ようにすれば。
The reason for the formation of dendrites is that lithium ions in the electrolyte are unevenly distributed and precipitated on the surface of the lithium electrode.
Furthermore, it is thought that this occurs as a result of abnormal growth of lithium in those areas, as lithium is preferentially deposited one after another in areas where it is more likely to be precipitated. Therefore, in order to suppress this phenomenon, it is necessary to
It is sufficient that the reaction in each part of the negative electrode plate is uniform, in other words, the current distribution of the reaction is constant. In other words, when an actual battery is charged and discharged, although microscopically there is a slight potential difference between the positive and negative plates, the positive and negative plates generally move in the direction of equal potential. If the electrical resistance from each current collector terminal part of each part of the surface of the negative electrode plate is made constant.

それぞれの部分での反応の電流分布は一定となり。The current distribution of the reaction in each part is constant.

デンドライトの生成は防げることKなる。従って、通常
、リチウム二次電池の製作に当っては、このデンドライ
トの抑制および正極・負極の活物質の均一な反応を目的
として、正極板・負極板へ適切な材質の金属ネットある
いはエキスバンプ1.トメタルを圧入あるいは圧着して
用いている。
The formation of dendrites can be prevented. Therefore, in the production of lithium secondary batteries, metal nets or extract bumps made of an appropriate material are usually placed on the positive and negative electrode plates for the purpose of suppressing dendrites and uniformly reacting the active materials of the positive and negative electrodes. .. The metal is press-fitted or crimped.

発明が解決しようとする課題 上記した如く、正極・負極に金属ネットあるいはエキス
パンデッドメタルを集電体として圧入あるいは圧着する
ことにより、それぞれの集電端子部分からそれぞれの反
応表面部分までの抵抗がほぼ一定に保たれるので、電池
の充電時に負極表面へのデンドライトの生成を抑制する
こととなり。
Problems to be Solved by the Invention As mentioned above, by press-fitting or crimping metal nets or expanded metals as current collectors to the positive and negative electrodes, the resistance from the respective current collector terminals to the respective reaction surfaces can be reduced. Since it is kept almost constant, it suppresses the formation of dendrites on the negative electrode surface when charging the battery.

充放電サイクル寿命特性が大きく向上するものの、ここ
に一つの間頌が発生する。即ち比較的低電流。
Although the charge/discharge cycle life characteristics are greatly improved, there is one caveat here. i.e. relatively low current.

例えば1平方センチメートル当り0.1mA程度以下の
電流で電池を充電する場合、この方法はデンドライトの
生成を抑制するという効果を生じるものの、それ以上の
電流で電池を充電すると徐々にデンドライトの生成が観
察され、比較的短期間で充放電サイクル寿命がつきると
いう現象が見られる。これは上記の場合よりも(に微視
的に正極・負極を眺めてみると、金属ネットあるいはエ
キスパンデッドメタルの金属部分の存在する電極表面部
分の集電端子部分からの抵抗と、金属部分の存在しない
電極表面部分の抵抗との微妙な違いが、比較的大きな電
流で電池を充電する場合KIJチウム負極の表面の反応
のバラツキとなって現われてくるからと考えられる。従
ってリチウム負極へのデンドライトの生成を抑止し、良
好な充放電サイクル寿命を得るためには、充電電流とし
て、リチウム負極の1平方センチメートル当り0.1m
Å以下となるような低電流でおこなえればよいが1通常
充電の目安となる10時間率程度の充電をおこなおうと
すれば、電極面積として膨大な面積が必要となり、電池
の製作上の問題、あるいは電池への充填電気量(電池の
電気容量)が減少するという問題が発生し、これらの問
題を解決しなければならないという課題が生じることに
なる。
For example, when charging a battery with a current of less than about 0.1 mA per square centimeter, this method has the effect of suppressing the formation of dendrites, but if the battery is charged with a current higher than that, the formation of dendrites is gradually observed. , there is a phenomenon that the charge/discharge cycle life ends in a relatively short period of time. If we look at the positive and negative electrodes microscopically, we can see that the resistance from the current collector terminal part of the electrode surface part where the metal net or expanded metal part is present, and the resistance from the metal part This is thought to be due to the subtle difference in resistance between the resistance of the electrode surface area where no In order to suppress the formation of dendrites and obtain a good charge/discharge cycle life, the charging current should be 0.1m/cm2 of the lithium negative electrode.
Although it is possible to charge at a low current of less than 1 Å, charging at a rate of about 10 hours, which is the standard for normal charging, would require a huge area for the electrodes, which would cause problems in battery manufacturing. Alternatively, a problem arises in that the amount of electricity charged into the battery (the electric capacity of the battery) decreases, and the problem arises that these problems must be solved.

課題を解決するだめの手段 本発明はこのような課題を解決するものであり。A means to solve problems The present invention solves these problems.

金属薄膜に正極合剤を塗着もしくは圧着してなる正極板
と、金属薄膜の両面にリチ、ウムを圧着してなる負極板
とをセパレータを介して渦巻状に巻回した極板群と、有
機電解質とを有するリチウム二次電池を提供するもので
ある。
An electrode plate group consisting of a positive electrode plate formed by applying or pressing a positive electrode mixture onto a metal thin film, and a negative electrode plate formed by pressing lithium or umium onto both sides of the metal thin film, which are spirally wound with a separator interposed therebetween; The present invention provides a lithium secondary battery having an organic electrolyte.

作用 上述した如く、リチウム二次電池では充電の際デンドラ
イトの発生を抑止するためできるだけ小さな電流で充電
する必要があり、充電時間を短くするためには電極面積
を大きくすることが不可欠である。さらにその結果とし
て、電池製作時の工程が複雑になる。あるいは電池の充
放電反応に直接関与しないセパレータの体積が増加し電
池の電気容量が減少するという問題が発生する。
Function As described above, a lithium secondary battery needs to be charged with as small a current as possible in order to suppress the generation of dendrites during charging, and it is essential to increase the electrode area in order to shorten the charging time. Furthermore, as a result, the process during battery manufacturing becomes complicated. Alternatively, a problem arises in that the volume of the separator, which is not directly involved in the charging and discharging reactions of the battery, increases and the electric capacity of the battery decreases.

本発明はこれらのことを勘案して、正極および負極の集
電体として金属薄膜を用いることを提案するものである
。即ちこのようにすれば、正極あるいは負極の表面のど
の部分もそれぞれの集電体である金属薄膜から等距離に
あり、電池の充電の際の集電体からの距離の微妙な違い
から生じる電気抵抗差ひいてはそれぞれの集電端子部分
からの電気抵抗差のための反応の不均一によるデンドラ
イトの発生を防ぎ、充放電サイクル寿命特性のすぐれた
リチウム二次電池を提供し得るものである。
Taking these matters into consideration, the present invention proposes the use of metal thin films as current collectors for the positive and negative electrodes. In other words, in this way, any part of the surface of the positive or negative electrode is at the same distance from the metal thin film that is the current collector, and the electricity generated due to subtle differences in distance from the current collector when charging the battery is It is possible to prevent the generation of dendrites due to non-uniform reactions due to the difference in resistance and, in turn, the difference in electrical resistance from the respective current collecting terminal portions, thereby providing a lithium secondary battery with excellent charge/discharge cycle life characteristics.

但しこの場合、正極集電体として、空孔部分を有する金
属ネットあるいはエキスパンデッドメタルを用いず、金
属薄膜を用いるため、正極合剤を空孔部分に圧入すると
いう方法ではなく、必然的に正極合剤を金属薄膜の面に
塗着もしくは圧着するという方法をとることになる。一
方、負極は金属薄膜の両面にリチウムを圧着することに
より形成し得る。また同時に注意しなければならないこ
とは、当然のことではあるが、正極・負極に用いる金属
薄膜はそれぞれ正極活物質あるいはリチウムと反応する
ものであってはなら力い。そのような金属薄膜としては
種々考えられるが、加工性、経済性などを考慮して、正
極用金属薄膜としては。
However, in this case, since a metal thin film is used as the positive electrode current collector instead of a metal net with holes or an expanded metal, the method of press-fitting the positive electrode mixture into the holes is not necessary. The method is to apply or press the positive electrode mixture onto the surface of the metal thin film. On the other hand, the negative electrode can be formed by pressing lithium onto both sides of a metal thin film. At the same time, care must be taken, of course, that the metal thin films used for the positive and negative electrodes must not react with the positive electrode active material or lithium, respectively. Various types of such metal thin films can be considered, but in consideration of processability, economic efficiency, etc., this metal thin film for positive electrodes is selected.

アルミニウム、チタン、ステンレス鋼が、負極用金属薄
膜としてはニッケル、銅、ステンレス鋼が望ましい。以
下実施例で説明する。
Aluminum, titanium, and stainless steel are preferable, and nickel, copper, and stainless steel are preferable for the negative electrode metal thin film. This will be explained below using examples.

実施例 実施例1 第1図は本発明の実施例における電池の断面図である。Example Example 1 FIG. 1 is a sectional view of a battery in an embodiment of the present invention.

第1図において、1は正極板であり、正極活物質の二酸
化マンガンと導電材のカーボン粉末と結着剤の四フッ化
エチレンの水性ディスバージョンと増粘剤のカルボキシ
メチルセルロース(CMC)を重量比で100ニア:7
:1の割合でペースト状に混練したものを厚さ30μm
のアルミニウム箔2の両面に塗着した後乾燥し、圧延し
、所定の大きさに切断しである。但しこれらの材料のう
ち四フッ化エチレンの水性ディスバージョンの混合した
重量割合は、ディスバージョン中の固形分として計算し
ている。この時の正極活物質の理論充填電気量は二酸化
マンガンの1価の反応として1400mAhである。3
はセパレータで多孔性のポリプロピレン製フィルムを用
いている。4はリチウム負極で6の厚さ20μmのニッ
ケル箔の両面にリチウムを圧着したものであり。
In Figure 1, numeral 1 is a positive electrode plate, in which manganese dioxide as a positive electrode active material, carbon powder as a conductive material, aqueous dispersion of tetrafluoroethylene as a binder, and carboxymethyl cellulose (CMC) as a thickener are mixed in weight ratios. 100 near: 7
: Kneaded into a paste at a ratio of 1:1 to a thickness of 30 μm
After coating both sides of the aluminum foil 2, it is dried, rolled, and cut into a predetermined size. However, among these materials, the weight proportion of the aqueous dispersion of tetrafluoroethylene is calculated as the solid content in the dispersion. The theoretical amount of electricity charged in the positive electrode active material at this time is 1400 mAh as a monovalent reaction of manganese dioxide. 3
uses a porous polypropylene film as a separator. 4 is a lithium negative electrode, which is made by pressing lithium onto both sides of the 20 μm thick nickel foil shown in 6.

その理論充填電気量は2800mムhである。この正極
と負極をセパレータを介して重ね合せ、渦巻状に巻回し
てケース9内に挿入する。挿入後6のチタン製リードを
7のステンレス製封口板にスポット溶接する。8は鉄に
ニッケルメッキした正極キャップ兼正極端子であらかじ
め封口板7にスボット溶接されている。また負極集電体
5の端部は負極端子を兼ねたケース9にスポット溶接す
る。
The theoretical charging amount of electricity is 2800 mmh. The positive and negative electrodes are stacked on top of each other with a separator interposed therebetween, wound spirally, and inserted into the case 9. After insertion, the titanium lead 6 is spot welded to the stainless steel sealing plate 7. Reference numeral 8 denotes a positive electrode cap and positive electrode terminal made of nickel-plated iron, which is spot-welded to the sealing plate 7 in advance. Further, the end of the negative electrode current collector 5 is spot welded to a case 9 which also serves as a negative electrode terminal.

10はポリプロピレン環の絶縁板であり、11は同シく
ポリプロピレン環の絶縁ガスケットである。
10 is an insulating plate made of a polypropylene ring, and 11 is an insulating gasket also made of a polypropylene ring.

12は電池に異常がおきて、電池内圧が上昇した場合に
内部のガスが外部へ放出されるよう取り付けである安全
弁である。以上の操作の後、六フッ化リン酸リチウム(
LiPF6)をプロピレンカーボネート中に1モル/l
の割合で溶かした電解質を注入し、電池を封口する。完
成電池のサイズは単3形(14,5φ×50jrll)
である。この本発明電池を電池人とする。
Reference numeral 12 denotes a safety valve that is installed so that when an abnormality occurs in the battery and the internal pressure of the battery increases, internal gas is released to the outside. After the above operations, lithium hexafluorophosphate (
LiPF6) in propylene carbonate at 1 mol/l
Inject the electrolyte dissolved at a ratio of The size of the completed battery is AA size (14.5φ x 50jrll)
It is. This invention battery will be referred to as a battery person.

次に電池人と全く同じ構成で正極集電体2だけをチタン
ネットに変え2前記正極合剤ペーストを圧入し、正極と
した電池を電池Bとする。この場合の正極および負極の
理論充填電気量は電池Aと同じである。
Next, with the same configuration as the battery man, only the positive electrode current collector 2 was changed to a titanium net, and the positive electrode mixture paste 2 was press-fitted, and the battery was designated as battery B. The theoretical amount of electricity charged in the positive and negative electrodes in this case is the same as in battery A.

また電池A、Bと全く同じ構成で、負極集電体6のみを
ニッケルネットに変えた電池をそれぞれ電池C,Dとす
る。この場合の正極および負極の理論充填電気量は電池
A、Bと同じである。
In addition, batteries having exactly the same configuration as batteries A and B except that only the negative electrode current collector 6 is replaced with a nickel net are designated as batteries C and D, respectively. In this case, the theoretical amount of electricity charged in the positive and negative electrodes is the same as in batteries A and B.

さらに電池A、Bと全く同じ構成で、負極リチウム全体
には集電体を用いず、負極の端部のみにニッケルリボン
を圧着し負極集電体とした電池をそれぞれ電池に、Fと
する。当然のことながら電池E、Fは負極全体にわたる
集電体を有していないだめ、その分リチウムの充填竜が
増加し、3200mAhとなっている。
Further, a battery having exactly the same configuration as Batteries A and B, but without using a current collector for the entire negative electrode lithium, and having a nickel ribbon crimped to only the end of the negative electrode as a negative electrode current collector, is designated as a battery F. Naturally, since batteries E and F do not have a current collector that covers the entire negative electrode, the amount of lithium charged increases accordingly, resulting in a capacity of 3200 mAh.

これら電池A〜Fを20℃で70mAの電流で3.8マ
と2.0マの電圧範囲内で充放電した時の充放電サイク
ル数とそれぞれのサイクルでの放電容量をプロットした
ものを第2図に示す。この時電極の単位面積当りの充放
電電流密度は0,33 rnA/dとなる。
These batteries A to F are charged and discharged at 20°C with a current of 70 mA within the voltage range of 3.8 mA and 2.0 mA, and the number of charge/discharge cycles and the discharge capacity in each cycle are plotted. Shown in Figure 2. At this time, the charging/discharging current density per unit area of the electrode is 0.33 rnA/d.

図から明らかなように1本発明電池人は充放電を200
サイクルくり返しだ時点でも良好な特性を有しており、
負極へのデンドライトの発生は認められなかった。初期
にくらべて若干放電容量が低下しているのは、充放電サ
イクルに伴う正極の特性低下である。一方正極の集電体
のみ電池Aと異る電池Bも比較的良好な特性を示すが、
はソ180サイクル時点でデンドライトが発生し、電池
の寿命が尽きた。
As is clear from the figure, one battery according to the invention can charge and discharge 200 times.
It has good characteristics even after repeated cycles,
No dendrite formation was observed on the negative electrode. The reason why the discharge capacity is slightly lower than the initial value is due to the deterioration of the characteristics of the positive electrode due to charge/discharge cycles. On the other hand, battery B, in which only the positive electrode current collector is different from battery A, also exhibits relatively good characteristics.
At the 180th cycle, dendrites occurred and the battery life ended.

一方、負極の集電体としてニッケルネットを用いた電池
C,Dはそれぞれはソ140サイクル。
On the other hand, batteries C and D, which used nickel net as the negative electrode current collector, were each cycled for 140 cycles.

130サイクル時点でデンドライトが発生し、電池の寿
命が尽きた。
At the 130th cycle, dendrites occurred and the life of the battery ended.

また、負極に集電体を用いていない電池はさらに寿命が
短く、電池E、Fははv70数サイクルで寿命が尽きた
In addition, batteries that do not use a current collector in the negative electrode have even shorter lifespans, and batteries E and F expired after several v70 cycles.

これらの結果から明らかなように、電池の充放電サイク
ル寿命特性に最も大きな影響を与えるものは負極集電体
の有無であり、しかも集電体が有る場合でも金属薄膜と
金属ネットでは充放電サイクル寿命特性に大きな差があ
ることが判る。即ち。
As is clear from these results, the thing that has the greatest effect on the charge/discharge cycle life characteristics of a battery is the presence or absence of a negative electrode current collector, and even when a current collector is present, the charge/discharge cycle life of metal thin films and metal nets is It can be seen that there is a large difference in life characteristics. That is.

前記した如く、負極集電体として金属薄膜を用い負極リ
チウムの表面の各部分の負極端子部からの抵抗差を殆ん
どなくした電池人、Bは、負極集電体として金属ネット
を用い、負極リチウム表面の各部分の負極端子部からの
抵抗に微妙な差を有する電池C,Dとくらべ良好な特性
を示す。更に負極集電体が同じであっても、電池AとB
、Cとり。
As mentioned above, battery engineer B used a metal thin film as the negative electrode current collector to almost eliminate the difference in resistance from the negative electrode terminal to each part of the surface of the negative electrode lithium, and B used a metal net as the negative electrode current collector. It exhibits better characteristics than batteries C and D, which have slight differences in resistance from the negative electrode terminal to each part of the negative electrode lithium surface. Furthermore, even if the negative electrode current collector is the same, batteries A and B
,C.

あるいはEとFにみられるように、正極集電体として金
属薄膜を用いた電池A、C,には、金属ネットを用いた
電池B、D、Fよりも良好な特性を示す。
Alternatively, as seen in E and F, batteries A and C using a metal thin film as the positive electrode current collector exhibit better characteristics than batteries B, D, and F using a metal net.

このことからも判るように、電池の充放電サイクル寿命
特性に起因する負極のデンドライトの生成は正極の集電
体の形状によっても影響されることが判る。以上のこと
から1本発明の如く、正極として金属薄膜に正極合剤を
塗着し、圧延したもの。
As can be seen from this, the formation of dendrites on the negative electrode, which is caused by the charge-discharge cycle life characteristics of the battery, is also influenced by the shape of the current collector on the positive electrode. From the above, one method according to the present invention is a positive electrode prepared by applying a positive electrode mixture to a metal thin film and rolling it.

負極として金属薄膜の両面にリチウムを圧着したものを
用いて電池を構成することにより、放電電気量が大で、
デンドライトの発生がない、充放電サイクル寿命特性に
すぐれたリチウム二次電池が得られる。
By constructing a battery using a metal thin film with lithium crimped on both sides as the negative electrode, a large amount of electricity can be discharged.
A lithium secondary battery that does not generate dendrites and has excellent charge/discharge cycle life characteristics can be obtained.

実施例2 正極活物質として五酸化バナジウムを、正極集電体とし
てステンレス鋼の薄膜とネットを、負極集電体として銅
の薄膜とネットを、さらに電解質としてプロピレンカー
ボネートと1.2ジメトキシエタンを体積比で1:1に
混合したものに過塩素酸リチウム(LLG14 )を1
モル/lの割合で溶かしたものを用いる以外は全〈実施
例1と同様に構成した電池をA′〜F′とする。但し正
極活物質として五酸化バナジウムを用いたことから、電
池A′〜F′の正極の理論充填電気量は650111ム
hである。一方負極の理論充填電気量は実施例1と同様
で電池ム′〜D′は280Offiムhであり、を池I
E’、F/は3200mAhである。
Example 2 Vanadium pentoxide was used as the positive electrode active material, a stainless steel thin film and net were used as the positive electrode current collector, a copper thin film and net were used as the negative electrode current collector, and propylene carbonate and 1.2 dimethoxyethane were used as the electrolyte. Add 1:1 of lithium perchlorate (LLG14) to the mixture at a ratio of 1:1.
Batteries A' to F' were constructed in the same manner as in Example 1 except that the cells were melted at a ratio of mol/l. However, since vanadium pentoxide was used as the positive electrode active material, the theoretical amount of electricity charged in the positive electrodes of batteries A' to F' was 650,111 μh. On the other hand, the theoretical amount of electricity charged in the negative electrode is the same as in Example 1, and the battery m'~D' is 280Offimh, and the battery I
E', F/ is 3200mAh.

これら電池ム′〜F′を20℃でSOWムの定電流で4
.Otと2.6マの電圧範囲で充放電した時の充放電サ
イクル数とそれぞれのサイクルでの放電容量をプロット
したものを第3図に示す。この時の電極の単位面積当り
の充放YL電流密度は0.28 !Ifム/cIIとな
る。
These battery groups' to F' are operated at a constant current of SOW mode at 20℃
.. FIG. 3 shows a plot of the number of charging and discharging cycles and the discharge capacity in each cycle when charging and discharging in a voltage range of Ot and 2.6 mA. At this time, the charging/discharging YL current density per unit area of the electrode is 0.28! Ifmu/cII.

第3図からも明らかなように1本発明電池ム′はすぐれ
た充放電サイクル寿命特性を示すことが判る。このこと
は、正極活物質の種類、集電体のの材質、電解質の種類
にかかわりなく、正極および負極の集電体として金属薄
膜を用い、正極・負極の表面の各部分のそれぞれの集電
端子部分からの電気抵抗差をなくすことにより、電池の
充電時にデンドライトの発生のない、充放電サイクル寿
命特性のすぐれた電池を得ることができるものである。
As is clear from FIG. 3, the battery pack according to the present invention exhibits excellent charge-discharge cycle life characteristics. This means that regardless of the type of positive electrode active material, the material of the current collector, or the type of electrolyte, metal thin films can be used as current collectors for the positive and negative electrodes, and each part of the surface of the positive and negative electrodes can be used to collect current. By eliminating the electrical resistance difference from the terminal portion, it is possible to obtain a battery that does not generate dendrites during battery charging and has excellent charge/discharge cycle life characteristics.

発明の効果 以上のことから明らかな如く1本発明によれば正極と負
極をセパレーターを介して渦巻状に巻回してなる極板群
を有する有機電解質リチウム二次電池において、正極板
として金属薄膜に正極合剤を塗着もしくは圧着してなる
もの、負極板として金属薄膜の両面KIJチウムを圧着
してなるものを用いることにより、それぞれの極板表面
の各部分のそれぞれの集電端子部分からの微妙な電気抵
抗差をなくすことにより、電池の充電時に負極のリチウ
ムの表面で均一に反応をおこなわせしめ、その結果、デ
ンドライトの発生を抑止して、充放電サイクル寿命特性
のすぐれたリチウム二次電池を提供できるという効果が
得られるものである。なお実施例では正極活物質として
二酸化マンガンと五酸化バナジウム、正極集電体の金属
薄膜としてアルミニウムとステンレス鋼、負極集電体の
金属薄膜としてニッケルと銅、電解質としてプロピレン
カーボネートに六フフ化リン酸リチウムを溶解したもの
とプロピレンカーボネートと1.2ジメトキシエタンを
混合したものに過塩素酸リチウムを溶解したもののみを
示したが、すくなくとも本発明は、この発明の趣旨を変
えないすべての態様に適用し得るものであることは言う
までもない。
Effects of the Invention As is clear from the above, according to the present invention, in an organic electrolyte lithium secondary battery having an electrode plate group consisting of a positive electrode and a negative electrode spirally wound with a separator interposed therebetween, a metal thin film is used as the positive electrode plate. By using a positive electrode plate coated or crimped with a positive electrode mixture, and a negative electrode plate with KIJ lithium crimped on both sides of a metal thin film, it is possible to reduce the amount of electricity from each current collector terminal on each part of the surface of each electrode plate. By eliminating subtle differences in electrical resistance, a uniform reaction occurs on the lithium surface of the negative electrode when the battery is charged.As a result, the formation of dendrites is suppressed, resulting in a lithium secondary battery with excellent charge-discharge cycle life characteristics. This has the effect of being able to provide the following. In the examples, manganese dioxide and vanadium pentoxide are used as positive electrode active materials, aluminum and stainless steel are used as the metal thin film of the positive electrode current collector, nickel and copper are used as the metal thin film of the negative electrode current collector, and propylene carbonate and hexafluorophosphoric acid are used as the electrolyte. Although only a solution of lithium and a solution of lithium perchlorate in a mixture of propylene carbonate and 1.2 dimethoxyethane are shown, at least the present invention is applicable to all embodiments that do not change the spirit of the invention. Needless to say, it is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた円筒形電池の構成図、
第2図および第3図は本発明電池と在来電池の充放電サ
イクル寿命特性図である。 1・・・・・・正極板、2・・・・・・正極集電体、3
・・・・・・セパレータ、4・・・・・・負極板、6・
・・・・負極集電体、6・・・・・・正極リード、7・
・・・・・封口板、8・・・・・・正極端子(+)。 9・・・・・・ケース(−1,1o・・・・・・絶縁板
・、11・・・・・・絶縁ガスケット、12・・・・・
・安全弁。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名3−
−−セへ〇L−タ G−一一正21kリーr 1−+ra坂 トル正pk4手(ナフ
FIG. 1 is a configuration diagram of a cylindrical battery used in an example of the present invention.
FIGS. 2 and 3 are charge/discharge cycle life characteristic diagrams of the battery of the present invention and the conventional battery. 1...Positive electrode plate, 2...Positive electrode current collector, 3
...Separator, 4...Negative electrode plate, 6.
...Negative electrode current collector, 6...Positive electrode lead, 7.
...Sealing plate, 8...Positive electrode terminal (+). 9... Case (-1, 1o... Insulating plate, 11... Insulating gasket, 12...
·safety valve. Name of agent: Patent attorney Shigetaka Awano and 1 other person3-
--Sehe〇L-ta G-Ichimasa 21k Lee r 1-+ra Sakatoru Masa pk 4 moves (Nuff

Claims (4)

【特許請求の範囲】[Claims] (1)金属薄膜に正極合剤を塗着もしくは圧着してなる
正極板と、金属薄膜の両面にリチウムを圧着してなる負
極板とをセパレータを介して渦巻状に巻回した極板群と
、有機電解質とを有するリチウム二次電池。
(1) An electrode plate group consisting of a positive electrode plate formed by applying or pressing a positive electrode mixture onto a metal thin film, and a negative electrode plate formed by pressing lithium onto both sides of the metal thin film, which are spirally wound through a separator. , and an organic electrolyte.
(2)正極の金属薄膜が、アルミニウム、チタン、ステ
ンレス鋼からなる群から選ばれた1種である特許請求の
範囲第1項記載のリチウム二次電池。
(2) The lithium secondary battery according to claim 1, wherein the metal thin film of the positive electrode is one selected from the group consisting of aluminum, titanium, and stainless steel.
(3)負極の金属薄膜が、ニッケル、ステンレス鋼銅か
らなる群から選ばれた1種である特許請求の範囲第1項
に記載のリチウム二次電池。
(3) The lithium secondary battery according to claim 1, wherein the metal thin film of the negative electrode is one selected from the group consisting of nickel, stainless steel and copper.
(4)有機電解質が、プロピレンカーボネート、エチレ
ンカーボネート、ジメチルカーボネート、γ−ブチロラ
クトンからなるエステル群より選ばれた1種もしくは2
種以上、あるいは1,2ジメトキシエタン、テトラヒド
ロフラン、2メチルテトラヒドロフラン、ジオキソラン
からなるエーテル群より選ばれた1種もしくは2種以上
、あるいはこれらエステルとエーテルとの混合物からな
る溶媒に過塩素リチウム(LiClO_4)、六フッ化
リン酸リチウム(LiPF_6)、六フッ化砒酸リチウ
ム(LiAsF_6)、ホウフッ化リチウム(LiBF
_4)、リチウムトリフルオロメタンスルフォネート(
LiCF_3SO_3)からなる群より選ばれた1種も
しくは2種以上の溶質を溶解させたものである特許請求
の範囲第1項に記載のリチウム二次電池。
(4) The organic electrolyte is one or two selected from the ester group consisting of propylene carbonate, ethylene carbonate, dimethyl carbonate, and γ-butyrolactone.
Lithium perchlorine (LiClO_4) is added to a solvent consisting of one or more selected from the group of ethers consisting of 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, and dioxolane, or a mixture of these esters and ethers. , lithium hexafluorophosphate (LiPF_6), lithium hexafluoroarsenate (LiAsF_6), lithium borofluoride (LiBF
_4), lithium trifluoromethanesulfonate (
The lithium secondary battery according to claim 1, wherein one or more solutes selected from the group consisting of LiCF_3SO_3) are dissolved.
JP63321034A 1988-12-19 1988-12-19 Lithium secondary battery Expired - Fee Related JP2707664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321034A JP2707664B2 (en) 1988-12-19 1988-12-19 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321034A JP2707664B2 (en) 1988-12-19 1988-12-19 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH02165576A true JPH02165576A (en) 1990-06-26
JP2707664B2 JP2707664B2 (en) 1998-02-04

Family

ID=18128061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321034A Expired - Fee Related JP2707664B2 (en) 1988-12-19 1988-12-19 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2707664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592807B (en) * 2019-09-18 2021-05-14 宁波大学 Thin film material for inhibiting growth of lithium dendrite and preparation method thereof

Also Published As

Publication number Publication date
JP2707664B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US6436573B1 (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
KR20070100957A (en) Lithium-ion secondary battery
JPH02265167A (en) Nonaqueous electrolyte secondary battery
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
JPH10162823A (en) Non-aqueous secondary battery
EP1265307B1 (en) Polymer cell
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP3292792B2 (en) Lithium secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH03291862A (en) Lithium secondary cell
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH11176421A (en) Nonaqueous electrolyte secondary battery
JP3076887B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH02165576A (en) Lithium secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH09171825A (en) Secondary battery having nonaqueous solvent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees