JPH02165034A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor

Info

Publication number
JPH02165034A
JPH02165034A JP32094388A JP32094388A JPH02165034A JP H02165034 A JPH02165034 A JP H02165034A JP 32094388 A JP32094388 A JP 32094388A JP 32094388 A JP32094388 A JP 32094388A JP H02165034 A JPH02165034 A JP H02165034A
Authority
JP
Japan
Prior art keywords
hydrogen
strain
film
gas
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32094388A
Other languages
Japanese (ja)
Inventor
Ikuro Yonezu
育郎 米津
Akio Furukawa
明男 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32094388A priority Critical patent/JPH02165034A/en
Publication of JPH02165034A publication Critical patent/JPH02165034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a response speed and to enhance reliability by coating a hydrogen occluding alloy membrane with a surface film previous to hydrogen but hardly previous to moisture. CONSTITUTION:A surface film 6 composed of a polymer material such as polyethylene is formed to the upper surface of a hydrogen occluding alloy film 5 composed of LaNi5, a palladium alloy or a titanium alloy. This hydrogen gas sensor is activated in a pure hydrogen atmosphere and a strain sensor composed of a strain element 2 is incorporated in a Wheatstone bridge 7 using lead wires 3. The strain sensor occludes hydrogen in a gaseous atmosphere to be inspected through the alloy film 5 to expands its volume. This volumetric change is applied to the element 2 as strain force and a resistance value is changed corresponding to strain quantity and output voltage is varied by the bridge 7 and amplified by a differential amplifier to be outputted and the concn. of several % - 100% of hydrogen can be detected. By this method, a high response speed and high reliability can be obtained without receiving the effect of moisture.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素検出装置に用いる水素ガスセンサーに関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen gas sensor used in a hydrogen detection device.

(ロ)従来の技術 従来、可燃性ガス漏れ警報器やガス濃度計に用いられる
ガスセンサーとして、SnO,粉末焼結体などを用いた
半導体式ガスセンサーや、白金触媒などを用いた接触燃
焼式ガスセンサーが普及している。そして、半導体ガス
センサーは半導体表面とガスの吸着現象により、電気抵
抗や仕事関数などの物性が変化するという性質を利用す
るものであり、又接触燃焼式ガスセンサーはガス検知機
能を持つ物質の表面でのガスの接触燃焼現象により温度
変化を受けて電気抵抗が変化するという性質を利用する
ものである(特開昭61−66956号公報、特開昭6
1−223642号公報参照)。又、本出願人は上記蜆
知の発明以外に互いに連結された水素吸蔵合金及び歪素
子とその歪素子の出力に基づいて水素濃度を判定する水
素濃度検出装置を昭和63年特許願第138990号と
して出願している。
(b) Conventional technology Traditionally, gas sensors used in flammable gas leak alarms and gas concentration meters include semiconductor gas sensors using SnO, powder sintered bodies, etc., and catalytic combustion type gas sensors using platinum catalysts, etc. Gas sensors are becoming popular. Semiconductor gas sensors utilize the property that physical properties such as electrical resistance and work function change due to the adsorption phenomenon of gas on the semiconductor surface, while catalytic combustion gas sensors utilize the surface of a material that has a gas detection function. This method utilizes the property that electrical resistance changes in response to temperature changes due to the catalytic combustion phenomenon of gas (Japanese Patent Laid-Open No. 61-66956, Japanese Patent Laid-Open No. 66956).
1-223642). In addition to the above-mentioned invention by Shuchi, the present applicant has disclosed a hydrogen storage alloy and a strain element connected to each other, and a hydrogen concentration detection device for determining hydrogen concentration based on the output of the strain element, in Patent Application No. 138990 filed in 1988. The application has been filed as

(ハ)発明が解決しようとする課題 然し乍ら、上記従来のガスセンサーでは、ガスの吸着現
象や燃焼現象などを利用していたため、被検ガス中の各
種ガスに対して反応してしまい、水素ガスのみを選択的
に検知することが困難であった。又、これらのガスセン
サーの作動温度が一般に200〜500℃と高温を必要
とするためセンサーの素子の劣化が起こり易い。そして
、本出願人が提案した水素吸蔵合金のみで構成した場合
、被検ガス中に含まれる水分の影響を受けて検出の応答
速度が遅くなる傾向があり、迅速な測定に支障をきたす
問題点があった。
(c) Problems to be solved by the invention However, since the conventional gas sensor described above uses gas adsorption phenomena and combustion phenomena, it reacts with various gases in the sample gas, resulting in hydrogen gas It was difficult to selectively detect only the Further, since the operating temperature of these gas sensors generally requires a high temperature of 200 to 500° C., deterioration of the sensor element is likely to occur. In addition, when constructed only with the hydrogen storage alloy proposed by the applicant, the detection response speed tends to be slow due to the influence of moisture contained in the sample gas, which is a problem that hinders rapid measurement. was there.

(ニ)課題を解決するための手段 本発明による水素ガスセンサーは、基板上に歪素子を被
着し、その基板上全体に水素吸蔵合金膜とその上面に水
分を透過し難く水素を透過し易い表面膜を被覆している
(d) Means for Solving the Problems The hydrogen gas sensor according to the present invention has a strain element deposited on a substrate, a hydrogen storage alloy film on the entire substrate, and a hydrogen absorbing alloy film on its upper surface that is difficult for moisture to permeate but for hydrogen to permeate. It is coated with a surface film that is easy to coat.

(ホ)作用 本発明によれば、水素は透過し易いが水分は透過し難い
表面膜が形成されているため、被検ガス中の水分の大部
分は表面膜を透過せず、水素吸蔵合金の水素吸収現象を
妨げる水分が水素吸蔵合金膜に到達しにくくなる。
(E) Effect According to the present invention, since a surface film is formed that allows hydrogen to easily permeate but water does not easily permeate, most of the water in the sample gas does not pass through the surface film, and It becomes difficult for moisture to reach the hydrogen storage alloy film, which hinders the hydrogen absorption phenomenon.

その結果、被検ガス中の水分の影響を受けずに水素吸蔵
合金膜が水素濃度に応じて迅速に体積変化されると共に
、この体積変化により歪素子に歪力を加え、歪素子の歪
量を電気的、或いは機械的に変換して測定し、この測定
値に基づいて水素ガスに対しての検知作用を果たす。
As a result, the volume of the hydrogen-absorbing alloy film changes rapidly in accordance with the hydrogen concentration without being affected by moisture in the test gas, and this volume change applies strain force to the strain element, resulting in the amount of strain in the strain element. is measured by converting it electrically or mechanically, and based on this measured value, it performs a detection action on hydrogen gas.

(へ)実施例 以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明による水素ガスセンサーの断面図を例
示したものである。(1)は樹脂などの絶縁性基板で、
(2)は銅−ニッケル系合金から成る厚み0.05〜0
.1閾で接着した歪素子である。この歪素子(2)はエ
ツチング等により線幅0.01〜0.1(財)で全体の
抵抗値が100Ω程度を示すよう蛇行形成されていて、
応力測定用歪センサーを構成している。(3)(3)は
この歪素子(2)の両端にボンディングしたリード線で
ある。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates a cross-sectional view of a hydrogen gas sensor according to the present invention. (1) is an insulating substrate such as resin,
(2) is made of copper-nickel alloy with a thickness of 0.05 to 0.
.. This is a strain element bonded with one threshold. This strain element (2) is formed in a meandering manner by etching or the like so that the line width is 0.01 to 0.1 and the overall resistance value is about 100Ω.
It constitutes a strain sensor for stress measurement. (3) (3) are lead wires bonded to both ends of this strain element (2).

こうして加工された歪素子(2)及びリード線(3)上
には耐熱性を有するポリアミド樹脂層(4)を被覆して
絶縁している。そして、このポリアミド樹脂層(4)の
上面にLaNi+’などの水素吸蔵合金膜(5)を蒸着
法、或いはスパッタ法によって、5〜10μmの厚みで
膜形成する。更に(6)は水素吸蔵合金膜(5)の上面
に形成された表面膜で、この表面膜(6)は水素は透過
するが水分は殆ど透過させない厚さ30μmのポリエチ
レンなどの高分子膜によって構成されている。−尚、比
較例として表面膜(6)を被覆しない水素ガスセンサー
ら同時に作成した。
The thus processed strain element (2) and lead wire (3) are coated with a heat-resistant polyamide resin layer (4) for insulation. Then, a hydrogen storage alloy film (5) such as LaNi+' is formed on the upper surface of the polyamide resin layer (4) to a thickness of 5 to 10 μm by vapor deposition or sputtering. Furthermore, (6) is a surface film formed on the upper surface of the hydrogen storage alloy film (5), and this surface film (6) is made of a polymer film such as polyethylene with a thickness of 30 μm that allows hydrogen to pass through but hardly allows moisture to pass through. It is configured. - As a comparative example, a hydrogen gas sensor not covered with the surface film (6) was also produced at the same time.

これらの水素ガスセンサーを用いて応答速度の測定を行
った。測定は上記水素ガスセンサーを純水素雰囲気中で
活性化させた後、リード線(3)を用いて歪素子(2)
からなる歪センサーをホイートストンブリッジ(7)に
組み込み、被検ガス雰囲気中に配置した。
The response speed was measured using these hydrogen gas sensors. For measurement, after activating the hydrogen gas sensor in a pure hydrogen atmosphere, connect the strain element (2) using the lead wire (3).
A strain sensor consisting of the following was incorporated into a Wheatstone bridge (7) and placed in the test gas atmosphere.

被検ガス雰囲気中で、歪センサーは水素を水素吸蔵合金
(5)によって吸蔵し、体積をその吸蔵量に応じて膨張
させる。この体積変化は歪素子(2)に対して歪力とし
て印加され、歪素子(2)は歪度台(歪量)に応じて数
μΩ〜数10mΩの範囲で抵抗値を変化させる。この抵
抗値変化をホイートストンブリッジ(7)によって出力
電圧に変換し、更に差動アンプで増幅して出力すれば数
%〜100%の水素濃度の検出が可能となる。理論的に
は水素吸蔵合金膜(5)は最大約20%の膨張をするが
、本発明センサーの場合、膜厚が5〜10.czm程度
なので裂けを生じることはなく、幾度にも渡って使用可
能である。
In the test gas atmosphere, the strain sensor stores hydrogen with the hydrogen storage alloy (5) and expands its volume in accordance with the amount of storage. This volume change is applied as a strain force to the strain element (2), and the strain element (2) changes its resistance value in the range of several μΩ to several tens of mΩ depending on the skewness scale (strain amount). If this change in resistance value is converted into an output voltage by a Wheatstone bridge (7), and further amplified by a differential amplifier and output, it becomes possible to detect hydrogen concentrations of several percent to 100%. Theoretically, the hydrogen storage alloy film (5) expands by a maximum of about 20%, but in the case of the sensor of the present invention, the film thickness is 5 to 10%. Since it is about czm, tearing does not occur and it can be used many times.

水素ガスセンサーの水素吸蔵合金に高分子膜を被覆した
本発明例と高分子膜を被覆しない従来例との比較を第4
図の表図にまとめた。
The fourth example compares the present invention example in which the hydrogen storage alloy of the hydrogen gas sensor is coated with a polymer film and the conventional example in which the hydrogen storage alloy is not coated with a polymer film.
The results are summarized in the table shown in the figure.

サンプル1は水素は透過するが水分は透過しにくい材料
から成る高分子表面膜を有する本発明に係る水素ガスセ
ンサーを、約10%の水素ガスと約5%の水分を含むヘ
リウムの被検ガスにさらした場合、サンプル2は表面膜
が存在しない従来構造の水素ガスセンサーを同じ被検ガ
スにさらした場合、サンプル3は対比例として、サンプ
ル2の従来構造の水素ガスセンサーを、約10%の水素
ガスと約0.1%の水分を含むヘリウムの被検ガスにさ
らした場合であり、各サンプルが最大到達抵抗変化量の
約50%に達する応答時間を示している。
Sample 1 uses a hydrogen gas sensor according to the present invention, which has a polymer surface film made of a material that allows hydrogen to pass through but does not easily allow water to pass through, to a test gas of helium containing about 10% hydrogen gas and about 5% water. Sample 2 is a hydrogen gas sensor with a conventional structure without a surface film, and sample 3 is a comparative example. This is a case where each sample was exposed to a test gas of hydrogen gas and helium containing about 0.1% moisture, and each sample shows the response time to reach about 50% of the maximum resistance change.

この表図から明らかなように、本発明の水素ガスの応答
速度は従来例と比べ、6倍以上速く、従来構造のセンサ
ーが水分を約0.1%しか含まない被検ガスをセンシン
グする場合の応答速度と同じ値が得られることが分かっ
た。
As is clear from this table, the response speed of the hydrogen gas of the present invention is more than 6 times faster than that of the conventional example, and when a sensor with a conventional structure senses a sample gas containing only about 0.1% water. It was found that the same value as the response speed can be obtained.

尚、本実施例では表面膜の材料としてポリエチレンを用
いたが、透湿度の小さい高分子材料であればこれに限定
されることはなく、例えばポリプロピレン、塩化ビニリ
デン、セロファン、塩化ビニル、ポリエステル、ポリカ
ーボネート、テフロンポリイミド、酢酸セルロース、ポ
リジメチルシロキサン等多くの高分子材料を使用するこ
とが可能である。
Although polyethylene was used as the material for the surface film in this example, it is not limited to this as long as it is a polymeric material with low moisture permeability, such as polypropylene, vinylidene chloride, cellophane, vinyl chloride, polyester, and polycarbonate. , Teflon polyimide, cellulose acetate, polydimethylsiloxane, and many other polymeric materials can be used.

尚、本実施例では水素吸蔵合金としてLaN isを用
いたが、これ以外に希土類−Nl系合金、パラジウム系
合金、鉄系合金、チタン系合金、ジルコニウム系合金等
が使用可能である。更に、歪センサーは抵抗素子のみな
らず圧電素子を用いても良い。
In this example, LaNis was used as the hydrogen storage alloy, but other materials such as rare earth-Nl alloys, palladium alloys, iron alloys, titanium alloys, zirconium alloys, etc. can be used. Furthermore, the strain sensor may use not only a resistive element but also a piezoelectric element.

(ト)発明の効果 本発明によれば、水素吸蔵合金膜上に、水素は透過する
が水分は透過しにくい材料から成る表面膜を被覆してい
るので、被検ガス中の水分の影響を殆ど受けることなく
応答速度が速い水素ガスセンサーが得られる。またガス
検出は常温で行なえるので、経時変化の少ない信頼性の
高い水素ガスセンサーが得られる。
(G) Effects of the Invention According to the present invention, the hydrogen storage alloy membrane is coated with a surface film made of a material that allows hydrogen to pass through but does not allow moisture to pass through easily. A hydrogen gas sensor with a fast response speed and little interference can be obtained. Furthermore, since gas detection can be performed at room temperature, a highly reliable hydrogen gas sensor with little change over time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による水素ガスセンサーの断面図、第2
図はその主要部の平面図、第3図は検出回路図、第4図
は本発明例と従来例の特性を比較する表図である。 (2)・・・歪素子、 (5)・・・水素吸蔵合金、 (6)・・・高分子膜。
FIG. 1 is a sectional view of a hydrogen gas sensor according to the present invention, and FIG.
The figure is a plan view of the main part, FIG. 3 is a detection circuit diagram, and FIG. 4 is a table comparing the characteristics of the example of the present invention and the conventional example. (2)...Strain element, (5)...Hydrogen storage alloy, (6)...Polymer membrane.

Claims (1)

【特許請求の範囲】[Claims] (1)基板表面に被着された歪素子と、その歪素子表面
を被う水素吸蔵合金膜と、その合金膜上に設けられた表
面膜とから構成され、この表面膜は水素は透過するが水
分は透過しにくい材料から成り、上記歪素子の出力に基
づいて水素濃度を判定する濃度判定手段を具備した水素
ガスセンサー。
(1) Consists of a strain element adhered to the surface of the substrate, a hydrogen storage alloy film covering the surface of the strain element, and a surface film provided on the alloy film, and this surface film is permeable to hydrogen. A hydrogen gas sensor, which is made of a material through which moisture hardly permeates, and is equipped with a concentration determination means for determining hydrogen concentration based on the output of the strain element.
JP32094388A 1988-12-19 1988-12-19 Hydrogen gas sensor Pending JPH02165034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32094388A JPH02165034A (en) 1988-12-19 1988-12-19 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32094388A JPH02165034A (en) 1988-12-19 1988-12-19 Hydrogen gas sensor

Publications (1)

Publication Number Publication Date
JPH02165034A true JPH02165034A (en) 1990-06-26

Family

ID=18127016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32094388A Pending JPH02165034A (en) 1988-12-19 1988-12-19 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JPH02165034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206073A (en) * 1999-01-01 2000-07-28 Equos Research Co Ltd Method for measuring hydrogen occlusion
WO2002039103A1 (en) * 2000-11-10 2002-05-16 Hrl Laboratories, Llc Thin film metal hydride hydrogen sensor
WO2004047128A3 (en) * 2002-11-20 2004-11-18 Advanced Tech Materials Rare earth metal sensor
WO2008149752A1 (en) * 2007-06-04 2008-12-11 Kabushiki Kaisha Atsumitec Hydrogen sensor
JP2011047874A (en) * 2009-08-28 2011-03-10 Yamatake Corp Hydrogen gas sensor and oxygen concentration sensor
BE1027365B1 (en) * 2019-06-12 2021-01-21 Burssens Jan Willem Sensor for measuring a content of an element in a fluid and / or a change of such content in a fluid
US11796502B2 (en) 2017-11-28 2023-10-24 Kabushiki Kaisha Toshiba Gas sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206073A (en) * 1999-01-01 2000-07-28 Equos Research Co Ltd Method for measuring hydrogen occlusion
WO2002039103A1 (en) * 2000-11-10 2002-05-16 Hrl Laboratories, Llc Thin film metal hydride hydrogen sensor
GB2385932A (en) * 2000-11-10 2003-09-03 Hrl Lab Llc Thin film metal hydride hydrogen sensor
GB2385932B (en) * 2000-11-10 2005-05-11 Hrl Lab Llc Metal hydride hydrogen sensor
WO2004047128A3 (en) * 2002-11-20 2004-11-18 Advanced Tech Materials Rare earth metal sensor
WO2008149752A1 (en) * 2007-06-04 2008-12-11 Kabushiki Kaisha Atsumitec Hydrogen sensor
JP2011047874A (en) * 2009-08-28 2011-03-10 Yamatake Corp Hydrogen gas sensor and oxygen concentration sensor
US11796502B2 (en) 2017-11-28 2023-10-24 Kabushiki Kaisha Toshiba Gas sensor
BE1027365B1 (en) * 2019-06-12 2021-01-21 Burssens Jan Willem Sensor for measuring a content of an element in a fluid and / or a change of such content in a fluid

Similar Documents

Publication Publication Date Title
Boon-Brett et al. Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part II–selected sensor test results
US6539774B1 (en) Thin film metal hydride hydrogen sensor
US5767388A (en) Methane sensor and method for operating a sensor
US5367283A (en) Thin film hydrogen sensor
JPH0342566A (en) Measuring cell for electrochemical gas sensor
JPS6061651A (en) Device for selectively measuring component of gas mixture
US20060237551A1 (en) Humidity sensor formed on a ceramic substrate in association with heating components
JPH09145655A (en) Hydrogen sensor
US5434551A (en) Gas sensor having its heater and sensing layer on opposite sides of its substrate
JPH02165034A (en) Hydrogen gas sensor
Spivack et al. Determination of the water vapor permeability and continuity of ultrathin Parylene membranes
JP7312726B2 (en) Hydrogen sensor and hydrogen sensor production method, measuring device and method for measuring hydrogen concentration
JP3653293B2 (en) Method for determining the concentration of gas in a vapor
RU2132551C1 (en) Gas sensor operating process
JPS5879151A (en) Method, sensor and device for detecting quantity of gas trace in atmosphere
US4223550A (en) Carbon monoxide detecting apparatus
JPH01307636A (en) Device and method for detecting hydrogen concentration
JPS60211347A (en) Gaseous hydrogen sensor
JP2726886B2 (en) Contact combustion type carbon monoxide sensor
Miura et al. Sensing characteristics of a solid-state ammonia sensor at ambient temperatures
Hoffmann et al. Palladium Based Mems Hydrogen Sensors
JPH01321348A (en) Hydrogen gas sensor
JP4507438B2 (en) Gas detection method using a gas sensor
Hoffmann et al. MEMS-Based Hydrogen Sensors: A State of the Art Review
JPS6176948A (en) Thin film gas detecting element