JPH0216472B2 - - Google Patents

Info

Publication number
JPH0216472B2
JPH0216472B2 JP55148986A JP14898680A JPH0216472B2 JP H0216472 B2 JPH0216472 B2 JP H0216472B2 JP 55148986 A JP55148986 A JP 55148986A JP 14898680 A JP14898680 A JP 14898680A JP H0216472 B2 JPH0216472 B2 JP H0216472B2
Authority
JP
Japan
Prior art keywords
electrode
sample
secondary electrons
voltage
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55148986A
Other languages
Japanese (ja)
Other versions
JPS5772071A (en
Inventor
Akio Ito
Yoshiaki Goto
Toshihiro Ishizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55148986A priority Critical patent/JPS5772071A/en
Publication of JPS5772071A publication Critical patent/JPS5772071A/en
Publication of JPH0216472B2 publication Critical patent/JPH0216472B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は試料に電子ビームを照射して該試料面
より放出される2次電子をエネルギ分析して試料
の電圧を測定する電圧測定装置に係り、特にエネ
ルギアナライザ中の電界形成電極を金属板電極で
構成した電圧測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage measuring device that measures the voltage of a sample by irradiating the sample with an electron beam and analyzing the energy of secondary electrons emitted from the surface of the sample. The present invention relates to a voltage measuring device in which an electric field forming electrode is formed of a metal plate electrode.

一般に電子ビームを照射した試料の電圧を2次
電子のエネルギ分析によつて測定することが行わ
れる。これは、2次電子のエネルギスペクトル分
布曲線は試料が定まれば、一定であり、試料に電
圧が印加されれば分布曲線はその形状を変えずに
ピーク値が移動することを利用し、たとえば、分
布曲線のピーク値が試料への電圧印加時と電圧を
印加しない時で異なるので、その移動量を測定す
ることによつて、試料への印加電圧を測定するも
のである。かかる測定方法を行う電圧測定装置と
しては、従来より種々の装置が提案されている
が、従来の最も一般的な構成は第1図に示す。同
図で半円球状の金属メツシユよりなる減速電極1
にはマイナス電位VRが与えられ、該半円球状の
減速電極内に平板状金属メツシユよりなる引き出
し電極2が配置され、プラス電位VDが与えられ
ている。引き出し電極2の下端にはIC等の試料
3が置かれて電子ビーム4を該試料3の表面に照
射することで低エネルギの2次電子5が放出され
る。
Generally, the voltage of a sample irradiated with an electron beam is measured by analyzing the energy of secondary electrons. This takes advantage of the fact that the energy spectrum distribution curve of secondary electrons is constant once the sample is determined, and when a voltage is applied to the sample, the distribution curve does not change its shape and the peak value moves.For example, Since the peak value of the distribution curve differs between when voltage is applied to the sample and when no voltage is applied, the voltage applied to the sample is measured by measuring the amount of movement. Various devices have been proposed as voltage measuring devices for performing such measuring methods, and the most common conventional configuration is shown in FIG. In the same figure, the deceleration electrode 1 is made of a semicircular metal mesh.
A negative potential V R is applied to the deceleration electrode, and an extraction electrode 2 made of a flat metal mesh is disposed within the semicircular deceleration electrode, and a positive potential V D is applied to the deceleration electrode. A sample 3 such as an IC is placed at the lower end of the extraction electrode 2, and by irradiating the surface of the sample 3 with an electron beam 4, low-energy secondary electrons 5 are emitted.

該2次電子は引き出し電極2によつて加速さ
れ、減速電極1に与えられる電圧VR以上のエネ
ルギをもつ2次電子のみをメツシユよりなる減速
電極を通過させて2次電子検出手段6に与えるよ
うにする。
The secondary electrons are accelerated by the extraction electrode 2, and only the secondary electrons having an energy higher than the voltage V R applied to the deceleration electrode 1 are passed through the deceleration electrode made of mesh and provided to the secondary electron detection means 6. Do it like this.

上述の如き従来構成によるときは試料3より放
出された2次電子が引き出し電極2や減速電極1
のメツシユに衝突することで、試料3よりの2次
電子量が減少し、S/Nを悪くし、更にメツシユ
に衝突した試料よりの2次電子はメツシユより他
の2次電子を放出し、試料に影響のない2次電子
がアナライザの出力に混入する可能性があり、電
圧測定精度を劣化させる。また、メツシユは汚れ
が付き易くクリーニングも容易でなく廉価に構成
し得ない欠点を有する。
When using the conventional configuration as described above, the secondary electrons emitted from the sample 3 are transferred to the extraction electrode 2 and the deceleration electrode 1.
By colliding with the mesh, the amount of secondary electrons from sample 3 decreases, worsening the S/N, and furthermore, the secondary electrons from the sample that collide with the mesh emit other secondary electrons from the mesh, Secondary electrons that have no effect on the sample may be mixed into the output of the analyzer, degrading voltage measurement accuracy. Furthermore, the mesh has the disadvantage that it is easily soiled, cannot be cleaned easily, and cannot be constructed at a low cost.

本発明は上記従来の欠点を除去しS/Nを向上
するとともに電圧測定精度も高まり、簡単な構成
の電圧測定装置を提供することを目的とするもの
で、その特徴とするところはエネルギアナライザ
の電界を構成する電極を複数の円板電極構造とし
て減速半球状電界を同心状の2枚の板状電極で構
成させて試料より放出された2次電子を有効に検
知手段に導くようにしたものである。以下本発明
の実施例を第2図乃至第5図について詳記する。
第2図は本発明の1実施例の電極構成を示す略線
的説明図であり、Z−Z′軸に沿つて電子ビーム4
が入射して試料3を照射する。該試料の上部には
シールド電極7が、該シールド電極の上に更に検
出用減速電極8が該減速電極8より所定の距離を
置いて同じく検出用最終電極9が配され、これら
電極は中心部に電子ビーム及び試料よりの2次電
子5を通過させるアパチヤ7a,8a,9aを有
し、金属板等で構成されている。シールド電極は
接地され、減速電極8はマイナス電位−VAが加
えられ、更に最終電極9にはプラス電位VEが与
えられている。
The present invention aims to eliminate the above-mentioned conventional drawbacks, improve S/N, improve voltage measurement accuracy, and provide a voltage measurement device with a simple configuration. The electrodes that make up the electric field have a multiple disk electrode structure, and the decelerating hemispherical electric field is made up of two concentric plate electrodes to effectively guide the secondary electrons emitted from the sample to the detection means. It is. Embodiments of the present invention will be described in detail below with reference to FIGS. 2 to 5.
FIG. 2 is a schematic explanatory diagram showing the electrode configuration of one embodiment of the present invention, in which the electron beam 4 is
enters and irradiates the sample 3. A shield electrode 7 is disposed above the sample, a deceleration electrode 8 for detection is further disposed on the shield electrode, and a final electrode 9 for detection is also disposed at a predetermined distance from the deceleration electrode 8, and these electrodes are arranged at the center. It has apertures 7a, 8a, and 9a through which the electron beam and secondary electrons 5 from the sample pass, and is made of a metal plate or the like. The shield electrode is grounded, a negative potential -V A is applied to the deceleration electrode 8, and a positive potential V E is applied to the final electrode 9.

上述の様に各電極に電圧を加えた場合のZ−
Z′軸に沿つた電位分布は第3図に示されるように
なる。尚等電位面は第2図の符号10で示す如く
発生する。即ち第2図の減速電極8、アパチヤ8
aの中心部Aでは該減速電極に加えたマイナス電
位−VA以上のエネルギを有する2次電子のみが
該アパチヤ8aを通過することになる。第3図で
Z−Z′軸に沿う電位分布は、試料3上面Sでの電
位を零と考えるとシールド電極7はアースされて
零電位Gであり、更に減速電極8のアパチヤ8a
ではマイナス電位−VAに相当する電界分布とな
され、−VA近傍以上のエネルギを持つ2次電子が
アパチヤ8aを通過し、第3図の斜線で示す範囲
のエネルギを持つ2次電子はフイルターされるこ
とになる。アパチヤ8aを通過した2次電子は、
最終電極9のアパチヤ9aの中心部近傍Eでプラ
ス電位VE迄加速されて、検知手段、例えばシン
チレータ6等に入射して電圧変換される。第4図
及び第5図は本発明の他の実施例を示す電極構造
であり、第1図と同一部分は同一符号を付して示
す。第1図と異なる点は、減速電極が同心円状の
2つの電極により構成されている点であり、第1
の減速電極8bには第1図と同様のマイナス電位
−VA1が加えられ、大なるアパチヤ8cを有し、
第2の減速電極8dには中心にアパチヤ8eを有
し、アパチヤ8c内に第2の減速電極8dを隙間
をあけて同心的に配置し第2の減速電極にはプラ
ス電位VA2を加えるようになしたもので他の構成
は第1図の場合と同様である。この様な電極配置
による等電位面は第4図の符号10で示されZ−
Z′軸に沿う電位分布は第5図に示す斜線で示すエ
ネルギが減衰され、試料3より放出される2次電
子5は第1及び第2の減速電極8b,8dに加え
る電位VA1,VA2の関数であるVA(eV)以上のエ
ネルギのみが減速電極8dのアパチヤ8eを通過
することになる。
Z- when voltage is applied to each electrode as described above
The potential distribution along the Z' axis becomes as shown in FIG. Incidentally, an equipotential surface is generated as shown by the reference numeral 10 in FIG. That is, the deceleration electrode 8 and the aperture 8 in FIG.
At the center A of a, only secondary electrons having energy greater than the negative potential -V A applied to the deceleration electrode will pass through the aperture 8a. The potential distribution along the Z-Z' axis in FIG.
In this case, the electric field distribution corresponds to the negative potential -V A , and secondary electrons with energy near -V A or higher pass through the aperture 8a, and secondary electrons with energy in the shaded range in Fig. 3 pass through the filter. will be done. The secondary electrons that passed through the aperture 8a are
It is accelerated to a positive potential V E near the center E of the aperture 9a of the final electrode 9, enters a detection means, for example, the scintillator 6, and is converted into a voltage. 4 and 5 show electrode structures according to other embodiments of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. The difference from Fig. 1 is that the deceleration electrode is composed of two concentric electrodes;
A negative potential -V A1 similar to that in FIG. 1 is applied to the deceleration electrode 8b, and it has a large aperture 8c,
The second deceleration electrode 8d has an aperture 8e in the center, and the second deceleration electrode 8d is arranged concentrically with a gap in the aperture 8c, and a positive potential V A2 is applied to the second deceleration electrode 8d. The other configurations are the same as those shown in FIG. The equipotential surface resulting from such an electrode arrangement is indicated by the reference numeral 10 in FIG.
In the potential distribution along the Z' axis, the energy indicated by diagonal lines in FIG. 5 is attenuated, and the secondary electrons 5 emitted from the sample 3 are applied to the potentials V A1 and V Only energy equal to or higher than V A (eV), which is a function of A2 , will pass through the aperture 8e of the deceleration electrode 8d.

この実施例によれば、減衰電界は従来の半円球
状メツシユ電極を用いた電界と等価に形成出来、
且つ減速電極に加える電位−VA1,VA2によつて
減速電界の形状を制御することも可能となる。
According to this embodiment, an attenuated electric field can be formed equivalent to an electric field using a conventional hemispherical mesh electrode,
Moreover, it is also possible to control the shape of the deceleration electric field by the potentials -V A1 and V A2 applied to the deceleration electrodes.

尚電極の個数、電極電位は上記実施例以外の組
合せが可能であることは明かである。
It is clear that the number of electrodes and the electrode potential may be combined other than those in the above embodiments.

本発明は上述の如く構成させたので、半円球状
のメツシユを用いず同心円状電極を用いて減速電
界を形成出来るので、試料よりの2次電子を検知
手段に導く際にメツシユに衝突して2次電子が試
料側に戻されることもなく、メツシユ等に衝突し
て発生した試料電圧とは直接関係のない2次電子
又はこの2次電子による反射電子等の影響による
幣害を完全に除くことが出来るので試料電圧測定
の精度を向上させることが出来る。更に構造的に
も製作が容易である特徴を有するものである。
Since the present invention is configured as described above, it is possible to form a decelerating electric field using concentric electrodes without using a hemispherical mesh, so that when secondary electrons from the sample are guided to the detection means, they collide with the mesh. The secondary electrons are not returned to the sample side, and damage caused by secondary electrons that are not directly related to the sample voltage generated by colliding with meshes, etc., or reflected electrons caused by these secondary electrons is completely eliminated. Therefore, the accuracy of sample voltage measurement can be improved. Furthermore, it has the feature of being easy to manufacture in terms of structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエネルギアナライザーの減速電
極部分の原理的説明図、第2図は本発明の1実施
例を示す減速電極部分の構成を示す略線図、第3
図は第2図のZ−Z′軸に沿う電位分布曲線図、第
4図は本発明の他の実施例を示す減速電極部分の
構成の略線図、第5図は第4図のZ−Z′軸に沿う
電位分布曲線図である。 2…引き出し電極、3…試料、4…電子ビー
ム、5…2次電子、6…検知手段、7…シールド
電極、8,8b…減速電極、9…最終電極、9
a,8a,7a,8e…アパチヤ。
FIG. 1 is a principle explanatory diagram of the deceleration electrode portion of a conventional energy analyzer, FIG. 2 is a schematic diagram showing the configuration of the deceleration electrode portion showing one embodiment of the present invention, and FIG.
The figure is a potential distribution curve diagram along the Z-Z' axis in Figure 2, Figure 4 is a schematic diagram of the configuration of the deceleration electrode section showing another embodiment of the present invention, and Figure 5 is a diagram showing the Z-Z' axis in Figure 4. It is a potential distribution curve diagram along the −Z′ axis. 2... Extraction electrode, 3... Sample, 4... Electron beam, 5... Secondary electron, 6... Detection means, 7... Shield electrode, 8, 8b... Deceleration electrode, 9... Final electrode, 9
a, 8a, 7a, 8e...apachiya.

Claims (1)

【特許請求の範囲】[Claims] 1 試料に電子ビームを照射して、該試料面より
放出される2次電子をエネルギアナライズして該
試料の電圧を測定する電圧測定装置に於て、エネ
ルギアナライザー内の電界形成用電極を中心にア
パチヤを有する複数の金属板電極から構成し、且
つ検出用減速電極は同一面上で隙間をあけて同心
的に配置された複数の環状電極で構成してなるこ
とを特徴とする電圧測定装置。
1. In a voltage measuring device that measures the voltage of the sample by irradiating the sample with an electron beam and energy analyzing the secondary electrons emitted from the sample surface, 1. A voltage measuring device comprising a plurality of metal plate electrodes having an aperture, and a detection deceleration electrode comprising a plurality of annular electrodes arranged concentrically with gaps on the same surface.
JP55148986A 1980-10-24 1980-10-24 Voltage measuring device Granted JPS5772071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55148986A JPS5772071A (en) 1980-10-24 1980-10-24 Voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55148986A JPS5772071A (en) 1980-10-24 1980-10-24 Voltage measuring device

Publications (2)

Publication Number Publication Date
JPS5772071A JPS5772071A (en) 1982-05-06
JPH0216472B2 true JPH0216472B2 (en) 1990-04-17

Family

ID=15465133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55148986A Granted JPS5772071A (en) 1980-10-24 1980-10-24 Voltage measuring device

Country Status (1)

Country Link
JP (1) JPS5772071A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342278A (en) * 1976-09-30 1978-04-17 Yokohama Rubber Co Ltd Treating method and apparatus for large hose after vulcanizing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134570U (en) * 1978-03-10 1979-09-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342278A (en) * 1976-09-30 1978-04-17 Yokohama Rubber Co Ltd Treating method and apparatus for large hose after vulcanizing

Also Published As

Publication number Publication date
JPS5772071A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
US6969847B2 (en) High dynamic range mass spectrometer
JP4523558B2 (en) Analysis system and charged particle beam device
US7227142B2 (en) Dual detector optics for simultaneous collection of secondary and backscattered electrons
DE112017006802B4 (en) CARGO PARTICLE JET DEVICE
EP0075709B1 (en) Spectrometer for detecting secondary electrons produced by an electron probe from a target
WO2012168057A2 (en) Radiation detector and imaging system
GB1304344A (en)
CN108873053B (en) Neutron and gamma ray combined detector
JPH0214663B2 (en)
DE3101970C2 (en) Measuring head with a semiconductor detector element for the detection of X-rays and with a magnet arrangement for deflecting electrons
JPH0216472B2 (en)
JPH0421307B2 (en)
US4320295A (en) Panoramic ion detector
JPS5811011Y2 (en) X-ray detection device
Colby et al. Quantitative microprobe analysis by means of target current measurements
JPH0145584B2 (en)
JP3221066B2 (en) Charged particle energy analyzer
Falk et al. X-ray fluorescence analysis in weed science
JPH0336029Y2 (en)
Kuroda et al. Readout of optical scintillation fibres by a position-sensitive photomultiplier
SU915654A1 (en) Electrostatic energy analyzer
JPS60240043A (en) Energy analyzer
JP2621198B2 (en) Electron spectrometer
Panniello et al. Beam instrumentation for the Ultra-low energy Storage Ring (USR)
JPS61253760A (en) Charged-particle energy analyzer