JPH02164499A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPH02164499A
JPH02164499A JP63317201A JP31720188A JPH02164499A JP H02164499 A JPH02164499 A JP H02164499A JP 63317201 A JP63317201 A JP 63317201A JP 31720188 A JP31720188 A JP 31720188A JP H02164499 A JPH02164499 A JP H02164499A
Authority
JP
Japan
Prior art keywords
water
bod
tank
effluent
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317201A
Other languages
Japanese (ja)
Inventor
Shinichi Endo
伸一 遠藤
Yoshinari Fujisawa
能成 藤沢
Hideji Takeuchi
竹内 秀二
Seiichi Kanamori
聖一 金森
Yuji Yoshii
吉井 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63317201A priority Critical patent/JPH02164499A/en
Publication of JPH02164499A publication Critical patent/JPH02164499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To enhance the removal rate of SS and BOD by filtering raw water by a filter bed composed of a fiber filter material prepared from water-resistant fibers formed into a nonwoven fabric and not substantially changed in its void ratio at the time of the passage of water. CONSTITUTION:Raw water 1 is allowed to flow in a filter tank 2 equipped with a filter bed 3 and filtered to remove a suspended solid(SS). The filter bed 3 is filled with a fiber filter material composed of water-resistant fibers formed into a nonwoven fabric and not substantially changed in its void ratio at the time of the passage of water and, therefore, an SS removal rate is high and an SS like BOD component is also sufficiently removed and a filtering speed is high. Next, the outflow water is allowed to flow in an aeration tank 5 in which air is blown from an air diffusing device 8 and the BOD component is removed by the action of bacteria in the presence of dissolved oxygen. Since the BOD concn. of the outflow water 4 is low, the load of BOD in the aeration tank 5 is reduced to a large extent. Next, the outflow water is received in a final sedimentation basin 11 and sludge 12 is allowed to sediment to be separated from treated water.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、都市下水、産業排水等の有機性排水を好気性
生物処理法によって処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating organic wastewater such as urban sewage and industrial wastewater by an aerobic biological treatment method.

[従来の技術] 有機性排水を好気性生物処理法によって処理する方法と
しては、第4図〜第7図に示す方法が知られている。
[Prior Art] As a method for treating organic wastewater by an aerobic biological treatment method, the methods shown in FIGS. 4 to 7 are known.

第4図の方法について説明すると、粗大夾雑物が除去さ
れた原水1は最初沈殿池20に流入し、重力沈殿によっ
て原水1中の懸濁性固形物(以下、SSと云う)が除去
される。沈殿したssは最初沈殿池汚泥21として引き
抜がれ、一方。
To explain the method shown in Fig. 4, the raw water 1 from which coarse impurities have been removed first flows into the settling tank 20, and suspended solids (hereinafter referred to as SS) in the raw water 1 are removed by gravity sedimentation. . The precipitated ss is first extracted as settling tank sludge 21;

SSの除去処理がなされた最初沈殿池流出水22は曝気
槽5に流入する。曝気槽5には空気9が供給されており
、この曝気槽5において浮遊する微生物によってBOD
成分が酸化分解される0次いで、曝気槽流出水23は最
終沈殿池11において重力沈殿によって汚泥12と浄化
された処理水13に分離される0分離された汚泥12は
、その一部が返送汚泥14として曝気槽5に戻され、残
りは余剰汚泥15として引き抜かれる。
The first sedimentation tank effluent 22 that has been subjected to the SS removal treatment flows into the aeration tank 5. Air 9 is supplied to the aeration tank 5, and BOD is reduced by floating microorganisms in the aeration tank 5.
The components are oxidized and decomposed.Next, the aeration tank effluent 23 is separated into sludge 12 and purified treated water 13 by gravity sedimentation in the final settling tank 11.Part of the separated sludge 12 is returned as sludge. The remaining sludge is returned to the aeration tank 5 as surplus sludge 14, and the remainder is withdrawn as surplus sludge 15.

第5図〜第7図において、第4図で説明済みの箇所につ
いては同一の符号を付し説明を省略する。
In FIGS. 5 to 7, the same reference numerals are given to the parts already explained in FIG. 4, and the explanation will be omitted.

第5図において、最初沈殿池流出水22は回転円板槽2
4に流入する9回転円板槽24では回転円板の回転によ
って空気が供給され、回転円板に付着した微生物によっ
てBOD成分が酸化分解される。この回転円板槽流出水
25は最終沈殿池11に送られる。
In FIG. 5, the first sedimentation tank outflow water 22 is
In the 9-rotation disk tank 24 flowing into the 9-rotation disk tank 24, air is supplied by the rotation of the rotation disk, and BOD components are oxidized and decomposed by microorganisms attached to the rotation disk. This rotating disk tank effluent 25 is sent to the final settling tank 11.

第6図において、最初沈殿池流出水22は固定濾床を備
えた接触酸化槽26に流入する。接触酸化槽26には空
気9が供給され、この接触酸化槽26において固定濾床
に付着した微生物によってBOD成分が酸化分解される
。この接触酸化槽流出水27は最終沈殿池11に送られ
る。
In FIG. 6, the initial settling tank effluent 22 flows into a contact oxidation tank 26 equipped with a fixed filter bed. Air 9 is supplied to the contact oxidation tank 26, and in this contact oxidation tank 26, the BOD component is oxidized and decomposed by microorganisms attached to the fixed filter bed. This contact oxidation tank effluent 27 is sent to the final settling tank 11.

第7図において、最初沈殿池の流出水22は粒状の微生
物担体が充填された流動床曝気槽28に流入する。流動
床曝気槽28には空気9が供給され、この流動床曝気槽
28において担体に付着した微生物によってBOD成分
が酸化分解される。
In FIG. 7, the effluent 22 from the initial settling tank flows into a fluidized bed aeration tank 28 filled with granular microbial carriers. Air 9 is supplied to the fluidized bed aeration tank 28, where the BOD component is oxidized and decomposed by microorganisms attached to the carrier.

この流動床曝気槽流出水29は最終沈殿池11に送られ
る。
This fluidized bed aeration tank effluent 29 is sent to the final settling tank 11.

これらの各方法は、何れも、大別すれば、最初沈殿池2
0において原水中のSSを重力沈殿によって除去するS
S除去工程、微生物によってBOD成分を生物学的に酸
化分解する生物処理工程、及び最終沈殿池20において
汚泥を分離して処理水を排出する汚泥分離工程の3工程
よりなる。そして、第4図〜第7図に示した各方法は、
生物処理工程における処理方法の相違によって区分され
ている。すなわち、各方法の生物処理工程においては、
第4図の方法では曝気槽5、第5図の方法では回転円板
槽24、第6図の方法では接触酸化槽26.第7図の方
法では流動床曝気槽28がそれぞれ採用されている。
All of these methods can be broadly classified as:
S to remove SS in raw water by gravity sedimentation at 0
It consists of three steps: an S removal step, a biological treatment step in which BOD components are biologically oxidized and decomposed by microorganisms, and a sludge separation step in which sludge is separated in the final settling tank 20 and treated water is discharged. Each method shown in FIGS. 4 to 7 is
They are classified based on the difference in the treatment method used in the biological treatment process. In other words, in the biological treatment step of each method,
In the method of FIG. 4, the aeration tank 5, in the method of FIG. 5, the rotating disk tank 24, and in the method of FIG. 6, the contact oxidation tank 26. In the method shown in FIG. 7, a fluidized bed aeration tank 28 is employed.

これらの処理方法における処理条件及び処理効率を、従
来の標準的処理方法である第4図の方法について説明す
れば、第1表の通りである。
The processing conditions and processing efficiency of these processing methods are as shown in Table 1, with respect to the method shown in FIG. 4, which is a conventional standard processing method.

第1表 従来技術の処理条件及び除去率第1表によれば
、SS処理工程の最初沈殿池においては、SS除去率が
30%程度、BOD除去率が40%程度である。また、
曝気槽及び最終沈殿池で生物処理及び汚泥分離処理をし
た後のBOD除去率は86%程度であり、全工程でのB
OD除去率は90%以上になっている。
Table 1 Processing conditions and removal rate of conventional technology According to Table 1, in the first settling tank of the SS treatment process, the SS removal rate is about 30% and the BOD removal rate is about 40%. Also,
The BOD removal rate after biological treatment and sludge separation treatment in the aeration tank and final settling tank is approximately 86%, and the BOD removal rate in the entire process is approximately 86%.
The OD removal rate is over 90%.

[発明が解決しようとする課題] しかし、上記従来技術のSS処理工程におけるSS及び
BOD成分の除去率は、十分であるとは云えず、なおそ
の向上を図るべき余地がある。
[Problems to be Solved by the Invention] However, the removal rate of SS and BOD components in the SS treatment process of the prior art cannot be said to be sufficient, and there is still room for improvement.

すなわち、SS除去工程である最初沈殿池におけるSS
の除去は重力沈殿によるものであり、主として粒径の大
きいSSを除去する方法である。
In other words, the SS in the first settling tank, which is the SS removal process,
Removal is by gravity precipitation, which is a method for mainly removing SS with large particle sizes.

このため、SS除去の度合いは十分でなく、従って、S
S性BOD成分である固形有機物の除去も十分ではない
ので、生物処理工程へ流入する流出水のBOD値低下の
度合いは小さい、SS性BOD成分を多量に含みBOD
濃度が高いままの流出水を生物処理工程に流入させると
、生物処理工程におけるBOD負荷が大きく、また微生
物による酸化分解に長時間を要するSS性BOD成分濃
度が高いなめにBOD負荷率を大きくすることができな
い、このため、従来技術においては、生物処理工程の設
備か大型になるとともに、これに伴う動力費などの運転
費も5順を要していた。また、各処理方法にもそれぞれ
問題があり、例えば、固定濾床を備えた接触酸化槽を用
いた方法においては、SS除去工程の流出水のSS濃度
が高いために、濾床が目詰まりする度合いが大きく、濾
床の逆洗を頻繁に実施しなければならないと云う問題も
ある。
Therefore, the degree of SS removal is not sufficient, and therefore
Since the removal of solid organic matter, which is an S-type BOD component, is not sufficient, the degree of decrease in the BOD value of the effluent flowing into the biological treatment process is small.
If runoff water with a high concentration is allowed to flow into the biological treatment process, the BOD load in the biological treatment process will be large, and the BOD load rate will be increased due to the high concentration of SS BOD components that require a long time to be oxidized and decomposed by microorganisms. For this reason, in the conventional technology, the equipment for the biological treatment process has to be large-sized, and the operating costs such as power costs associated with this have also increased. In addition, each treatment method has its own problems; for example, in a method using a contact oxidation tank equipped with a fixed filter bed, the filter bed is clogged due to the high SS concentration in the effluent from the SS removal process. There is also the problem that the degree of filtration is severe and that the filter bed must be frequently backwashed.

本発明は、上記の問題点を解決し、生物処理工程へ流入
するSS工程流出水中のBOD成分濃度を一層低下させ
て生物処理工程のBOD負荷を軽減し、効率的な処理が
できる有機性排水の処理方法を提供することを目的とす
る。
The present invention solves the above problems, further reduces the concentration of BOD components in the SS process effluent that flows into the biological treatment process, reduces the BOD load in the biological treatment process, and enables efficient treatment of organic wastewater. The purpose is to provide a processing method for

[課題を解決するための手段] 上記の目的を達成するために、本発明の方法は、耐水性
繊維を不織に形成し且つ通水時における空隙率が実質的
に変化しない繊維濾材を充填した濾床に原水を通水して
SSを除去するSS除去工程と、前記SS除去工程の流
出水に空気を供給して前記流出水中のBOD成分を除去
する生物処理工程と、この生物処理工程の流出水から汚
泥を分離する汚泥分離工程よりなる。
[Means for Solving the Problems] In order to achieve the above object, the method of the present invention includes a method in which water-resistant fibers are formed into a non-woven structure and filled with a fiber filter medium whose porosity does not substantially change when water is passed through. an SS removal step in which raw water is passed through a filter bed to remove SS, a biological treatment step in which air is supplied to the effluent from the SS removal step to remove BOD components in the effluent, and this biological treatment step The process consists of a sludge separation process that separates sludge from effluent water.

[作用] SS除去工程の目的の一つは、SS除去の一環としてB
OD成分である固形有機物をできるだけ除去して流出水
中のBOD濃度を低下させ、生物処理工程の負荷を軽減
させることにある。流出水のBOD成分濃度を低下させ
るためには、原水中のSS除去率を高めることが必要で
ある。
[Operation] One of the purposes of the SS removal process is to remove B as part of SS removal.
The objective is to reduce the BOD concentration in the effluent by removing as much solid organic matter as OD components as possible, thereby reducing the load on the biological treatment process. In order to reduce the concentration of BOD components in effluent water, it is necessary to increase the SS removal rate in raw water.

この点に関し、本発明は、SS除去工程においては、原
水中のSSを、高い除去率で、しかも効率的に除去し、
流出水中のBOD成分を大幅に低下させ得る方法である
0本発明のSS除去工程は濾過操作によることを特徴と
し、この工程におけるSS除去率は高く、また細かいS
Sをも除去できる。
In this regard, the present invention provides a method for efficiently removing SS in raw water at a high removal rate in the SS removal step,
The SS removal step of the present invention, which is a method that can significantly reduce the BOD component in runoff water, is characterized by a filtration operation, and the SS removal rate in this step is high, and fine S
S can also be removed.

高SS濃度の原水を濾過する場合、濾床の目詰まりが激
しく1通常の濾過方法は採用できない。
When filtering raw water with a high SS concentration, the filter bed is severely clogged and 1 normal filtration methods cannot be used.

この問題解決のため1本発明におけるSS除去方法には
特別の考慮がなされている9本発明において最も苦心し
た点は濾材の選定であり、濾材の選定は本発明者らによ
る多くの実験と検討を経てなされたのものである0本発
明において使用する濾材は、耐水性繊維を不織に形成し
た繊維濾材であり、空隙率は非常に大きく、従って、通
水抵抗は極めて小さい、しかも、後述のようにSS除去
率が極めて高いやごの濾゛材を用いれば、濾床の目詰ま
りの度合いは大幅に榎和されて長時間の濾過継続が可能
になり、また、SS除去工程流出水のBOD成分濃度を
一層低下させることができる。
In order to solve this problem, 1. Special considerations have been made to the SS removal method of the present invention. 9. The most difficult point in the present invention was the selection of filter media, and the selection of the filter media involved many experiments and studies by the present inventors. The filter medium used in the present invention is a non-woven fiber filter medium made of water-resistant fibers, and has a very large porosity and therefore has an extremely low resistance to water flow. If Yago's filter material, which has an extremely high SS removal rate, is used, the degree of clogging of the filter bed will be greatly reduced, making it possible to continue filtration for a long time. The concentration can be further reduced.

[実施例] 第2図は本発明のSS除去工程において使用する繊維濾
材を模式的に示した説明図である。この繊維濾材16は
塩化ビニリデン、ナイロンなどの合成繊維、ステンレス
鋼などの金属線の中から選定された耐水性繊維17をカ
ールさせる等の曲げ加工をして小さな弾性体にし、これ
を結合剤で被覆結合し、三次元の網目様の構造にして不
織に形成したものである。繊維濾材16を構成する耐水
性繊維17の径は100デニール(約0.091−重)
〜10000デニール(約0.91龍)の範囲である。
[Example] FIG. 2 is an explanatory diagram schematically showing a fiber filter medium used in the SS removal process of the present invention. This fiber filter medium 16 is made by bending water-resistant fibers 17 selected from synthetic fibers such as vinylidene chloride, nylon, and metal wires such as stainless steel, into a small elastic body, and then using a binder to form a small elastic body. It is coated and bonded to form a three-dimensional mesh-like structure into a non-woven material. The diameter of the water-resistant fiber 17 constituting the fiber filter medium 16 is 100 denier (approximately 0.091-weight)
~10,000 denier (approximately 0.91 dragon).

そして、繊維濾材16の空隙率は80%〜99.5%の
範囲のものを選定する。
The porosity of the fiber filter medium 16 is selected to be in the range of 80% to 99.5%.

耐水性41維17の径及び繊維濾材16の空隙率は選定
実験の結果を基に次のように決定した。
The diameter of the water resistant 41 fibers 17 and the porosity of the fiber filter medium 16 were determined as follows based on the results of selection experiments.

耐水性繊維17の径についは、濾床に充填した繊維濾材
16が通水中に圧縮されて減容されることがあれば、空
隙率が減少して濾過性能が変わるので好ましくない、こ
のため、耐水性繊維17は通水時に繊維濾材16が実質
的に圧縮されないだけの強度を有する必要があり、この
条件に適合する耐水性繊維17の径は約100デニール
以上が必要となる。しかし、耐水性繊維17があまり太
いと、濾材単位容積当たりの有効表面積が減少し、濾過
効率が悪化する。このように、濾過効率との関係を考慮
すると耐水性繊維17の径は10000デニール以下で
あるのが望ましい。
Regarding the diameter of the water-resistant fibers 17, if the fiber filter medium 16 filled in the filter bed is compressed and reduced in volume during water flow, it is not preferable because the porosity will decrease and the filtration performance will change. The water-resistant fibers 17 need to have enough strength that the fiber filter medium 16 is not substantially compressed when water passes through it, and the diameter of the water-resistant fibers 17 that meets this condition needs to be about 100 deniers or more. However, if the water-resistant fibers 17 are too thick, the effective surface area per unit volume of the filter medium decreases, and the filtration efficiency deteriorates. Thus, in consideration of the relationship with filtration efficiency, it is desirable that the diameter of the water-resistant fiber 17 is 10,000 deniers or less.

繊維濾材16の空隙率は、通水中に雉時間で圧損が急上
昇することなく、且つSSの除去率が良好であることを
前提にして決定した。繊維濾材16の空隙率が80%未
満では、特に生下水のような高SS濃度の原水を濾過す
る場合、通水後短時間で急激に圧損が増加するので好ま
しくなく、空隙率が99.5%を超えるとSSの除去率
が不十分となり濾材としての機能が不足する。従って繊
維濾材16の好適な空隙率は80%〜99.5%である
The porosity of the fibrous filter medium 16 was determined on the premise that the pressure drop would not rise rapidly over time during water flow and that the SS removal rate would be good. If the porosity of the fiber filter medium 16 is less than 80%, it is not preferable, especially when filtering raw water with a high SS concentration such as raw sewage, because the pressure drop will increase rapidly in a short period of time after water flow, and the porosity is 99.5%. %, the removal rate of SS will be insufficient and the function as a filter medium will be insufficient. Therefore, the preferred porosity of the fiber filter medium 16 is 80% to 99.5%.

次に、第2図で説明した繊維濾材の性能を調べた結果に
ついて説明する。
Next, the results of investigating the performance of the fiber filter medium explained in FIG. 2 will be explained.

塩化ビニリデン繊維よりなり空隙率が98%のLIi維
濾材1mを充填した濾過槽に、55240mg/!!を
含む都市下水を、濾過速度120m/日で通水した。
A filtration tank filled with 1 m of LIi fiber filter media made of vinylidene chloride fibers and having a porosity of 98% was filled with 55,240 mg/! ! Municipal sewage containing water was passed through at a filtration rate of 120 m/day.

この試験で得られた性能は、SS除去率が平均的75%
であり、24時間通水後の圧損が約10cmH2Oであ
った。
The performance obtained in this test showed an average SS removal rate of 75%.
The pressure drop after water flow for 24 hours was about 10 cmH2O.

また、原水及び濾過槽流出水中に含まれているSSの粒
径分布を測定したところ、第3図に示すごとくであった
。第3図において、濾過槽流出水中のSSの粒径は大部
分が37μ未満であり、37μ以上のSSは殆ど除去さ
れている。
In addition, when the particle size distribution of SS contained in the raw water and the water flowing out from the filter tank was measured, the results were as shown in FIG. In FIG. 3, most of the particle sizes of SS in the water effluent from the filter tank are less than 37μ, and most of the SS larger than 37μ has been removed.

これらの性能から、本発明で使用する繊維濾材は、長時
間目詰まりすることがなく、しかも高いSS除去率を有
することが確認された。
From these performances, it was confirmed that the fiber filter medium used in the present invention does not become clogged for a long time and has a high SS removal rate.

第1図は本発明による有機性排水の処理方法の一実施例
を示した図である。この排水処理方法は、SS除去工程
、生物処理工程、汚泥分離工程の3工程よりなる。第1
図において、SS除去工程は、粗大夾雑物が除去された
原水1を第2図に示した繊維濾材が充填された濾床3を
備えた濾過槽2に流入させて濾過し、SSを除去する工
程である。生物処理工程は、給気機7、散気器8、及び
これらの接続管路よりなる空気供給手段6によって空気
9が吹き込まれている曝気槽5にSS処理工程の流出水
4を受入れ、溶存酸素の存在下で微生物の作用によって
前記流出水4中のBOD成分を除去する工程である。ま
た汚泥分離工程は、生物処理工程の流出水10を最終沈
殿池11に受入れ、生物処理工程で生成した汚泥を重力
沈殿させ、汚泥12と処理水13に分離する工程である
。14は曝気槽5に戻す返送汚泥、15は抜き出して別
途処理する余剰汚泥を示す。
FIG. 1 is a diagram showing an embodiment of the method for treating organic wastewater according to the present invention. This wastewater treatment method consists of three steps: an SS removal step, a biological treatment step, and a sludge separation step. 1st
In the figure, in the SS removal step, raw water 1 from which coarse impurities have been removed is filtered by flowing into a filter tank 2 equipped with a filter bed 3 filled with a fiber filter medium shown in Figure 2 to remove SS. It is a process. In the biological treatment process, the effluent water 4 from the SS treatment process is received into an aeration tank 5 into which air 9 is blown by an air supply means 6 consisting of an air supply device 7, an aeration diffuser 8, and a pipe connecting these. This is a step in which BOD components in the effluent water 4 are removed by the action of microorganisms in the presence of oxygen. The sludge separation process is a process in which the effluent 10 from the biological treatment process is received into the final settling tank 11, the sludge produced in the biological treatment process is sedimented by gravity, and separated into sludge 12 and treated water 13. Reference numeral 14 indicates return sludge to be returned to the aeration tank 5, and reference numeral 15 indicates surplus sludge that is extracted and treated separately.

各工程の特徴とするところを記述すれば次の通りである
The characteristics of each process are described below.

SS除去工程においては、濾過槽2に充填された濾材は
空隙率が非常に大きい繊維濾材であるので、大きな濾過
速度で通水することができる。その上、SSの除去率も
高く、従ってSS性BOD成分の除去も十分なされ、流
出水4中のBOD濃度は格段と低下する。生物処理工程
においては、SS除去工程の流出水4のBOD濃度が低
いため、曝気槽5におけるBOD負荷が大幅に低減する
。さらに、流入する流出水4中のSS性BOD成分の除
去が十分になされており、BOD成分の主体は溶解性B
OD成分であるので、BOD成分の酸化分解は速やかに
行われる。また、汚泥分離工程においては、曝気槽5で
の汚泥の生成量が少ないので、余剰汚泥15の抜き出し
量が減少する。
In the SS removal step, the filter medium filled in the filter tank 2 is a fibrous filter medium with a very high porosity, so that water can be passed through at a high filtration rate. Moreover, the removal rate of SS is high, and therefore the SS BOD components are also sufficiently removed, and the BOD concentration in the effluent water 4 is significantly reduced. In the biological treatment process, since the BOD concentration in the effluent 4 from the SS removal process is low, the BOD load in the aeration tank 5 is significantly reduced. Furthermore, the SS BOD components in the inflowing effluent water 4 have been sufficiently removed, and the main BOD components are soluble BOD components.
Since it is an OD component, oxidative decomposition of the BOD component occurs quickly. Furthermore, in the sludge separation process, since the amount of sludge produced in the aeration tank 5 is small, the amount of excess sludge 15 extracted is reduced.

なお、本実施例においては、生物処理工程の処理方法が
曝気槽を使用する方法である場合について説明したが、
本発明は上記の態様に限定されるものではなく、その処
理方法は、回転円板、接触酸化、流動床など好気性生物
処理によるものであればよく、いずれの場合にも上記実
施例と同様の効果が得られる。
In addition, in this example, the case where the treatment method of the biological treatment step was a method using an aeration tank was explained.
The present invention is not limited to the embodiments described above, and the treatment method may be any aerobic biological treatment such as rotating disk, catalytic oxidation, or fluidized bed, and in any case, the same method as in the above embodiment is used. The effect of this can be obtained.

次に、本発明の方法により下水処理を実施した結果につ
いて説明する。
Next, the results of sewage treatment using the method of the present invention will be explained.

(実施例) 第2図の繊維濾材を充填して濾床を形成した濾過槽を使
用し、第1[21に示す方法で実施した。処理条件は第
2表に記載した通りで行った。この結果を第3表に示す
(Example) The method shown in No. 1 [21] was carried out using a filtration tank in which a filter bed was formed by filling the fiber filter medium shown in FIG. The treatment conditions were as listed in Table 2. The results are shown in Table 3.

第2表 処理条件 第3表 実験結果 り、従来法に対し生物処理工程の負荷が軽減されている
Table 2 Treatment conditions Table 3 The experimental results show that the burden of the biological treatment process is reduced compared to the conventional method.

上記の実験結果を基に、本発明の方法による処理条件と
従来法による処理条件の比較を行った。
Based on the above experimental results, a comparison was made between the processing conditions according to the method of the present invention and the processing conditions according to the conventional method.

この比較を第4表に示す。This comparison is shown in Table 4.

第4表 本発明と従来法の処理条件の比較第3表のごと
く、120 td / m”・日の濾過速度(従来法に
対し滞留時間比で約4倍)で通水したSS除去工程のに
おけるBOD及びSSの除去状況は、BODが50%、
SSが80%除去され、極めて高い除去率が得られた。
Table 4 Comparison of treatment conditions of the present invention and conventional method As shown in Table 3, the SS removal process was conducted in which water was passed at a filtration rate of 120 td/m”·day (approximately 4 times the residence time ratio compared to the conventional method). The removal status of BOD and SS in
80% of SS was removed, resulting in an extremely high removal rate.

この除去率は、従来法に対し、BOD除去率が約1,7
倍、SS除去率が2倍である。また、濾過槽流出水と処
理水のBOD及びSSの値から算定した生物処理工程及
び汚泥分離工程合計のBOD及びSSの除去率は、BO
Dが80%、SSが50%となってお第4表において、
SS処理工程及び生物処理工程の滞留時間は著しく短縮
されており、従来法に対する本発明の滞留時間比は全工
程で0.4〜0.5となっている。
This removal rate is approximately 1.7% higher than that of the conventional method.
The SS removal rate is twice as high. In addition, the total BOD and SS removal rate of the biological treatment process and sludge separation process calculated from the BOD and SS values of the filter tank effluent and treated water is
In Table 4, D is 80% and SS is 50%,
The residence time of the SS treatment step and the biological treatment step is significantly shortened, and the residence time ratio of the present invention to the conventional method is 0.4 to 0.5 in all steps.

[発明の効果] 本発明のSS除去工程においては、耐水性繊維を不織に
形成した繊維濾材の濾床で原水の濾過を行うので、従来
法に対し約4倍の濾過速度で通水しても、SS除去率は
従来法に対し2倍、これに件いBOD除去率は1.7倍
となる。従って、流出水のBOD成分濃度が低くなると
ともに、SS性BOD成分濃度も低くなり、生物処理工
程のBOD負荷が大幅に軽減される。
[Effects of the Invention] In the SS removal process of the present invention, raw water is filtered through a filter bed made of a non-woven fibrous filter medium made of water-resistant fibers, so the water can be passed through at a filtration rate approximately four times that of the conventional method. However, the SS removal rate is twice that of the conventional method, and the BOD removal rate is 1.7 times that of the conventional method. Therefore, the concentration of BOD components in the effluent is lowered, and the concentration of SS BOD components is also lowered, and the BOD load of the biological treatment process is significantly reduced.

この結果、SS処理工程及び生物処理工程の滞留時間が
大幅に短縮され、処理装置全体の滞留時間は従来法の4
0〜50%となる。このため、装置規模が小さくて済み
、狭い敷地面積で処理能力の大きい装置を設置すること
ができる。さらに、生物処理工程のBOD負荷の軽減に
よって、曝気槽に供給する圧縮空気が減少し、動力費の
大幅な節減となる。
As a result, the residence time of the SS treatment process and the biological treatment process has been significantly shortened, and the residence time of the entire treatment equipment has been reduced to 4 times that of the conventional method.
It will be 0 to 50%. Therefore, the scale of the device can be small, and a device with a large processing capacity can be installed in a small site area. Furthermore, by reducing the BOD load of the biological treatment process, the amount of compressed air supplied to the aeration tank is reduced, resulting in a significant reduction in power costs.

一実施例を示した図、第2図は本発明のSS除去工程に
おいて使用する繊維濾材を模式的に示した説明図、第3
図は第2図に示した繊維濾材の性能を調べた結果の説明
図、第4図から第7図は従来技術の説明図である。
FIG. 2 is an explanatory diagram schematically showing a fiber filter medium used in the SS removal process of the present invention, and FIG. 3 is a diagram showing an example.
The figure is an explanatory diagram of the results of investigating the performance of the fiber filter medium shown in FIG. 2, and FIGS. 4 to 7 are explanatory diagrams of the prior art.

]・・・原水、2・・・濾過槽、3・・・濾床、4・・
・SS除去工程の流出水、5・・・曝気槽、9・・・空
気、10・・・生物処理工程の流出水、11・・・最終
沈殿槽、12・・汚泥、13・・・処理水、16・・繊
維濾材。
]... Raw water, 2... Filter tank, 3... Filter bed, 4...
- Outflow water from SS removal process, 5... Aeration tank, 9... Air, 10... Outflow water from biological treatment process, 11... Final settling tank, 12... Sludge, 13... Treatment Water, 16...Fiber filter medium.

Claims (1)

【特許請求の範囲】[Claims] 好気性生物処理法による有機性排水の処理方法において
、耐水性繊維を不織に形成し且つ通水時における空隙率
が実質的に変化しない繊維濾材を充填した濾床に原水を
通水してSSを除去するSS除去工程と、前記SS除去
工程の流出水に空気を供給して前記流出水中のBOD成
分を除去する生物処理工程と、前記生物処理工程の流出
水から汚泥を分離する汚泥分離工程よりなることを特徴
とする有機性排水の処理方法。
In a method for treating organic wastewater using an aerobic biological treatment method, raw water is passed through a filter bed filled with a fibrous filter material made of non-woven water-resistant fibers and whose porosity does not substantially change when water is passed through. an SS removal step for removing SS; a biological treatment step for removing BOD components in the effluent by supplying air to the effluent from the SS removal step; and sludge separation for separating sludge from the effluent from the biological treatment step. A method for treating organic wastewater characterized by comprising steps.
JP63317201A 1988-12-15 1988-12-15 Treatment of organic waste water Pending JPH02164499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317201A JPH02164499A (en) 1988-12-15 1988-12-15 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317201A JPH02164499A (en) 1988-12-15 1988-12-15 Treatment of organic waste water

Publications (1)

Publication Number Publication Date
JPH02164499A true JPH02164499A (en) 1990-06-25

Family

ID=18085592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317201A Pending JPH02164499A (en) 1988-12-15 1988-12-15 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPH02164499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809026B1 (en) * 2007-08-10 2008-03-03 유성열 A treating system for high concentration organic wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139257A (en) * 1976-05-15 1977-11-21 Hoechst Ag Method and apparatus for purifying waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139257A (en) * 1976-05-15 1977-11-21 Hoechst Ag Method and apparatus for purifying waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809026B1 (en) * 2007-08-10 2008-03-03 유성열 A treating system for high concentration organic wastewater

Similar Documents

Publication Publication Date Title
JP3698678B2 (en) Fine sand slow filtration equipment
JP3705590B2 (en) Water purification method for manganese-containing water
JP2014111251A (en) Purifying method and purifying apparatus of drainage and granular activated carbon used for the same
CN1284735C (en) Integrated aeration boilogical filter tank
JP2003290784A (en) Iron and manganese remover and method for the same
JP3142792B2 (en) Wastewater treatment method using carbon-based adsorbent
JPH02164499A (en) Treatment of organic waste water
JP2684495B2 (en) Advanced purification equipment for organic wastewater
JP3947588B2 (en) Wastewater treatment equipment
JPH02135200A (en) Treatment of organic waste water and device therefor
JP3419640B2 (en) Filtration device and filtration method
JP3729585B2 (en) Wastewater treatment facility
JP3132118B2 (en) Suspended solids removal device
JPH10202281A (en) Waste water treating device
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
SU1000422A1 (en) Method and apparatus for purifying effluents
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater
JPH0639391A (en) Method for treating waste water
JP3731796B2 (en) Method and apparatus for treating water containing organic matter
JP3293911B2 (en) Sewage treatment method and treatment device
JPH0455723B2 (en)
JP2005193165A (en) Method and apparatus for treating organic sewage by using aerobic filter bed
CN116119872A (en) Sewage treatment system and method integrating AAO-MBBR-high-flow microfiltration-self-cleaning filtration
JPS6349358Y2 (en)
JPH0134117B2 (en)