JPH02164079A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPH02164079A
JPH02164079A JP63318555A JP31855588A JPH02164079A JP H02164079 A JPH02164079 A JP H02164079A JP 63318555 A JP63318555 A JP 63318555A JP 31855588 A JP31855588 A JP 31855588A JP H02164079 A JPH02164079 A JP H02164079A
Authority
JP
Japan
Prior art keywords
film
solar cell
layer film
electrode
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63318555A
Other languages
Japanese (ja)
Inventor
Sunao Matsubara
松原 直
Haruo Ito
晴夫 伊藤
Shinichi Muramatsu
信一 村松
Juichi Shimada
嶋田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63318555A priority Critical patent/JPH02164079A/en
Publication of JPH02164079A publication Critical patent/JPH02164079A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an amorphous silicon solar cell having high photoelectric conversion efficiency by utilizing at least one part of a p<+>-layer film located on the side of incident light or of an n<+>-layer film for performing current collection in parallel with a junction face. CONSTITUTION:A p<+> type muc-SiC film 2 is formed while forming an i-type a-Si film 3 and a n<+>-type muc-SiC film 4 in order on a glass plate 1. The p<+> layer film 2, the i-layer film 3 and the n<+> layer film 4 are formed by using various kinds of gas. The incident light side is the side of the glass plate 1 while the p<+> layer 2 is an electrode on the incident light side and the n<+> layer 4 is a rear electrode. Further, pattern-shaped metal electrodes 7 are provided on the p<+>-layer film 2 on the incident light side or on the incident light side surface of the n<+> layer film 4 in a part of a generation effective area in order to make the incident light side electrode of the p<+>-layer film 2 or the n<+>-layer film 4 and the metal electrodes 7 perform current collecting of a photo current. Thereby, an amorphous silicon solar cell having high photoelectric conversion efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光電変換効率の高いアモルファスシリコン太
陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous silicon solar cell with high photoelectric conversion efficiency.

〔従来の技術〕[Conventional technology]

従来の高効率アモルファス太陽電池は、特開昭61−2
51177号公報に記載のように、透過率75〜85%
のSnO2膜またはIn2O3膜の透明導電性膜を光入
射側の集fj1電極としてガラス板上に形成し、これを
基板として用いていた。そして、該基板上に1層、1層
及びn層から成るアモルファス層の光電変換母体を形成
し、さらにこの上に他方の集電電極(背面電極)として
のAQ等の金属電極を形成していた。この従来技術にお
いて、アモルファスシリコン(以下、a−3iと略す。
Conventional high-efficiency amorphous solar cells are disclosed in Japanese Patent Application Laid-Open No. 61-2
As described in Publication No. 51177, the transmittance is 75 to 85%.
A transparent conductive film such as a SnO2 film or an In2O3 film was formed on a glass plate as a collecting fj1 electrode on the light incident side, and this was used as a substrate. Then, a photoelectric conversion matrix of an amorphous layer consisting of one layer, one layer, and n layer is formed on the substrate, and a metal electrode such as AQ as the other current collecting electrode (back electrode) is further formed on this. Ta. In this prior art, amorphous silicon (hereinafter abbreviated as a-3i) is used.

)膜は、SiH4や5i20Gを主原料ガスとして、p
I、ベースのB2H,やPH3を添加し、プラズマCV
D法で形成され、a−9i膜成膜中はHイオン等の存在
する還元性雰囲気で形成されていた。このため、透明電
極上にa−3i膜を形成した場合、a−3i膜成膜時に
下地の透明電極すなわち酸化物であるSn○2またはI
n、03膜がHイオン等で還元され、SnまたはInを
析出し、透明電極が変質する結果となっていた。ガラス
基板/透明電極を基板とした太陽電池は、基板が光入射
側に位置するため、透明電極の透過率の低下は、p /
 i / n構造の光電変換部への光の到達を減少させ
る結果となり、太陽電池性能を低下させる原因の二つに
なっていた。また、析出したSnまたはIn等の金属は
、a−8i膜堆積中にa−8i膜の中に拡散し、a−3
i膜質を低下させる原因にもなっていた。
) film is made using SiH4 or 5i20G as the main raw material gas.
Add I, base B2H, and PH3, and plasma CV
The a-9i film was formed by the D method in a reducing atmosphere containing H ions and the like. Therefore, when an a-3i film is formed on a transparent electrode, the underlying transparent electrode, which is an oxide of Sn○2 or I
The n,03 film was reduced by H ions, etc., and Sn or In was deposited, resulting in deterioration of the transparent electrode. In a solar cell using a glass substrate/transparent electrode as a substrate, the substrate is located on the light incident side, so the decrease in transmittance of the transparent electrode is p/
This results in a reduction in the amount of light reaching the photoelectric conversion part of the i/n structure, which is two of the causes of deterioration in solar cell performance. In addition, precipitated metals such as Sn or In diffuse into the a-8i film during the a-8i film deposition, and the a-3
It was also a cause of deterioration of film quality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、a−8i膜堆積時における下地の透明
電極の還元、変質は完全に防止できておらず、太陽電池
性能の高効率化に問題があった。
The above-mentioned conventional technology cannot completely prevent the reduction and deterioration of the underlying transparent electrode during deposition of the a-8i film, and has a problem in increasing the efficiency of solar cell performance.

本発明の目的は、酸化物の透明電極を必要とせず、アモ
ルファスシリコン系材料の低抵抗化により、光電変換母
体の一部を構成するアモルファスシリコン系材料自体を
光入射側電極として用い光電変換効率の高いアモルファ
スシリコン太lS電池を提供することにある。
The purpose of the present invention is to improve the photoelectric conversion efficiency by using the amorphous silicon material itself, which constitutes a part of the photoelectric conversion matrix, as the light incident side electrode by reducing the resistance of the amorphous silicon material without requiring a transparent oxide electrode. An object of the present invention is to provide an amorphous silicon thick IS battery with high performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、従来型の光電変換母体であ
るpin構造で光入射側に位置するpHあるいはnJl
に替えて低抵抗なP+層膜あるいはn+層膜を形成し、
層膜を光入射側電極とし、そして、光入射側のみならず
背面側のn層あるいは1層にも低抵抗膜の形成は可能で
あり、P+i n+構造あるいはn”ip+P+とした
ものである。
In order to achieve the above purpose, in the pin structure of the conventional photoelectric conversion matrix, the pH or nJl
Instead, a low-resistance P+ layer film or n+ layer film is formed,
It is possible to form a low resistance film not only on the light incident side but also on the n layer or one layer on the back side by using the layer film as the light incident side electrode, and it is possible to form a P+i n+ structure or n''ip+P+.

また、pin構造で光入射側に位置するpmあるいはn
層の光入射側面上に、さらに低抵抗なP+層膜あるいは
n+層膜を形成し、p”pin構造あるいはn”n i
 p構造としたものである。当然、背面側においても同
様なp  pinn’pp”構造とすることが可能であ
る。
Also, in the pin structure, pm or n located on the light incident side
A low-resistance P+ layer or n+ layer is further formed on the light incident side of the layer to form a p"pin structure or n"ni
It has a p structure. Naturally, a similar p pinn'pp'' structure can be provided on the back side as well.

さらに上記目的を達成するために、光入射側のp”1l
luまたはn+層膜の光入射側面上にパターン状の金属
電極を発電有効面積の一部に設け 、+層膜またはn+
層膜の光入射側電極と金属電極とで光生成電流の集電を
行なわせたものである。該パターン状金yt電極の形状
はストライブに限る必要はなく、クロス状、放射線状、
同心円状など。
Furthermore, in order to achieve the above purpose, p"1l on the light incidence side
A patterned metal electrode is provided on a part of the effective power generation area on the light incident side of the lu or n+ layer film, and the + layer film or n+ layer film is
The photo-generated current is collected between the light incident side electrode of the layered film and the metal electrode. The shape of the patterned gold yt electrode is not limited to stripes, and may be cross-shaped, radial,
Concentric circles etc.

遮光率が低く、集電時の直列抵抗損の小さい形状であれ
ば、いずれでも良い。
Any shape may be used as long as it has a low light shielding rate and a small series resistance loss during current collection.

上記目的を達成するために、基板にガラス板を用いた場
合、ガラス板上に屈折率1.7〜2.5の絶縁性光透過
膜を形成し、この上にP+層膜あるいは、パターン状金
属電極とP+層膜を形成し、さらに1層膜やC1膜を順
次形成しアモルファスシリコン太陽電池としたものであ
る。
In order to achieve the above objective, when a glass plate is used as a substrate, an insulating light-transmitting film with a refractive index of 1.7 to 2.5 is formed on the glass plate, and a P+ layer film or a patterned A metal electrode and a P+ layer film are formed, and a single layer film and a C1 film are sequentially formed to obtain an amorphous silicon solar cell.

上記目的を達成するため、P+層膜またはn+層膜に微
結晶シリコン、微結晶シリコン合金等を用い、また、こ
れらの膜の比抵抗を1.5Ω・備以下としてアモルファ
スシリコン太陽電池したものである。
In order to achieve the above purpose, an amorphous silicon solar cell is manufactured by using microcrystalline silicon, microcrystalline silicon alloy, etc. for the P+ layer film or the n+ layer film, and setting the resistivity of these films to 1.5Ω or less. be.

〔作用〕 SnO,やIn2O3等の透明電極を用いず、光電変換
母体の一部を構成するP+層膜及び、またはn+膜自体
を光入射側電極として用いる場合は、P+層膜及び、ま
たはn+層膜が電極用として低抵抗でなくてはならない
。従来の透明電極を用いていたときのp層膜はグロー放
電法で形成し、比抵抗が10’ 〜10”Ω・1程度の
a −S i C膜であリ、該a−3iC膜自体を光入
射側電極として用いた場合、層膜の抵抗が高く、太陽電
池用電極としては使用できなかった。しかし、マイクロ
波プラズマCVD法により得られるp型SiC膜は、微
結晶化SiC膜(μc−8iC膜)となっており、先の
P型a−SiC膜と比較すると、例えば。
[Function] When using the P+ layer film and/or n+ film itself, which constitutes a part of the photoelectric conversion matrix, as the light incident side electrode without using a transparent electrode such as SnO or In2O3, the P+ layer film and/or n+ film itself is used as the light incident side electrode. The layer must have low resistance for use as an electrode. When a conventional transparent electrode is used, the p-layer film is formed by a glow discharge method and is an a-SiC film with a specific resistance of about 10' to 10"Ω・1, and the a-3iC film itself When used as the light incident side electrode, the resistance of the layer film was high and it could not be used as an electrode for solar cells.However, the p-type SiC film obtained by microwave plasma CVD method is (μc-8iC film), and when compared with the previous P-type a-SiC film, for example.

同じ光学的バンドギャップ2.1eVにおいてμc−5
iC膜の比抵抗が10−’〜10−”Ω・儂程度で、約
8桁程の低抵抗化の改善が図られている。このP+型μ
c−3iC膜は、光電変換母体であるp/i/n構造の
2層の代わりにp”JWとして使用でき、またp+層自
体が光入射側電極ししても動作する。それによって、従
来の透明電極が不用になるばかりでなく、透明電極自体
の変質及び透明電極からの不純物拡散を防止でき、光電
変換効率の高いアモルファスシリコン太陽電池が得られ
る。
μc-5 at the same optical bandgap 2.1 eV
The specific resistance of the iC film is about 10-' to 10-' Ω·min, which is an improvement of about 8 orders of magnitude.This P+ type μ
The c-3iC film can be used as a p''JW instead of the two layers of the p/i/n structure that are the photoelectric conversion base, and the p+ layer itself can also function as the light incident side electrode. This not only eliminates the need for a transparent electrode, but also prevents deterioration of the transparent electrode itself and diffusion of impurities from the transparent electrode, resulting in an amorphous silicon solar cell with high photoelectric conversion efficiency.

従来の太陽電池構造はガラス基板/透明電極/p/i/
n/金属電極であり、光電変換母体であるp/i/nで
光吸収され生成された光生成電流は、積層し形成された
p / i / n接合面に対し、またP+ im n
の各層に対し垂直に流れ、光入射側の透明電極及び背面
側の金属電極に到達して初めて光生成電流が画電極を通
して接合面に平行に流れ集電されていた。しかし、本発
明では、光電変換母体の一部を構成するp+層自体が光
入射側電極として作用するため、P+層内を通して光生
成電流が接合面と平行に流れることになる。
The conventional solar cell structure is glass substrate/transparent electrode/p/i/
The photo-generated current generated by light absorption at p/i/n, which is a metal electrode and a photoelectric conversion matrix, is transferred to the p/i/n junction surface formed by stacking, and to the p/i/n junction surface formed by stacking the p/i/n
The photogenerated current flows perpendicularly to each layer of the photoelectrode, and only after reaching the transparent electrode on the light incident side and the metal electrode on the back side, does the photogenerated current flow parallel to the bonding surface through the picture electrode and is collected. However, in the present invention, since the p+ layer itself, which constitutes a part of the photoelectric conversion matrix, acts as a light incident side electrode, the photogenerated current flows through the p+ layer in parallel to the junction surface.

本発明では、従来の太陽電池の光電変換母体を成すpi
n構造をそのまま用いても良い、この場合は、さらに該
高抵抗2層の光入射側面上に光入射側電極となりうる低
抵抗P+層を設けることにより、アモルファスシリコン
太陽電池とすることができる。
In the present invention, pi, which forms the photoelectric conversion matrix of conventional solar cells,
The n structure may be used as is. In this case, an amorphous silicon solar cell can be obtained by further providing a low resistance P+ layer that can serve as a light incident side electrode on the light incident side surface of the two high resistance layers.

光入射側電極として用いるアモルファスシリコン系材料
の低抵抗で、かつ広バンドギヤツプ材料が良い、また、
光入射側電極上の光入射面上に、ストライブ状等のパタ
ーン状金属電極を発電有効面積の一部に設け、光生成電
流の集電を光入射側電極と金属電極とで分割・集電する
ことができる。
The amorphous silicon material used as the light incident side electrode has a low resistance and a wide band gap.
A patterned metal electrode such as a stripe is provided on the light incidence surface of the light incidence side electrode in a part of the effective power generation area, and the collection of photogenerated current is divided and collected between the light incidence side electrode and the metal electrode. can be powered.

アモルファスシリコン太陽電池の光入射側の2層の膜厚
は、p”Mでの光吸収損失を小さくするため薄くして使
用することが望ましい、しかし、薄くなるとP+層を流
れる電流密度が増大し、太陽電池として抵抗成分が増加
する結果となる。
It is desirable to reduce the thickness of the two layers on the light incident side of an amorphous silicon solar cell in order to reduce the light absorption loss in the p''M layer.However, as the thickness becomes thinner, the current density flowing through the P+ layer increases. , this results in an increase in the resistance component of the solar cell.

p”Hを薄くして使用する場合は、Afl、Ag、Ti
、C’r、またはSUS等のパターン状金属電極を、発
電有効面積の一部に設ける事により、太陽電池としての
直列抵抗を下げることができ、太陽光照射下での直列抵
抗による特性低下を低減し。
When using with a thin p”H, Afl, Ag, Ti
By providing a patterned metal electrode such as , C'r, or SUS in a part of the effective power generation area, the series resistance of the solar cell can be lowered, and the deterioration of characteristics due to series resistance under sunlight irradiation can be reduced. Reduced.

高効率化を実現することができる。High efficiency can be achieved.

さらに、光入射側にガラス基板を用いた場合は、ガラス
基板(屈折率1.45)と光入射側電極となるアモルフ
ァスシリコン系材料(屈折率3.5〜4.0)との屈折
率の差が大きいため、両者間に屈折率2.1前後の値、
即ち1.7〜2.5の光透過膜を形成することにより光
学マツチングを改善し入射光の界面反射損を低減させる
ことができる。
Furthermore, when a glass substrate is used on the light incidence side, the refractive index of the glass substrate (refractive index 1.45) and the amorphous silicon material (refractive index 3.5 to 4.0) that becomes the light incidence side electrode is Due to the large difference, the refractive index between the two is around 2.1,
In other words, by forming a light transmitting film having a diameter of 1.7 to 2.5, optical matching can be improved and interface reflection loss of incident light can be reduced.

また、光入射側電極としての11膜に微結晶シリコンま
たは微結晶シリコン合金等の微結晶化膜を用いることに
より、太陽電池の高率化を図ることができる。これは、
膜の微結晶化により膜の活性化エネルギーが小さくなり
、このため太陽電池の開放電圧が大きくなり高光電変換
効率を有する太陽電池を得ることができる。
Furthermore, by using a microcrystalline film such as microcrystalline silicon or microcrystalline silicon alloy for the film 11 serving as the light incident side electrode, it is possible to increase the efficiency of the solar cell. this is,
Microcrystallization of the film reduces the activation energy of the film, thereby increasing the open circuit voltage of the solar cell, making it possible to obtain a solar cell with high photoelectric conversion efficiency.

そして、該アモルファスシリコン太陽電池において、光
照射時に出力の直列抵抗損が無視できる、あるいは小さ
い必要がある6そのための上記p+あるいはn+層の比
抵抗の許容値は金属パターン電極との組み合わせや光照
射強度等によって決まる。例えば、第8図に示す幅Wの
細長い素子におけるP+あるいはn+層での出力積(%
)はで表わせる。ここでJ、、V、は出力電流、出力電
圧、Qsは金属電極間隔、ρ、tはp4″あるいはn1
層の比抵抗と膜厚である。照射光強度が100mW/a
JのときにはJ、=12mA/cot。
In the amorphous silicon solar cell, the output series resistance loss must be negligible or small during light irradiation6.For this purpose, the permissible value of the specific resistance of the p+ or n+ layer is determined by the combination with the metal pattern electrode and the light irradiation. Determined by strength etc. For example, the output product (%
) can be expressed as. Here, J,, V, are output current, output voltage, Qs is metal electrode spacing, ρ, t are p4'' or n1
These are the specific resistance and film thickness of the layer. Irradiation light intensity is 100mW/a
When J, J = 12mA/cot.

V、=0.7volt、  ffis=100pm、 
 t=150人とすると、出力積が無視できる1%以下
のとき(1)式と次式 P露ass   <1  % ρ   く  ρlI&χ のρ、&8は0.1Ω・lとなる。
V, = 0.7 volt, ffis = 100 pm,
Assuming that t=150 people, when the output product is negligible 1% or less, equation (1) and the following equation Pass <1 % ρ ρ, &8 of ρlI&χ become 0.1Ω·l.

該太陽電池構造は、金属パターン電極によるシャドーロ
ス分が約5%であるが、従来の透明電極を用いた場合の
透明電極自体の光吸収ロスが約15%〜25%あるため
差し引き上記J0値を10%以上増大させるから、出力
積が1%以下ではなく2〜3%であったとしても従来型
素子に比べ高出力である。また膜厚tは200〜300
人でもよいから、上記ρl1axは、0.5Ω・1とな
る。
In this solar cell structure, the shadow loss due to the metal pattern electrode is about 5%, but when a conventional transparent electrode is used, the light absorption loss of the transparent electrode itself is about 15% to 25%, so the above J0 value is subtracted. Since it increases by more than 10%, even if the output product is 2 to 3% instead of 1% or less, the output is higher than that of the conventional element. Also, the film thickness t is 200 to 300
Since it may be a person, the above ρl1ax is 0.5Ω·1.

さらに、JI、値が小さいタンデム型太陽電池ではρm
&Mは1.5Ω・備でもよい。
Furthermore, for tandem solar cells with small JI values, ρm
&M may be 1.5Ω.

上記出力積は照射光強度にほぼ比例するから、100m
W/aJのとき0.5Ω’e1mであるp maXは1
mW/adでは50Ω・tya、 10−”mW/ad
では5 X 10’Ω・国であってよい。
Since the above output product is approximately proportional to the irradiation light intensity, 100 m
When W/aJ, p maX which is 0.5Ω'e1m is 1
mW/ad is 50Ω・tya, 10-”mW/ad
Then it may be 5 x 10'Ω/country.

アモルファスシリコン太陽電池を作製する場合、光入射
側電極としてp+層膜自体を用いる事を述べたが、p+
層にかぎらずn+層も同じ製膜法で膜の低抵抗化ができ
る。得られたn+型μC−3iC膜は、比抵抗が3X1
0−3Ω・l程度あり。
When producing an amorphous silicon solar cell, it was mentioned that the p+ layer film itself is used as the light incident side electrode, but the p+
Not only the N+ layer but also the N+ layer can be formed with the same film formation method to reduce the resistance of the film. The resulting n+ type μC-3iC film has a specific resistance of 3X1
Approximately 0-3Ω・l.

P+型のμc−SiC膜よりも低い比抵抗を示す。It exhibits a lower specific resistance than the P+ type μc-SiC film.

このため、n”ffi膜自体を光入射側及び、または背
面側の集電電極として使用することができる。
Therefore, the n''ffi film itself can be used as a current collecting electrode on the light incident side and/or the back side.

従来、背面側の1層には、金属電極をn層全面に形成し
ていたが、n+層を集電電極とすることにより、この金
属電極も不用となる。しかし、太陽電池の背面側は、光
入射側のように光透過率を上げる必要はないが、逆に通
過する光を再び膜中へ反射させることは重要である。こ
の点に関しては、背面側に金属電極を設ける方が望まし
い、太IS電池の直列抵抗低減及び裏面光反射効果(光
とじ込め効果)の点では、背面側に金属電極を設けた方
が太陽電池の高効率化に有利な場合がある。
Conventionally, a metal electrode was formed on the entire surface of the n layer in one layer on the back side, but by using the n+ layer as a current collecting electrode, this metal electrode is also unnecessary. However, although it is not necessary to increase the light transmittance on the back side of the solar cell as on the light incident side, it is important to reflect the passing light back into the film. Regarding this point, it is preferable to provide a metal electrode on the back side of the solar cell.In terms of reducing the series resistance of thick IS batteries and the back surface light reflection effect (light trapping effect), it is better to provide a metal electrode on the back side of the solar cell. It may be advantageous to increase efficiency.

本発明では、ガラス基板/p”in+構造が可能である
だけでなく、ガラス基板/p”pin”/+ガラス基板
/P”Pinn+構造や、パターン状金属電極を用いる
ことによりガラス基板/パターン電極/ p ” l 
n ” Hガラス基板/パターン電極/p + x n
 ” /パターン電極(あるいは全面金属電極)構造が
得られ、さらに光学マツチングのため光透過膜を設ける
ことによりガラス基板/光透過膜/p+in+、ガラス
騙板/光透過膜/パターン電極/p”in+構造が簡単
に得られ、また、これらの構造の組合せにより種々の構
造が形成できる。そして同様に上記の逆タイプ構造も形
成でき、さらに、基板材料に、透明なガラス板以外にも
、セラミックス等の絶縁物材料や金属等の良導体材料を
使用できる。
In the present invention, not only a glass substrate/p"in+ structure is possible, but also a glass substrate/patterned electrode by using a glass substrate/p"in"/+glass substrate/P"Pinn+ structure and a patterned metal electrode. /p”l
n”H glass substrate/pattern electrode/p + x n
”/A patterned electrode (or full-surface metal electrode) structure is obtained, and by further providing a light-transmitting film for optical matching, glass substrate/light-transmitting film/p+in+, glass decoupling plate/light-transmitting film/patterned electrode/p”in+ The structure can be easily obtained, and various structures can be formed by combining these structures. Similarly, the above-mentioned reverse type structure can be formed, and in addition to the transparent glass plate, an insulating material such as ceramics or a good conductive material such as metal can be used as the substrate material.

〔実施例〕〔Example〕

以下、本発明を実施例にて説明する。 The present invention will be explained below with reference to Examples.

実施例1 本実施例は、第1図により説明する。第1図は、ガラス
板1の上に作製したガラス板/ p ’ i、 n+構
造のアモルファスシリコン太陽電池である。ガラス板1
の上に、マイクロ波プラズマCVD法により250Aの
p+型μc −S i C膜2を形成し。
Example 1 This example will be explained with reference to FIG. FIG. 1 shows an amorphous silicon solar cell having a glass plate/p′ i, n+ structure fabricated on a glass plate 1. glass plate 1
A p+ type μc-SiC film 2 of 250 A is formed thereon by microwave plasma CVD.

順次6000Aのi型a−9i膜3、及び450Aのn
“型μQ−8iC膜4を形成した。p”M膜は、S i
 H4,B、H,(I−I、ベース)、CH,及びH2
の各種ガスを用いて形成した。そしてiWI膜はSiH
4,n+層膜はSiH,とPH1(H2ベース)の各種
ガスを用いて成膜した。光入射側はガラス板側であり、
p+層が光入射側電極またn+層が背面電極である。
Sequentially 6000A i type a-9i film 3 and 450A n
A "p" type μQ-8iC film 4 was formed.
H4, B, H, (I-I, base), CH, and H2
It was formed using various gases. And the iWI film is SiH
4. The n+ layer film was formed using various gases including SiH and PH1 (H2 base). The light incidence side is the glass plate side,
The p+ layer is the light incident side electrode, and the n+ layer is the back electrode.

得られた太陽電池の性能は、太陽光100mW/d照射
下で、光電変換効率:9.0%、短絡電流密度:15.
5mA/aJ、開放電圧:0,88V、曲線因子:0,
66であった。
The performance of the obtained solar cell was as follows: under 100 mW/d sunlight irradiation, photoelectric conversion efficiency: 9.0%, short circuit current density: 15.
5mA/aJ, open circuit voltage: 0.88V, fill factor: 0,
It was 66.

実施例2 本実施例は、第2図により説明する。第2図はガラス板
1の上に作製したガラス板/p+Pin+構造のアモル
ファスシリコン太ll!!電池である。ガラス板1の上
に、マイクロ波プラズマCVD法により200Aのp+
型μa−8iC膜2を形成し。
Example 2 This example will be explained with reference to FIG. Figure 2 shows an amorphous silicon film with a glass plate/p+Pin+ structure fabricated on the glass plate 1! ! It's a battery. A p+ of 200 A was applied on the glass plate 1 by microwave plasma CVD method.
A type μa-8iC film 2 is formed.

次に60Aのp型a−8iC膜5を形成し、順次600
0Aのi型a−3i膜3、及び450Aのn++μc−
8iC膜4を形成した。p型a−3iC型5は、p+型
p c −S i C膜2と同様な方法で得られるが、
反応圧力、基板温度、マイクロ波パワー、ガス組成等の
最適な選定により得られる。
Next, a 60A p-type a-8iC film 5 is formed, and 60A
0A i type a-3i film 3 and 450A n++μc-
An 8iC film 4 was formed. The p-type a-3iC type 5 is obtained by the same method as the p+ type p c -S i C film 2, but
This can be achieved by optimally selecting reaction pressure, substrate temperature, microwave power, gas composition, etc.

得られた太陽電池の性能は、実施例−1と同じ測定法に
より、光電変換効率:9.6%、短絡電流密度:15.
8mA/aJ、開放電圧:0,89V。
The performance of the obtained solar cell was determined by the same measuring method as in Example-1: photoelectric conversion efficiency: 9.6%, short circuit current density: 15.
8mA/aJ, open circuit voltage: 0.89V.

曲線因子:0.68であった。Fill factor: 0.68.

実施例3 本実施例は、第3図により説明する。第3図は、ガラス
板1の上に作製したガラス板/p+pin構造のアモル
ファスシリコン太陽電池である。ガラス板1の上に、2
00Aのp++μc −S i C膜2を形成し、次に
60Aのp型a −S i C膜5を形成し、順次60
00Aのi型a −S i膜3.60Aのn型a −S
 i C膜6.及び400Aのn++μc−8iC膜4
を形成した。
Example 3 This example will be explained with reference to FIG. FIG. 3 shows an amorphous silicon solar cell having a glass plate/p+pin structure fabricated on a glass plate 1. FIG. on glass plate 1, 2
A p++μc-S i C film 2 of 00A is formed, then a p-type a-S iC film 5 of 60A is formed, and then a p++μc-S iC film 2 of 60A is formed.
00A i-type a-S i film 3.60A n-type a-S
iC membrane6. and 400A n++μc-8iC film 4
was formed.

得られた太陽電池の性能は、光電変換効率:9.9%、
短絡電流密度:16.OmA/aJ、開放電圧:0.9
0V、曲線因子:0.69であった。
The performance of the obtained solar cell was as follows: photoelectric conversion efficiency: 9.9%;
Short circuit current density: 16. OmA/aJ, open circuit voltage: 0.9
0V, fill factor: 0.69.

実施例4 本実施例は、第4図により説明する。第4図は、ガラス
板1の上にパターン状金属電極7を有するガラス板/パ
ターン状金属電極/p”in+構造のアモルファスシリ
コン太陽電池である。ガラス板1の上に厚さ0.5μm
1間隔100μmのストライプ状のCr金属のパターン
状金属電極7を形成し、順次実施例−1と同様にp”i
n+構造のアモルファスシリコン膜を形成した。
Example 4 This example will be explained with reference to FIG. FIG. 4 shows an amorphous silicon solar cell having a glass plate/patterned metal electrode/p”in+ structure with a patterned metal electrode 7 on the glass plate 1.
Patterned metal electrodes 7 made of Cr metal are formed in stripes with an interval of 100 μm, and p”i
An amorphous silicon film with an n+ structure was formed.

得られた太陽電池の性能は、光電変換効率:9.9%、
短絡電流密度:15.8mA/aJ、開放電圧:0.8
8V、曲線因子: 0.71であった。
The performance of the obtained solar cell was as follows: photoelectric conversion efficiency: 9.9%;
Short circuit current density: 15.8mA/aJ, open circuit voltage: 0.8
8V, fill factor: 0.71.

実施例5 本実施例は、第5図により説明する。第5図は、ガラス
板1の上に形成したパターン状金属電極7及び背面電極
側に設けたパターン状金属電極8を有するガラス板/パ
ターン状金属電極/p+in+/パターン状金属電極構
造のアモルファスシリコン太陽電池である。実施例−4
の太陽電池の背面電極としてのn+暦模膜上パターン状
金属電極8を設けた太陽電池である。金属電極8は、金
pA電極7と同一のものとした。
Example 5 This example will be explained with reference to FIG. FIG. 5 shows amorphous silicon having a glass plate/patterned metal electrode/p+in+/patterned metal electrode structure having a patterned metal electrode 7 formed on a glass plate 1 and a patterned metal electrode 8 provided on the back electrode side. It's a solar cell. Example-4
This solar cell is provided with a patterned metal electrode 8 on an n+ pattern as a back electrode of the solar cell. The metal electrode 8 was the same as the gold pA electrode 7.

得られた太陽電池の性能は、光電変換効率=10.1%
、短絡電流密度: 16.OmA/a#、開放電圧:0
.89V、曲線因子: 0.71であった。
The performance of the obtained solar cell is photoelectric conversion efficiency = 10.1%
, short circuit current density: 16. OmA/a#, open voltage: 0
.. 89V, fill factor: 0.71.

実施例6 本実施例は、第6図により説明する。第6図は。Example 6 This embodiment will be explained with reference to FIG. Figure 6 is.

実施例1のガラス板1とp1型μc−8iC膜2との間
に光透過膜9として600A厚のTi0vを熱CVD法
により形成したガラス板/光透過膜/p+in+構造の
アモルファスシリコン太陽電池である。該太陽電池では
、ガラス板、TiO、p4型μ0−5iCの屈折率が1
.45.2.2.3.6であるため、TiOを設けるこ
とにより屈折率のマツチングが良くなり界面反射損が減
少し、短絡電流密度が大きくなり光電変換効率も高くな
った。
An amorphous silicon solar cell with a glass plate/light transmitting film/p+in+ structure in which a 600A thick Ti0v film was formed as a light transmitting film 9 between the glass plate 1 of Example 1 and the P1 type μC-8iC film 2 by thermal CVD. be. In this solar cell, the refractive index of the glass plate, TiO, and p4 type μ0-5iC is 1.
.. 45.2.2.3.6, the provision of TiO improved refractive index matching, reduced interface reflection loss, increased short circuit current density, and increased photoelectric conversion efficiency.

得られた太陽電池の性能は、光電変換効率:10.4%
、短絡電流密度: 16.5mA/aJ、開放電圧:0
.p+V、曲線因子:0.69であった。
The performance of the obtained solar cell was as follows: photoelectric conversion efficiency: 10.4%
, short circuit current density: 16.5mA/aJ, open circuit voltage: 0
.. p+V, fill factor: 0.69.

実施例7 本実施例は、第7図により説明する。第7図は、実施例
6の光透過膜9とp++μc−3iC膜2との間に、ス
トライプ状のパターン状金属電極7を設けたガラス板/
光透過膜/パターン状金属電極/P+in+構造のアモ
ルファスシリコン太陽電池である。パターン状金属電極
7は、実施例4で用いたストライプ状のCr@極と同一
のものを使用した。
Example 7 This example will be explained with reference to FIG. FIG. 7 shows a glass plate/glass plate in which a striped patterned metal electrode 7 is provided between the light transmitting film 9 and the p++μc-3iC film 2 of Example 6.
This is an amorphous silicon solar cell with a light-transmitting film/patterned metal electrode/P+in+ structure. The patterned metal electrode 7 used was the same as the striped Cr@ electrode used in Example 4.

得られた太陽電池の性能は、光電変換効率=10.5%
、短絡電流密度:16.2mA/cd、開放電圧:0.
p+V、曲線因子:0.71であった。
The performance of the obtained solar cell is photoelectric conversion efficiency = 10.5%
, short circuit current density: 16.2 mA/cd, open circuit voltage: 0.
p+V, fill factor: 0.71.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光入射側電極に透明電極を用いること
が不用であり、透明電極の還元、変質及び透明電極成分
によるa−5i膜の膜質汚染等の影響が無くなり、太陽
電池の性能向上に効果がある。また、透明電極自体の作
製が不用であるため、透明電極形成装置やプロセス等を
考慮する必要がなく太陽電池製造の面で大幅な低コスト
化が実現できる。
According to the present invention, it is not necessary to use a transparent electrode as the light incident side electrode, and the effects of reduction and deterioration of the transparent electrode and contamination of the a-5i film due to transparent electrode components are eliminated, and the performance of the solar cell is improved. is effective. Furthermore, since the production of the transparent electrode itself is unnecessary, there is no need to consider the transparent electrode forming apparatus or process, and a significant cost reduction can be achieved in terms of solar cell production.

本発明によれば、光入射側電極及び背面電極をp1型ま
たはn+型の微結晶シリコン等とすることにより高い開
放電圧が得られ、かつ光電変換母体の一部を構成する材
料が集1!電極の役目をしているため太陽電池のプロセ
スが簡略化している。
According to the present invention, a high open circuit voltage can be obtained by making the light incident side electrode and the back electrode of p1 type or n+ type microcrystalline silicon, etc., and the materials constituting a part of the photoelectric conversion matrix are selected from 1! Because it acts as an electrode, the solar cell process is simplified.

また、パターン状金属電極や屈折率1.7〜2.5の光
透過膜を組み合わせる事により、直列抵抗の低減や光反
射防止に効果があり、太BI電池の曲線因子や短絡電流
密度の改善が図られる。そして上記の高い開放電圧とあ
わせることにより一層の高効率化を達成することに効果
がある。
In addition, by combining patterned metal electrodes and a light-transmitting film with a refractive index of 1.7 to 2.5, it is effective in reducing series resistance and preventing light reflection, improving the fill factor and short-circuit current density of thick BI batteries. is planned. When combined with the above-mentioned high open circuit voltage, it is effective in achieving even higher efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ガラス板/p”in+構造の太陽電池、第2
図は、ガラス板/p”in+構造の太陽電池、第3図は
、ガラス板/p”pinn+構造の太陽電池、第4図は
、ガラス板/パターン状金属電極/p”i n+構造の
太陽電池、第5図は、ガラス板/パターン状金属電極/
p”in”/パターン状金属電極構造の太陽電池、第6
図は、ガラス板/光透過膜/p”in+構造の太陽電池
、第7図は、ガラス板/光透過膜/パターン状金属i1
極/ p ) z n +構造の太陽電池、第8図は、
くし形状金属電極を有する太陽電池である。 符号の説明 1・・・ガラス板、2・・・p1型μc−3iC膜、3
−i型a−3i11.4−n+型μc −S i C膜
。 5 ・P型a−5iC膜、6− n型a−8iC膜、7
・・・パターン状金属電極、8・・・パターン状金属電
極、9・・・光透過膜。 第7図 第2目 金釘を棒
Figure 1 shows a solar cell with a glass plate/p”in+ structure;
The figure shows a solar cell with a glass plate/p"in+ structure, FIG. 3 shows a solar cell with a glass plate/p"pinn+ structure, and FIG. 4 shows a solar cell with a glass plate/patterned metal electrode/p"in+ structure. Battery, Figure 5 shows glass plate/patterned metal electrode/
Solar cell with p”in”/patterned metal electrode structure, No. 6
The figure shows a solar cell with a glass plate/light transmitting film/p”in+ structure, and Figure 7 shows a glass plate/light transmitting film/patterned metal i1
Polar/p) z n + structure solar cell, Figure 8 shows:
This is a solar cell with comb-shaped metal electrodes. Explanation of symbols 1...Glass plate, 2...P1 type μc-3iC film, 3
-i type a-3i11.4-n+ type μc -S i C film. 5 - P-type a-5iC film, 6- N-type a-8iC film, 7
... Patterned metal electrode, 8... Patterned metal electrode, 9... Light transmission film. Fig. 7 Second eye nail on stick

Claims (1)

【特許請求の範囲】 1、アモルファスシリコン、アモルファスシリコン合金
、微結晶シリコン、微結晶シリコン合金等アモルファス
シリコン系材料の積層から成るアモルファスシリコン太
陽電池において、太陽電池に生成された光生成電流を外
部に取り出す際、光入射側に位置するp^+層膜または
n^+層膜の少なくとも、一部分を利用し接合面に平行
に集電することを特徴とするアモルファスシリコン太陽
電池。 2、特許請求の範囲第1項において、光入射側に位置す
るp^+層膜またはn^+層膜の光入射面上に、メッシ
ュ状やストライプ状等のパターン状金属電極が設けてあ
り、p^+層膜またはn^+層膜の光入射側電極と金属
電極とで光生成電流の集電を行なわせることを特徴とす
るアモルファスシリコン太陽電池。 3、特許請求の範囲第1項および、または第2項におい
て、太陽電池用基板としてガラス基板を用いた場合、ガ
ラス基板と光入射側電極との間、および、または、ガラ
ス基板と光入射側金属電極との間の少なくとも一部分に
屈折率1.7〜2.5の光透過膜を形成したことを特徴
とするアモルファスシリコン太陽電池。 4、特許請求の範囲第1項から第3項において、光入射
側電極としてのp^+層膜またはn^+層膜が、微結晶
シリコンあるいは微結晶シリコン合金であることを特徴
とするアモルファスシリコン太陽電池。 5、特許請求の範囲第1項において、p^+層膜または
n^+層膜の比抵抗が、1.5Ω・cm以下であること
を特徴とするアモルファスシリコン太陽電池。
[Claims] 1. In an amorphous silicon solar cell consisting of a stack of amorphous silicon materials such as amorphous silicon, amorphous silicon alloy, microcrystalline silicon, and microcrystalline silicon alloy, the photogenerated current generated in the solar cell is transmitted to the outside. An amorphous silicon solar cell characterized in that when taken out, current is collected in parallel to a bonding surface using at least a part of the p^+ layer film or n^+ layer film located on the light incident side. 2. In claim 1, a metal electrode in a pattern such as a mesh shape or a stripe shape is provided on the light incidence surface of the p^+ layer film or the n^+ layer film located on the light incidence side. , an amorphous silicon solar cell characterized in that photogenerated current is collected by a light incident side electrode of a p^+ layer film or an n^+ layer film and a metal electrode. 3. In Claims 1 and/or 2, when a glass substrate is used as a solar cell substrate, between the glass substrate and the light incidence side electrode, and/or between the glass substrate and the light incidence side An amorphous silicon solar cell characterized in that a light transmitting film having a refractive index of 1.7 to 2.5 is formed at least in a portion between the metal electrode and the metal electrode. 4. In claims 1 to 3, an amorphous film characterized in that the p^+ layer film or n^+ layer film as the light incident side electrode is microcrystalline silicon or a microcrystalline silicon alloy. silicon solar cell. 5. The amorphous silicon solar cell according to claim 1, wherein the p^+ layer film or the n^+ layer film has a specific resistance of 1.5 Ω·cm or less.
JP63318555A 1988-12-19 1988-12-19 Amorphous silicon solar cell Pending JPH02164079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318555A JPH02164079A (en) 1988-12-19 1988-12-19 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318555A JPH02164079A (en) 1988-12-19 1988-12-19 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPH02164079A true JPH02164079A (en) 1990-06-25

Family

ID=18100439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318555A Pending JPH02164079A (en) 1988-12-19 1988-12-19 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPH02164079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157976A (en) * 1989-11-15 1991-07-05 Sanyo Electric Co Ltd Photovoltaic device
JP2011205149A (en) * 2003-03-24 2011-10-13 Konarka Technologies Inc Photovoltaic cell with mesh electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651880A (en) * 1979-10-04 1981-05-09 Fuji Electric Co Ltd Amorphous semiconductor photocell
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS60102773A (en) * 1983-11-09 1985-06-06 Hitachi Ltd Amorphous base solar battery
JPS62256481A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62276884A (en) * 1986-05-24 1987-12-01 Sharp Corp Thin film solar cell element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651880A (en) * 1979-10-04 1981-05-09 Fuji Electric Co Ltd Amorphous semiconductor photocell
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS60102773A (en) * 1983-11-09 1985-06-06 Hitachi Ltd Amorphous base solar battery
JPS62256481A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS62276884A (en) * 1986-05-24 1987-12-01 Sharp Corp Thin film solar cell element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157976A (en) * 1989-11-15 1991-07-05 Sanyo Electric Co Ltd Photovoltaic device
JP2011205149A (en) * 2003-03-24 2011-10-13 Konarka Technologies Inc Photovoltaic cell with mesh electrode

Similar Documents

Publication Publication Date Title
JP5762552B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2005011002A1 (en) Silicon based thin film solar cell
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
CN101295743A (en) Thin film, its forming method and solar battery with the same
JP3078936B2 (en) Solar cell
CN111384187A (en) Composite back electrode, preparation method thereof and laminated solar cell
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH0658971B2 (en) Photovoltaic device manufacturing method
JP2680579B2 (en) Photovoltaic device
JP3342257B2 (en) Photovoltaic element
JPH02164079A (en) Amorphous silicon solar cell
CN114582983A (en) Heterojunction solar cell and preparation method thereof
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
JP2669834B2 (en) Stacked photovoltaic device
CN110797428A (en) Heterojunction solar cell
TW200536136A (en) Method for producing thin-film photoelectric converter
JPH0513790A (en) Photoelectromotive force element
JPH0456170A (en) Manufacture of thin-film solar cell
JP2010103347A (en) Thin film photoelectric converter
JPS6284571A (en) Multilayer structure type amorphous solar cell
JPS59151476A (en) Photoelectric conversion element
JPS5996775A (en) Amorphous silicon photoelectric conversion device
JPH10144942A (en) Amorphous semiconductor solar cell
JPH0597413A (en) Amorphous multicomponent semiconductor and device using the same
JPH11298021A (en) Substrate for photovoltaic element, and photovoltaic element using the same, and integrated photovoltaic element and manufacture of the integrated photovoltaic element