JPH02163972A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPH02163972A
JPH02163972A JP31782988A JP31782988A JPH02163972A JP H02163972 A JPH02163972 A JP H02163972A JP 31782988 A JP31782988 A JP 31782988A JP 31782988 A JP31782988 A JP 31782988A JP H02163972 A JPH02163972 A JP H02163972A
Authority
JP
Japan
Prior art keywords
silicon
amorphous silicon
insulating film
film transistor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31782988A
Other languages
Japanese (ja)
Other versions
JPH07114285B2 (en
Inventor
Keizo Kobayashi
敬三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63317829A priority Critical patent/JPH07114285B2/en
Publication of JPH02163972A publication Critical patent/JPH02163972A/en
Publication of JPH07114285B2 publication Critical patent/JPH07114285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent a leakage current of a TFT from being increased by a back channel effect by a method wherein an insulating film whose thickness is a specific value or lower is formed on an amorphous silicon semiconductor at a channel rear part and a layer of an opposite conductivity type is formed on the inside surface of silicon so as to be adjacent to the insulating film. CONSTITUTION:In a thin-film transistor of an inverted staggered structure, the following are formed on an insulating substrate 10: a gate electrode 20; a gate insulating film 30; an amorphous silicon film 40; a source electrode and a drain electrode 60, 70. in this thin-film transistor, an insulating film 80 of 300Angstrom or lower is formed on the surface of the semiconductor layer 40 at a channel rear part between the source electrode 60 and the drain electrode 70; a layer 51 of an opposite conductivity type is formed on the surface of the semiconductor layer 40 so as to be adjacent to the insulating film 80. For example, an amorphous silicon semiconductor 40 at a channel rear part is immersed in an aqueous solution of hydrogen peroxide; a silicon oxide film 20 of 300Angstrom or lower is formed on the surface of the amorphous silicon semiconductor 40. Since the silicon oxide film 80 is formed, a P-type layer 51 is formed on the surface of the silicon 40.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質シリコンを用いた逆スタガード構造薄膜
nチャネルトランジスタの構造に関し、特にバックチャ
ネル効果による不安定性が無く、高信頼性が得られる非
晶質シリコン薄膜トランジスタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of an inverted staggered thin film n-channel transistor using amorphous silicon, and in particular, it is free from instability due to back channel effects and has high reliability. The present invention relates to an amorphous silicon thin film transistor.

〔従来の技術〕[Conventional technology]

従来の逆スタガードnチャネル非晶質シリコンTPTの
構造の一例を第3図に示す。ガラス基板10上にN i
 Cr等のゲート電極20を設け、その上にシリコン酸
化膜、シリコン窒化膜等のゲート絶縁膜30を設け、さ
らに非晶質真性半導体シリコン40を設け、ソース及び
ドレイン部にはn型不純物を高濃度に添加したn+層を
設ける。さらにn+層からはCi、Afl等でソース電
極60及びドレイン電極70を設けた構造が一般的構造
である。
An example of the structure of a conventional inverted staggered n-channel amorphous silicon TPT is shown in FIG. Ni on the glass substrate 10
A gate electrode 20 made of Cr or the like is provided, a gate insulating film 30 such as a silicon oxide film or a silicon nitride film is provided thereon, an amorphous intrinsic semiconductor silicon 40 is provided, and the source and drain portions are highly doped with n-type impurities. Provide a doped n+ layer. Furthermore, a general structure is such that a source electrode 60 and a drain electrode 70 are provided from the n+ layer using Ci, Afl, or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した、従来構造の逆スタガード非晶質シリコンTP
Tは第3図に示すようにソース電極60とドレイン電極
70との間にチャネル背面のシリコン部90が最上表面
に位置している。この結果、チャネル背面のシリコン部
90は非晶質真性半導体シリコン表面501が露出した
構造となる。そのため該表面は外部からの汚染、イオン
等の影響を受けn型化しやすく、その結果チャネル背面
のシリコン部90にも望ましくないチャネルが形成され
TPT  OFF時のリーク電流を増加させたり、TP
T特性の不安定性をもたらすという欠点を有していた。
The above-mentioned inverted staggered amorphous silicon TP with conventional structure
As shown in FIG. 3, a silicon portion 90 on the back side of the channel is located at the uppermost surface between the source electrode 60 and the drain electrode 70. As a result, the silicon portion 90 on the back side of the channel has a structure in which the amorphous intrinsic semiconductor silicon surface 501 is exposed. Therefore, the surface is easily influenced by external contamination, ions, etc. and becomes n-type, and as a result, an undesirable channel is also formed in the silicon portion 90 on the back side of the channel, increasing the leakage current when the TPT is turned off, and
This has the disadvantage of causing instability of the T characteristic.

なお、この解決策の一例としてチャネル背面のシリコン
部90上に保護絶縁膜としてシリコン酸化膜やシリコン
窒化膜を数千人形成し、汚染、イオンを防止し安定化を
計ることが考えられる。しかし、一般にこれらの絶縁膜
を形成すると絶縁膜中の固定電荷や、界面準位の発生の
ためシリコン表面はn型となり、TPTのリーク電流の
増加を完全に防ぐことは出来なかった。
As an example of this solution, it is conceivable to form several thousand silicon oxide films or silicon nitride films as a protective insulating film on the silicon portion 90 on the back side of the channel to prevent contamination and ions and to stabilize the device. However, in general, when these insulating films are formed, the silicon surface becomes n-type due to fixed charges in the insulating film and generation of interface states, and it has not been possible to completely prevent an increase in leakage current of TPT.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、絶縁基板上にゲート電極。 According to the invention, a gate electrode is formed on an insulating substrate.

ゲート絶縁膜、非晶質シリコン膜、ソース及びドレイン
電極の順に設けられた逆スタガード非晶質シリコンTP
Tにおいて、ソース電極とドレイン電極間のチャネル背
面部の非晶質シリコン上に300Å以下の絶縁膜を有し
、非晶質シリコン内部表面に、該絶縁膜成長時に形成さ
れたP型層を有している薄膜トランジスタを得る。
Inverted staggered amorphous silicon TP with gate insulating film, amorphous silicon film, source and drain electrodes provided in this order
In T, an insulating film of 300 Å or less is formed on the amorphous silicon at the back of the channel between the source electrode and the drain electrode, and a P-type layer formed during the growth of the insulating film is formed on the inner surface of the amorphous silicon. Obtain a thin film transistor with

〔実施例〕〔Example〕

以下、本発明について図面を用いて説明する。 Hereinafter, the present invention will be explained using the drawings.

第1図は本発明の一実施例を示すTPTの模式的な縦断
面図である。本図において、チャネル背面部の非晶質シ
リコン半導体400表面上には過酸化水素水溶液に浸す
ことにより形成した300Å以下のシリコン酸化膜80
を形成する。又、このシリコン酸化膜80を形成するこ
とによりシリコン40の表面にはP型層51が形成され
ることがわかった。
FIG. 1 is a schematic vertical sectional view of a TPT showing an embodiment of the present invention. In this figure, a silicon oxide film 80 with a thickness of 300 Å or less is formed on the surface of an amorphous silicon semiconductor 400 at the back side of the channel by immersing it in a hydrogen peroxide aqueous solution.
form. It has also been found that by forming this silicon oxide film 80, a P-type layer 51 is formed on the surface of silicon 40.

過酸化水素水溶液により形成されるシリコン酸化膜80
の厚さは、水溶液の温度5時間にもよるが室温では30
0人程度がリミットである。シリコン40の内部表面に
誘起される電荷密度は10口〜1.0”/cntで信頼
性上安定である。
Silicon oxide film 80 formed from hydrogen peroxide aqueous solution
The thickness depends on the temperature of the aqueous solution for 5 hours, but at room temperature it is 30
The limit is about 0 people. The charge density induced on the internal surface of the silicon 40 is 10 to 1.0''/cnt, which is stable in terms of reliability.

第2図は本発明の他の実施例を示すTPTの模式的な縦
断面図である。本図においては、チャネル背面部の非晶
質シリコン半導体40上には塩化アルミニウムの加水分
解によりプラズマCVD法により形成したアルミナ膜8
1を300Å以下形成した。又、このアルミナ膜81を
形成することによりシリコン400表面にはP型層52
が形成されることがわかった。アルミナ膜81の形成に
よりシリコン40の内部表面に誘起される正電荷密度は
l O””−10”/cnlで信頼性上も安定である。
FIG. 2 is a schematic vertical sectional view of a TPT showing another embodiment of the present invention. In this figure, an alumina film 8 formed by plasma CVD using hydrolysis of aluminum chloride is formed on the amorphous silicon semiconductor 40 at the back side of the channel.
1 was formed to a thickness of 300 Å or less. Also, by forming this alumina film 81, a P-type layer 52 is formed on the surface of the silicon 400.
was found to be formed. The positive charge density induced on the internal surface of the silicon 40 by the formation of the alumina film 81 is l O""-10"/cnl, which is stable in terms of reliability.

アルミナ膜81は300Å以上厚くしても正電荷密度は
大きく変わらない。工程の時間短縮。
Even if the alumina film 81 is thickened by 300 Å or more, the positive charge density does not change significantly. Reduce process time.

厚くすることによる歪、クラック等の短所を考えると3
00Å以下で充分である。
Considering the disadvantages such as distortion and cracks due to thickening, 3.
00 Å or less is sufficient.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は300Å以下の絶縁膜を
チャネル背面部の非晶質シリコン半導体上に形成し、し
かも該絶縁膜形成時にシリコン内部表面にP型層を形成
する。このP型層の形成によりチャネル背面部がn型化
し、チャネルが形成され、いわゆるバックチャネル効果
によるTPTのリーク電流の増大、特性の増大を抑える
効果がある。絶縁膜の形成はシリコン内部表面にP型層
を形成するためであり、この為には300Å以下で充分
であり厚くするとかえって歪、クラック等のデメリット
が生じる。
As described above, in the present invention, an insulating film of 300 Å or less is formed on the amorphous silicon semiconductor at the back surface of the channel, and a P-type layer is formed on the inner surface of the silicon when forming the insulating film. By forming this P-type layer, the back surface of the channel becomes n-type and a channel is formed, which has the effect of suppressing an increase in leakage current and an increase in characteristics of the TPT due to the so-called back channel effect. The purpose of forming the insulating film is to form a P-type layer on the internal surface of the silicon, and for this purpose, a thickness of 300 Å or less is sufficient; if it is made thicker, disadvantages such as distortion and cracks will occur.

第4図は本発明の効果を示すための、信頼性試験前後の
TPT特性である。初期TPT特性91は従来品と本発
明品で大差ない。しかし、信頼性試験後のTPT特性9
2.93は従来構造92ではゲート電極V。が負方向に
シフトし、又リーク電流も大きい、一方、本発明TPT
93では特性は極めて安定である。
FIG. 4 shows TPT characteristics before and after a reliability test to demonstrate the effects of the present invention. The initial TPT characteristics 91 are not much different between the conventional product and the product of the present invention. However, TPT characteristics 9 after reliability testing
2.93 is the gate electrode V in the conventional structure 92. is shifted in the negative direction, and the leakage current is also large. On the other hand, the TPT of the present invention
93, the characteristics are extremely stable.

以上、300Å以下の絶縁膜で表面をP型化する効果に
ついて説明した。加うるに、チャネル掘り込みにチャネ
ル掘り込みによる凹部を埋めるため、あるいは外部から
の汚染イオンをより完全に防ぐ為、リン珪酸ガラス膜、
シリコン酸化膜、シリコン窒化膜等をプラズマCVD法
等で300Å以上成長し、保護絶縁膜を二層構造にでき
ることはいうまでもない。
The effect of making the surface P-type with an insulating film of 300 Å or less has been described above. In addition, a phosphosilicate glass film,
It goes without saying that the protective insulating film can be formed into a two-layer structure by growing a silicon oxide film, a silicon nitride film, etc. to a thickness of 300 Å or more by plasma CVD or the like.

リコン、50・・・・・・高濃度n型不純物添加シリコ
ン、60・・・・・・ソース電極、70・・・・・・ド
レイン電極、80・・・・・・シリコン酸化膜、90・
・・・・・チャネル背面シリコン部、51.52・・・
・・−P型シリコン層、81・・・・・・アルミナ膜、
9工・・・・・・初期TFT特性、92・・・・・・従
来構造TPTの信頼性試験後特性、93・・・・・・本
発明TPTの信頼性試験後特性。
Silicon, 50...High concentration n-type impurity doped silicon, 60...Source electrode, 70...Drain electrode, 80...Silicon oxide film, 90...
...Channel backside silicon part, 51.52...
...-P-type silicon layer, 81... alumina film,
9th grade: Initial TFT characteristics, 92: Characteristics after reliability test of conventional structure TPT, 93: Characteristics after reliability test of TPT of the present invention.

代理人 弁理士  内 原   晋Agent Patent Attorney Susumu Uchihara

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す薄膜トランジスタの断
面図、第2図は本発明の他の実施例を示す薄膜トランジ
スタの断面図、第3図は従来の薄膜トランジスタの断面
図、第4図は従来及び本発明の薄膜トランジスタの信頼
性試験前後の特性比較を示す図である。 10・・・・・・ガラス基板、20・・・・・・ゲート
電極、30・・・・・・ゲート絶縁膜、40・・・・・
・非晶質半導体シ拓 ノ ID 第3 図 デθチイ、ネ、La面シリコン部 第4図 第2 図 千2 ケ二ト′電ソ玉(゛し′ジ
FIG. 1 is a cross-sectional view of a thin film transistor showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of a thin film transistor showing another embodiment of the present invention, FIG. 3 is a cross-sectional view of a conventional thin film transistor, and FIG. FIG. 3 is a diagram showing a comparison of characteristics before and after a reliability test of a conventional thin film transistor and a thin film transistor of the present invention. 10... Glass substrate, 20... Gate electrode, 30... Gate insulating film, 40...
・Amorphous semiconductor technology ID Figure 3 De θchii, Ne, La plane silicon part Figure 4 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上にゲート電極、ゲート絶縁膜、非晶質
シリコン膜、ソース及びドレイン電極の順に設けられた
逆スタガード構造の薄膜トランジスタにおいて、ソース
電極とドレイン電極間のチャネル背面部の半導体層の表
面上に300Å以下の絶縁膜を具備していることと、該
半導体層の表面に該絶縁膜と接して反対導電型層を具備
していることを特徴とする薄膜トランジスタ
(1) In a thin film transistor with an inverted staggered structure in which a gate electrode, a gate insulating film, an amorphous silicon film, a source electrode, and a drain electrode are provided in this order on an insulating substrate, the semiconductor layer on the back side of the channel between the source electrode and the drain electrode is A thin film transistor comprising an insulating film with a thickness of 300 Å or less on a surface thereof, and a layer of an opposite conductivity type on the surface of the semiconductor layer in contact with the insulating film.
(2)請求項(1)項に示した薄膜トランジスタにおい
て、前記半導体層は非晶質シリコンであり、この非晶質
シリコンの表面上に過酸化水素水溶液に浸すことにより
形成した300Å以下のシリコン酸化膜を具備している
ことを特徴とする薄膜トランジスタ
(2) In the thin film transistor according to claim (1), the semiconductor layer is amorphous silicon, and a silicon oxide layer of 300 Å or less is formed on the surface of the amorphous silicon by immersing it in an aqueous hydrogen peroxide solution. A thin film transistor characterized by comprising a film.
(3)請求項(1)項に示した薄膜トランジスタにおい
て、前記半導体層は非晶質シリコンであり、この非晶質
シリコンの表面上にプラズマCVD法により形成した3
00Å以下のアルミナ膜を具備していることを特徴とす
る薄膜トランジスタ
(3) In the thin film transistor according to claim (1), the semiconductor layer is amorphous silicon, and the semiconductor layer is formed by plasma CVD on the surface of the amorphous silicon.
A thin film transistor characterized by comprising an alumina film with a thickness of 00 Å or less
JP63317829A 1988-12-16 1988-12-16 Method of manufacturing thin film transistor Expired - Lifetime JPH07114285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317829A JPH07114285B2 (en) 1988-12-16 1988-12-16 Method of manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317829A JPH07114285B2 (en) 1988-12-16 1988-12-16 Method of manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH02163972A true JPH02163972A (en) 1990-06-25
JPH07114285B2 JPH07114285B2 (en) 1995-12-06

Family

ID=18092517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317829A Expired - Lifetime JPH07114285B2 (en) 1988-12-16 1988-12-16 Method of manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JPH07114285B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561074A (en) * 1994-04-22 1996-10-01 Nec Corporation Method for fabricating reverse-staggered thin-film transistor
US5739886A (en) * 1993-12-20 1998-04-14 Nec Corporation Liquid crystal display with reverse staggered thin film transistors and opposite electrode, and fabrication method thereof
US5962896A (en) * 1994-12-20 1999-10-05 Sharp Kabushiki Kaisha Thin film transistor including oxidized film by oxidation of the surface of a channel area semiconductor
US7320905B2 (en) 1998-08-21 2008-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device provided with semiconductor circuit made of semiconductor element and method of fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193568A (en) * 1987-02-05 1988-08-10 Mitsubishi Electric Corp Thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193568A (en) * 1987-02-05 1988-08-10 Mitsubishi Electric Corp Thin film transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739886A (en) * 1993-12-20 1998-04-14 Nec Corporation Liquid crystal display with reverse staggered thin film transistors and opposite electrode, and fabrication method thereof
US5561074A (en) * 1994-04-22 1996-10-01 Nec Corporation Method for fabricating reverse-staggered thin-film transistor
US5962896A (en) * 1994-12-20 1999-10-05 Sharp Kabushiki Kaisha Thin film transistor including oxidized film by oxidation of the surface of a channel area semiconductor
US7320905B2 (en) 1998-08-21 2008-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device provided with semiconductor circuit made of semiconductor element and method of fabricating the same

Also Published As

Publication number Publication date
JPH07114285B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JPS60113971A (en) Thin-film field-effect type semiconductor device and manufacture thereof
JP3440291B2 (en) Microcrystalline silicon thin film transistor
JPH02163972A (en) Thin-film transistor
JP3057770B2 (en) Method for manufacturing thin film transistor
JPS6159873A (en) Thin film field effect transistor and manufacture thereof
US4979006A (en) Reverse staggered type silicon thin film transistor
JPS6336574A (en) Thin film transistor
JPS60260155A (en) Thin film transistor
JP2925007B2 (en) Method for manufacturing thin film transistor
JPS59163871A (en) Double gate type thin-film transistor
JPH0432267A (en) Thin film transistor
JPS6292360A (en) Complementary type semiconductor device
JPH0656856B2 (en) Method for manufacturing semiconductor device
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH04328872A (en) Manufacture of polycrystalline thin film transistor and polycrystalline thin film transistor
JP2851741B2 (en) Semiconductor device
JPH04299571A (en) Thin film transistor
JPH06120505A (en) Thin film transistor
JPH04367276A (en) Thin film transistor and manufacture thereof
JP3016486B2 (en) Thin film transistor
RU1929U1 (en) STRUCTURE FOR PRODUCTION OF SEMICONDUCTOR DEVICES
JP2000091583A (en) Semiconductor device
JPH04240734A (en) Manufacture of thin film transistor
JPH03108319A (en) Manufacture of semiconductor device
JP2960742B2 (en) Thin film transistor element