JPH0216376B2 - - Google Patents

Info

Publication number
JPH0216376B2
JPH0216376B2 JP57175816A JP17581682A JPH0216376B2 JP H0216376 B2 JPH0216376 B2 JP H0216376B2 JP 57175816 A JP57175816 A JP 57175816A JP 17581682 A JP17581682 A JP 17581682A JP H0216376 B2 JPH0216376 B2 JP H0216376B2
Authority
JP
Japan
Prior art keywords
contact
transfer
contact material
less
relays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57175816A
Other languages
Japanese (ja)
Other versions
JPS5967338A (en
Inventor
Kenichiro Tani
Takeshi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP57175816A priority Critical patent/JPS5967338A/en
Publication of JPS5967338A publication Critical patent/JPS5967338A/en
Publication of JPH0216376B2 publication Critical patent/JPH0216376B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Ru系接点材料の改良に係る。 Ruはその優れた耐消耗性のために、リードリ
レーを始めとする各種の継電器の接点材料として
使用されている。 特に直流用の継電器においては、開閉回数に比
例し+極側の接点が−極側の接点へ、または−極
側の接点から+極側の接点に移転を生ずる。この
ときの移転方向は電圧、電流、負荷の種類により
異なる。その後、ロツキングが発生し、開離不能
となり継電器の使用が不可能となる。Ruは耐消
耗性がすぐれているため移転が発生しにくく、そ
のため直流用電気接点材料として多用されてい
る。しかるに、直流リレー、開閉器等の継電器は
機器の小型化、高性能化のすう勢にあり、これに
伴つて接点間隔が狭くなり、接点材料にかかる負
荷が増し、接点性能の向上が望まれている。すな
わち機器の小型化による接点寸法の小型化、間隔
の狭小化、大電流化の傾向にある。このため、耐
消耗性のすぐれたRu接点でも従来問題とならな
かつたRuの移転によりロツキングを生じ開離不
能となることがしばしばであつた。 本発明は、以上の点に鑑みてなされたものであ
り、実用性に優れる耐消耗性を具備し、かつ、よ
り移転の少ないRu系電気接点材料を提供するも
のである。 本発明は、RuにAg1〜20%未満含有すること
によりなる直流電気接点材料である。 Ruはアーク熱等で揮発生の酸化物をつくりや
すく、移転に対して有効であるが、接点間隔が狭
小になつた場合には必要以上にRuが酸化されロ
ツキング現象をおこすものである。AgとRuの合
金は、粉末冶金による焼結、Ag−Ru化合物の共
沈、湿式めつき層の相互熱拡散、AgとRuの蒸発
源から各々スパツタリング、イオンプレーテイン
グ等の乾式めつきにより各々析出させ相互熱拡散
するなどして混入させることができる。このよう
にしてRu中にAgが混入された材料は電気接点と
して使用した場合、移転量が著しく改善される。
これは、Ag固有の性質にもとずくものである。
すなわち接点は開閉時、アーク熱、ジユール熱な
どにより表面が溶融状態となるその際Agを添加
することにより酸素が銀に吸収されRuの酸化を
抑制しているためではないかと考えられる。 Ag1%未満では上記効果を発揮できず、また20
%以上ではかえつてRuの優れた揮発性酸化物の
生成を害するので好ましくない。最適には2〜10
%の範囲である。この範囲であれば、アルカリ土
類金属や鉄族元素などの他の卑金属元素が1%以
下入つても接点特性上何ら阻害しない。 また、Ag−Ru合金をめつきする場合には、バ
ネ板(台材)との溶接性を考えCu−NiやFe−Ni
などのCu合金やFe合金に行うのが良い。 以下、本発明の実施例、従来例および比較例を
示す。 実施例 1 Cu−Ni30の台材に接点材としてAg:Ru=
3:17のAg−Ru合金をほどこし上巾2.0mm、下巾
3.0mm総厚2.0mm、接点材の厚さ0.2mm台材の厚さ
1.8mmのクラツドテープを作成し、これを3mmの
長さに切断しりん青銅のバネ材に溶接し実施品と
した。なお接点材は10-2mmHgのアルゴンふん囲
気中にてマグネトロンスパツタリング法を使用し
製造した。 実施例 2 接点材の製造方法はAg粉とRu粉を不活性ふん
囲気で混合、プレス成型、焼結したものを使用
し、組成、寸法などは実施例1とまつたく同じも
のをつくり実施品とした。 従来例 接点材を粉末冶金法によるRuとした以外実施
例1と同様にして従来品とした。 比較例 接点材のAg−Ru合金の比率を1:1とした以
外実施例1と同じものをつくり比較品とした。 次に上記実施品と従来品、比較品を直流電圧
12V、電流5A、ランプ負荷、開閉頻度20回/分、
接触力30gのリレーに組込んで移転によるロツキ
ング発生まで試験を行つた結果を下記に示す。
The present invention relates to improvements in Ru-based contact materials. Due to its excellent wear resistance, Ru is used as a contact material for various types of relays, including reed relays. Particularly in direct current relays, the contact on the positive side shifts to the contact on the negative side, or from the contact on the negative side to the contact on the positive side, in proportion to the number of openings and closings. The direction of transfer at this time varies depending on the voltage, current, and type of load. After that, locking occurs and it becomes impossible to disconnect, making it impossible to use the relay. Ru has excellent wear resistance and is less prone to transfer, so it is often used as a DC electrical contact material. However, as relays such as DC relays and switches are becoming smaller and more sophisticated, the spacing between the contacts has become narrower and the load on the contact materials has increased, creating a need for improved contact performance. There is. In other words, due to the miniaturization of devices, there is a trend toward smaller contact dimensions, narrower spacing, and larger currents. For this reason, even Ru contacts with excellent wear resistance often lock due to the transfer of Ru, which has not been a problem in the past, and cannot be separated. The present invention has been made in view of the above points, and aims to provide a Ru-based electrical contact material that has excellent wear resistance and excellent practicality, and has less transfer. The present invention is a direct current electrical contact material made by containing Ru in an amount of 1 to less than 20% Ag. Ru easily forms volatilized oxides due to arc heat, etc., and is effective against transfer, but if the contact spacing becomes narrow, Ru will be oxidized more than necessary, causing a locking phenomenon. Alloys of Ag and Ru are produced by sintering by powder metallurgy, co-precipitation of Ag-Ru compounds, mutual thermal diffusion of wet plating layers, sputtering from evaporation sources of Ag and Ru, and dry plating such as ion plating. It can be mixed by precipitation and mutual thermal diffusion. When a material in which Ag is mixed into Ru in this way is used as an electrical contact, the amount of transfer is significantly improved.
This is based on the unique properties of Ag.
In other words, it is thought that this is because when the contact opens and closes, the surface becomes molten due to arc heat, joule heat, etc. By adding Ag, oxygen is absorbed by the silver and oxidation of Ru is suppressed. If Ag is less than 1%, the above effects cannot be achieved, and 20
% or more, this is not preferable because it actually impairs the formation of the excellent volatile oxide of Ru. Optimally 2-10
% range. Within this range, even if 1% or less of other base metal elements such as alkaline earth metals and iron group elements are contained, the contact properties will not be affected in any way. In addition, when plating Ag-Ru alloy, consider weldability with the spring plate (base material) and use Cu-Ni or Fe-Ni.
It is best to apply this method to Cu alloys and Fe alloys such as. Examples of the present invention, conventional examples, and comparative examples will be shown below. Example 1 Ag:Ru= as contact material on Cu-Ni30 base material
3:17 Ag-Ru alloy upper width 2.0mm, lower width
3.0mm total thickness 2.0mm, contact material thickness 0.2mm base material thickness
A 1.8mm clad tape was made, cut into 3mm lengths, and welded to a phosphor bronze spring material. The contact material was manufactured using the magnetron sputtering method in an argon atmosphere of 10 -2 mmHg. Example 2 The contact material was manufactured by mixing Ag powder and Ru powder in an inert atmosphere, press molding, and sintering, and the composition and dimensions were exactly the same as in Example 1. And so. Conventional Example A conventional product was prepared in the same manner as in Example 1 except that the contact material was made of Ru made by powder metallurgy. Comparative Example A comparative product was prepared using the same method as in Example 1 except that the ratio of the Ag-Ru alloy of the contact material was 1:1. Next, compare the above implemented product, conventional product, and comparative product with DC voltage.
12V, current 5A, lamp load, switching frequency 20 times/min,
The following shows the results of tests conducted on a relay with a contact force of 30 g until locking occurred due to transfer.

【表】 この表より、実施品は移転量が従来品、比較品
よりも優れているためロツキングの発生も少ない
ことがわかる。 以上詳述したように本発明によれば、Agの添
加によりRuの揮発生を抑制したことにより移転
量を著しく減少でき、その結果長寿命高信頼性を
有する電気接点をえることができる。
[Table] From this table, it can be seen that the implemented product has a better transfer amount than the conventional and comparative products, and therefore less locking occurs. As detailed above, according to the present invention, the amount of transfer can be significantly reduced by suppressing the volatilization of Ru by adding Ag, and as a result, an electrical contact having a long life and high reliability can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 RuにAg1〜20%未満含有することによりな
る直流電気接点材料。
1 DC electrical contact material containing 1 to less than 20% Ag in Ru.
JP57175816A 1982-10-06 1982-10-06 Electrical contact material for direct current Granted JPS5967338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175816A JPS5967338A (en) 1982-10-06 1982-10-06 Electrical contact material for direct current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175816A JPS5967338A (en) 1982-10-06 1982-10-06 Electrical contact material for direct current

Publications (2)

Publication Number Publication Date
JPS5967338A JPS5967338A (en) 1984-04-17
JPH0216376B2 true JPH0216376B2 (en) 1990-04-17

Family

ID=16002726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175816A Granted JPS5967338A (en) 1982-10-06 1982-10-06 Electrical contact material for direct current

Country Status (1)

Country Link
JP (1) JPS5967338A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731720B2 (en) * 2001-05-17 2011-07-27 株式会社アドバンテスト Contact life diagnosis method
JP4918867B2 (en) * 2007-01-31 2012-04-18 トヨタ紡織株式会社 Vehicle seat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130445A (en) * 1980-03-19 1981-10-13 Nec Corp Electrical contact
JPS57140841A (en) * 1981-02-26 1982-08-31 Nec Corp Contact material and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130445A (en) * 1980-03-19 1981-10-13 Nec Corp Electrical contact
JPS57140841A (en) * 1981-02-26 1982-08-31 Nec Corp Contact material and its manufacture

Also Published As

Publication number Publication date
JPS5967338A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US4162160A (en) Electrical contact material and method for making the same
JP2680038B2 (en) Silver-iron material for electrical contacts
US4161403A (en) Composite electrical contact material of Ag-alloy matrix and internally oxidized dispersed phase
EP0031159B1 (en) Electrical contact
US2730594A (en) Electric contact
Stevens Powder-metallurgy solutions to electrical-contact problems
JPH0216376B2 (en)
US4424429A (en) Contactor for vacuum type circuit interrupter
JPH0151530B2 (en)
JPS6157377B2 (en)
US6791045B1 (en) Shielded-type automotive relay controlling a magnet clutch load of a vehicle air-conditioner
US2221286A (en) Electric contact
US4249944A (en) Method of making electrical contact material
JP3751327B2 (en) Silver-oxide based electrical contact element
JPS6348028Y2 (en)
EP0440340A2 (en) Electrical contact materials and method of manufacturing the same
JPS6031891B2 (en) conductive material
JPS6317898B2 (en)
JPS5991617A (en) Contact for vacuum breaker
JPS6229500B2 (en)
JPS6056321A (en) Method of producing contact for vacuum breaker
JPS5956548A (en) Electrical contact material for direct current
JPH0118975B2 (en)
JPH0313691B2 (en)
JPH05140675A (en) Silver-manganese oxide electric contact material