JPH02162663A - Zinc-bromine battery separator - Google Patents

Zinc-bromine battery separator

Info

Publication number
JPH02162663A
JPH02162663A JP63317154A JP31715488A JPH02162663A JP H02162663 A JPH02162663 A JP H02162663A JP 63317154 A JP63317154 A JP 63317154A JP 31715488 A JP31715488 A JP 31715488A JP H02162663 A JPH02162663 A JP H02162663A
Authority
JP
Japan
Prior art keywords
bromine
polyolefin
separator
zinc
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63317154A
Other languages
Japanese (ja)
Inventor
Kazuo Kawahara
河原 和生
Toru Saeki
徹 佐伯
Katsuji Abe
阿部 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63317154A priority Critical patent/JPH02162663A/en
Publication of JPH02162663A publication Critical patent/JPH02162663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce bromine permeability without increasing electric resistance by using a polyolefin series fine porous film, consisting of polyolefin and silica, as a separator of a zinc-bromine battery and hydrophilically treating the polyolefin part. CONSTITUTION:A zinc-bromine battery body 3 is partitioned by a separator 30 into a positive electrode chamber 31 and a negative electrode chamber 32, and each electrode chamber 31, 32 is connected to a positive electrode solution storage cell 11 and a negative electrode solution storage cell 21 via pipelines 15, 23 respectively to form respective electrolytic circulating paths. Each electrolyte is sent to each electrode chamber 31, 32, and a bromine complex compound cell 12 is formed in the storage cell 11 to store bromine comples compound 300 formed in the positive electrode chamber 31, and part thereof is supplied to the pipeline 15 via a valve 13. A polyolefin series fine porous film, consisting of polyolefin and silica, is used as a separator, and by hydrophilically treating the polyolefin part, Coulomb effect during changing and discharging can be improved without increasing electric resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、充放電時のクーロン効率を改善した亜鉛−臭
素電池セパレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zinc-bromine battery separator with improved coulombic efficiency during charging and discharging.

〔従来技術〕[Prior art]

亜鉛−臭素電池は、電解液循環型の金属−ハロゲン電池
の一種として、電解液に臭化亜鉛水溶液を用いたもので
、電気自動車の駆動源等の動力用二次電池の有力な候補
電池である。
A zinc-bromine battery is a type of metal-halogen battery with a circulating electrolyte that uses a zinc bromide aqueous solution as the electrolyte, and is a promising candidate battery for secondary batteries for power such as electric vehicle drive sources. be.

このような亜鉛−臭素電池は9反応物質及び構成材料が
安価のため、低コストが期待され、しかも発電電圧が高
く、電極反応の可逆性も良いため。
Such a zinc-bromine battery is expected to be low cost because the reactants and constituent materials are inexpensive, and the generated voltage is high and the reversibility of the electrode reaction is also good.

電気自動車のみでなく、他の各種分野においても広範囲
に実用化されようとしている。
It is expected to be put into widespread practical use not only in electric vehicles but also in various other fields.

第1図は、前記亜鉛−臭素電池の原理図を示すもので、
電池本体3はセパレータ30によって正極室31と負極
室32に仕切られている。
FIG. 1 shows the principle diagram of the zinc-bromine battery,
The battery body 3 is partitioned into a positive electrode chamber 31 and a negative electrode chamber 32 by a separator 30.

そして、前記各電極室31.32はそれぞれ配管15.
23によって正極液貯蔵槽11及び負極液貯蔵槽21に
接続され、各々の電解液循環経路を形成している。各電
解液はポンプ14.22により各々の電極室31.32
に送られる。また。
Each of the electrode chambers 31 and 32 is connected to a pipe 15.
It is connected to the positive electrode liquid storage tank 11 and the negative electrode liquid storage tank 21 by 23 to form respective electrolyte circulation paths. Each electrolyte is pumped into each electrode chamber 31.32 by a pump 14.22.
sent to. Also.

前記正極液貯蔵槽11内には臭素錯化合物貯蔵槽12が
形成されており、正極室31で生成する臭素錯化合物3
00を貯蔵し、その一部をバルブ13を介して配管15
内に供給する。
A bromine complex compound storage tank 12 is formed in the positive electrode liquid storage tank 11 and stores the bromine complex compound 3 generated in the positive electrode chamber 31.
00 is stored and a part of it is passed through the valve 13 to the pipe 15.
supply within.

これら従来の亜鉛−臭素電池としては、特開昭52−1
22835.特開昭58−199167゜米国特許4,
105,829等に示されている。
These conventional zinc-bromine batteries include JP-A-52-1
22835. JP 58-199167゜U.S. Patent 4,
105,829 etc.

この種の亜鉛−臭素電池に用いられる電解液としては、
活物質である臭化亜鉛の他に臭素と反応して電解液に不
溶で電解液より比重の大きな錯化合物を形成する錯化剤
を加えた水溶液が使用されている。そして、更に、必要
に応じて電解液の導電率を向上させるためKCIやNH
,CI等の支持電解質を加えた電解液も使用される。特
開昭52−122836及び特開昭52−124134
には、錯化剤の例として、メチル・エチルピロジニウム
ブロマイド、メチル・エチルピロジニウムブロマイド等
が示されている。
The electrolyte used in this type of zinc-bromine battery is
In addition to the active material zinc bromide, an aqueous solution containing a complexing agent that reacts with bromine to form a complex compound that is insoluble in the electrolyte and has a higher specific gravity than the electrolyte is used. Furthermore, KCI and NH are added to improve the conductivity of the electrolyte as necessary.
, CI, and other supporting electrolytes are also used. JP-A-52-122836 and JP-A-52-124134
shows methyl-ethylpyrodinium bromide, methyl-ethylpyrodinium bromide, etc. as examples of complexing agents.

第1図において、電池の充電時には正極で臭素イオンの
酸化が、負極で亜鉛イオンの還元が起こるため、正極で
は臭素の生成が、負極では亜鉛の電着が起こる。なお、
正極で生成した臭素は電解液中の錯化剤と反応してオイ
ル状の錯化合物300を形成し、前記臭素錯体化合物貯
蔵槽12に分離貯蔵される。
In FIG. 1, when a battery is charged, bromine ions are oxidized at the positive electrode and zinc ions are reduced at the negative electrode, so that bromine is produced at the positive electrode and zinc is electrodeposited at the negative electrode. In addition,
Bromine generated at the positive electrode reacts with the complexing agent in the electrolyte to form an oil-like complex compound 300, which is separated and stored in the bromine complex compound storage tank 12.

〔解決しようとする課題〕[Problem to be solved]

しかしながら、このような亜鉛−臭素電池において充電
時正極で生成した臭素はそのすべてがオイル状の臭素錯
体化合物とはならず、解離平衡によって9通常50〜2
00.遊離の臭素として正極液中に溶解している。
However, in such a zinc-bromine battery, not all of the bromine generated at the positive electrode during charging becomes an oil-like bromine complex compound, and due to dissociation equilibrium, 9
00. Dissolved in the catholyte as free bromine.

しかして、この遊離の臭素がセパレータ30を通って負
極液側へ拡散し、負極活物質である亜鉛と直接反応する
。この直接反応量は、自己放電量となるわけで、この分
、充電に要した電気量が失われることになる。したがっ
て、セパレータを通る臭素量が多いほど充電電気量に対
する放電電気量の割合、つまり充放電のクーロン効率は
小さくなる。
This free bromine then diffuses to the negative electrode liquid side through the separator 30 and reacts directly with zinc, which is the negative electrode active material. This amount of direct reaction becomes the amount of self-discharge, and the amount of electricity required for charging is lost accordingly. Therefore, the larger the amount of bromine passing through the separator, the smaller the ratio of the amount of discharged electricity to the amount of charged electricity, that is, the coulombic efficiency of charging and discharging.

このように、セパレータ30による臭素透過性が電池の
クーロン効率に太き(影響を及ぼし、セパレータ30の
臭素透過性が小さいほど電池クーロン効率は向上するこ
とが知られている。
In this way, it is known that the bromine permeability of the separator 30 greatly affects the coulombic efficiency of the battery, and that the smaller the bromine permeability of the separator 30, the better the battery coulombic efficiency.

また、前記セパレータには通常、シリカを含むポリオレ
フィン系の微細多孔膜が用いられているが、その臭素透
過性はあまり小さくなく、十分なり−ロン効率を得るこ
とができなかった。従来においても、特開昭58−20
6045で示されるごとく、@細条孔膜の孔径或いは多
孔度を改良してエネルギー効率を改善しようとする提案
もなされている。
Further, although a polyolefin microporous membrane containing silica is usually used as the separator, its permeability to bromine is not so low that it has not been possible to obtain a sufficient bromine efficiency. In the past, Japanese Patent Application Laid-open No. 58-20
As shown in No. 6045, proposals have also been made to improve energy efficiency by improving the pore size or porosity of @striped membranes.

しかし、臭素透過性を小さくするために細孔径を小さく
すると電荷担体であるイオンの透過も抑えられるのでセ
パレータの電気抵抗が上昇してしまい、充分な特性を得
ることができなかった。
However, when the pore diameter is made smaller in order to reduce bromine permeability, the permeation of ions, which are charge carriers, is also suppressed, resulting in an increase in the electrical resistance of the separator, making it impossible to obtain sufficient properties.

本発明は、かかる従来の問題点に鑑み、電気抵抗を増大
させることなく、充放電時のクーロン効率を向上させ、
優れた電池性能を発揮することができる亜鉛−臭素電池
を提供しようとするものである。
In view of such conventional problems, the present invention improves coulombic efficiency during charging and discharging without increasing electrical resistance.
The present invention aims to provide a zinc-bromine battery that can exhibit excellent battery performance.

〔課題の解決手段〕[Means for solving problems]

本発明は、亜鉛−臭素電池のセパレータとして用いる。 The present invention is used as a separator for zinc-bromine batteries.

ポリオレフィンとシリカとよりなるポリオレフィン系微
細多孔膜において、ポリオレフィン部分を親水化処理し
てなることを特徴とする亜鉛−臭素電池セパレータにあ
る。
A zinc-bromine battery separator characterized in that the polyolefin portion of a microporous polyolefin membrane made of polyolefin and silica is treated to make it hydrophilic.

しかして9本発明は、下記の知見に基づいてなされたも
のである。
The present invention has been made based on the following findings.

即ち、ポリオレフィン系微細多孔膜の多孔構造はポリオ
レフィンで形成されるが、ポリオレフィンは疎水性であ
るため、それだけでは水を弾いてしまい水溶液系の電池
ではセパレータには用いることができない。そこで、水
溶液系の電池に用いるセパレータにはシリカを添加して
親水性を付与したポリオレフィン乎微細多孔膜が用いら
れている。そのため、ポリオレフィン系微細多孔膜では
シリカが露出している近傍では親水性となり水に良く濡
れる。しかし、ポリオレフィンが露出している部分では
疎水性となり、水に濡れない部分が膜中に生成する。
That is, the porous structure of the polyolefin-based microporous membrane is formed of polyolefin, but since polyolefin is hydrophobic, it alone repels water and cannot be used as a separator in an aqueous battery. Therefore, microporous polyolefin membranes to which silica is added to impart hydrophilic properties are used as separators for use in aqueous batteries. Therefore, in the polyolefin-based microporous membrane, the vicinity of exposed silica becomes hydrophilic and wets well with water. However, the exposed portions of the polyolefin become hydrophobic, creating areas in the membrane that do not get wet with water.

一方1本発明者らはポリオレフィン系多孔膜を臭素が透
過する機構として5主にイオン(Br。
On the other hand, the present inventors mainly used ions (Br) as the mechanism by which bromine permeates through a polyolefin porous membrane.

、Br5−等)の形で水中を移動して透過する機構と気
体状の臭素(Br2)が膜中の水に濡れない部分を拡散
していく機構の2通りがあることを見出した。
It was discovered that there are two mechanisms: one is that bromine (Br2) moves through water in the form of bromine (Br5-, etc.) and permeates through the water, and the other is that gaseous bromine (Br2) diffuses through parts of the membrane that are not wetted by water.

第1表はシリカ−ポリエチレン系微細多孔膜のシリカを
フッ酸で溶出し完全に疎水性にしたちのと、未処理のも
のの臭素透過性を比較したものである。完全に疎水処理
したものは処理をしないものに較べ約10倍も臭素透過
性が増大している。
Table 1 compares the bromine permeability of a silica-polyethylene microporous membrane made completely hydrophobic by eluting the silica with hydrofluoric acid and that of an untreated membrane. The completely hydrophobically treated material has approximately 10 times more bromine permeability than the untreated material.

未処理品は、上記臭素透過機構の両者が起こっていると
考えられるが、疎水処理品では臭素透過は気体状の臭素
透過だけであることから、気体状の臭素透過はイオンの
形での臭素透過に較べ著しく速いと言える。
It is thought that both of the above-mentioned bromine permeation mechanisms occur in the untreated product, but in the hydrophobically treated product, bromine permeation is only in gaseous form. It can be said that it is significantly faster than transmission.

そこで、ポリオレフィン系微細多孔膜中の疎水部分、即
ちポリオレフィン表面を親水化すれば気体状の臭素透過
は抑えられるため、全体として臭素透過性は減少すると
考えられた。
Therefore, it was thought that if the hydrophobic portion of the polyolefin microporous membrane, that is, the surface of the polyolefin, was made hydrophilic, gaseous bromine permeation could be suppressed, resulting in a decrease in bromine permeability as a whole.

*2mol/l ZnBrz水溶液で測定また。電気抵
抗は電荷担体であるイオンがどれくらい通り易いかで支
配されるので、疎水性にすれば水に濡れ難くなるため、
第1表に示すシリカ溶出膜のように増大する。しかし、
親水化すれば水に良(濡れるようになるため、電気抵抗
の減少になりこそすれ、増大にはつながらない。
*Measured using 2 mol/l ZnBrz aqueous solution. Electrical resistance is determined by how easily ions, which are charge carriers, can pass through, so making it hydrophobic makes it difficult to get wet with water.
The silica elution film increases as shown in Table 1. but,
If it becomes hydrophilic, it will become wettable with water, which will only lead to a decrease in electrical resistance, not an increase in it.

以上詳述したごとく、ポリオレフィン系微細多孔膜を亜
鉛−臭素電池セパレータに用いる場合には親水化するこ
とが重要である。なお、親水性を向上させるためには特
開昭62−313292のごとく表面に露出するシリカ
を多くすることも有効であるが、露出面金てをシリカで
覆うことは不可能である。
As detailed above, when using a polyolefin microporous membrane for a zinc-bromine battery separator, it is important to make it hydrophilic. In order to improve the hydrophilicity, it is effective to increase the amount of silica exposed on the surface as disclosed in JP-A-62-313292, but it is impossible to cover the exposed metal surface with silica.

本発明において注目すべきことは、上記のごとく、微細
多孔膜中のポリオレフィンが親水化処理しであることで
ある。かかる親水化処理手段としては1例えば上記微細
多孔膜をクロロスルフォン酸、硫酸5発煙硫酸重クロム
酸と硫酸の混合液など、ポリオレフィンを酸化する力の
ある液体により処理する。即ち、上記微細多孔膜を該液
体中に浸漬することなどにより処理する。これにより2
微細多孔膜内の細孔表面のポリオレフィンまで。
What should be noted in the present invention is that, as mentioned above, the polyolefin in the microporous membrane has been subjected to hydrophilic treatment. Such hydrophilic treatment means include, for example, treating the microporous membrane with a liquid capable of oxidizing polyolefins, such as chlorosulfonic acid, sulfuric acid, fuming sulfuric acid, a mixture of dichromic acid and sulfuric acid. That is, the microporous membrane is treated by immersing it in the liquid. This results in 2
down to the polyolefin on the surface of the pores within the microporous membrane.

親水化することができる。Can be made hydrophilic.

この点について、詳述すれば次のようである。This point will be explained in detail as follows.

即ち、微細多孔膜の内部の細孔表面まで親水化処理する
ためには、酸化力のある液体に微細多孔膜を浸漬するこ
とが有効である。浸漬する液としては、具体的には、ク
ロロスルフォン酸液3種々のクロム酸混液〔例えば(a
)重クロム酸カリ30g/ 100 m l水+濃硫酸
200mL(b)無水クロム酸75g+硫酸250mI
V、に水に加え11にする。(C)重クロム酸カリウム
25g+硫酸500mA+リン酸150mff1+水3
50mf!など〕、濃硫酸または5〜25%の発煙硫酸
液などが挙げられる。
That is, in order to hydrophilize the surface of the pores inside the microporous membrane, it is effective to immerse the microporous membrane in an oxidizing liquid. Specifically, the liquid to be immersed in is a mixture of three chlorosulfonic acid solutions and various chromic acids [for example, (a
) Potassium dichromate 30g/100ml water + concentrated sulfuric acid 200ml (b) Chromic anhydride 75g + sulfuric acid 250ml
V, add water to 11. (C) Potassium dichromate 25g + sulfuric acid 500mA + phosphoric acid 150mff1 + water 3
50mf! etc.], concentrated sulfuric acid, or a 5-25% oleum solution.

ポリオレフィンには2通常、親水性の官能基がついてお
らず疎水性のアルキル基が直接露出しているため水に濡
れにくい、上記液体にポリオレフィンを浸漬した場合に
は、上記液体の酸化力のためにポリオレフィン鎖に酸素
が付加し、ケトン基(−CO)、カルボキシル基(−C
OOH)、水酸基(−OH)などの親水性の官能基が導
入される。このためこれらの液に浸漬した場合、ポリオ
レフィンに親水性が付加されることになり、水に濡れ易
くなる。
Polyolefins usually do not have hydrophilic functional groups and hydrophobic alkyl groups are directly exposed, making them difficult to wet with water. Oxygen is added to the polyolefin chain to form a ketone group (-CO), a carboxyl group (-C
Hydrophilic functional groups such as OOH) and hydroxyl groups (-OH) are introduced. Therefore, when immersed in these liquids, polyolefin becomes hydrophilic and becomes easily wetted by water.

この様な浸漬による酸化処理では、いずれの液でも浸漬
時間が長いほどポリオレフィンの親水性向上の効果は大
きくなるが、浸漬時間をある程度以上長くすれば、それ
以上効果は大きくならない。
In such oxidation treatment by immersion, the effect of improving the hydrophilicity of polyolefin increases as the immersion time increases in any liquid, but if the immersion time is increased beyond a certain point, the effect does not become any greater.

クロロスルフォン酸の場合には8時間程度、クロム酸混
液では1時間程度1発煙硫酸では1時間程度で親水性向
上の効果はほぼ飽和する。なお2発煙硫酸の場合1発煙
硫酸濃度を高くすると酸化効果が向上するが、あまり濃
くし過ぎると内部まで処理が進行しないうちに1表面が
極端に酸化され脱落を起こす、そのため5発煙硫酸濃度
は上記5〜25%の範囲にとどめるのが望ましい。
The effect of improving hydrophilicity is almost saturated in about 8 hours in the case of chlorosulfonic acid, about 1 hour in the case of a chromic acid mixture, and about 1 hour in the case of fuming sulfuric acid. In the case of 2-fuming sulfuric acid, increasing the concentration of 1-fuming sulfuric acid will improve the oxidation effect, but if the concentration is too high, the surface of 1-1 will be extremely oxidized and fall off before the treatment progresses to the inside, so the concentration of 5-fuming sulfuric acid will be It is desirable to keep it within the above range of 5 to 25%.

なお、セパレータ中のポリオレフィンを酸化し親水性を
付与するためには、上記の薬品以外で行っても良く9本
発明はポリオレフィン親水性付与の手段として上記薬品
による処理に限定するものではない、また、上記薬品処
理とは異なり、親水化処理手段としては、微細多孔膜を
火災で焼くとか、プラズマ照射を行なうとかの方法もあ
る。しかし、この方法は微細多孔膜の内部まで充分に親
水化を行なうことができず、効果は少ない。
Note that in order to oxidize the polyolefin in the separator and impart hydrophilicity to it, chemicals other than those mentioned above may be used.9 The present invention is not limited to treatment with the above-mentioned chemicals as a means of imparting hydrophilicity to polyolefin. Unlike the above-mentioned chemical treatment, other hydrophilic treatment methods include burning the microporous membrane with fire or plasma irradiation. However, this method cannot sufficiently make the inside of the microporous membrane hydrophilic and has little effect.

(作用及び効果) ポリオレフィン系微細多孔膜には、前記親水性を付与す
るためにシリカが添加されている。しかし、セパレータ
内の細孔表面全てをシリカが覆うように分散されること
は困難で、ポリオレフィンが露出する部分が生じてしま
う。
(Functions and Effects) Silica is added to the polyolefin microporous membrane in order to impart the above-mentioned hydrophilicity. However, it is difficult for the silica to be dispersed so as to cover all the pore surfaces within the separator, resulting in areas where the polyolefin is exposed.

そして、このポリオレフィンが露出している部分は、ポ
リオレフィンが疎水性のため水とのgI染みが悪く、1
i解液に濡れない気孔が生じてしまう。
Since polyolefin is hydrophobic, the area where this polyolefin is exposed has poor gI staining with water.
i Pores are created that cannot be wetted by the solution.

一方、電解液中の臭素がセパレータを透過する機構には
、前記のごとく、イオンとして電解液中を泳動して透過
する場合と、気体状の臭素としてセパレータ中の気孔を
拡散するものの2通りがあり、後者は前者に較べ移動速
度が遥かに速い。そのため、セパレータ中の気孔を減少
させてやれば臭素透過速度を抑制することができる。ま
た、電気抵抗には電荷担体であるイオンの移動しやすさ
が関係するので、セパレータを親水化し気孔を減少させ
ることで電気抵抗が増大することはなくむしろ減少の方
向に作用する。
On the other hand, as mentioned above, there are two mechanisms by which bromine in the electrolyte permeates through the separator: bromine migrates through the electrolyte as ions and diffuses through the pores in the separator. Yes, the latter moves much faster than the former. Therefore, by reducing the pores in the separator, the bromine permeation rate can be suppressed. Further, since electrical resistance is related to the ease of movement of ions, which are charge carriers, by making the separator hydrophilic and reducing pores, the electrical resistance does not increase, but rather decreases.

本発明では、微細多孔膜の細孔内に露出しているポリオ
レフィンを酸化処理して、水との馴染みを改善しく親水
性付与)セパレータ内に気孔を生じ難くしたため、気体
状の臭素透過が大幅に減少し、全体として臭素透過の低
下が図れた。
In the present invention, the polyolefin exposed in the pores of the microporous membrane is oxidized to improve its compatibility with water and make it hydrophilic.This makes it difficult to form pores in the separator, which significantly reduces the permeation of gaseous bromine. This resulted in an overall reduction in bromine permeation.

また、臭素透過の少ないセパレータを用いれば正極から
負極に拡散する臭素量が減少するため負極に電析した亜
鉛と臭素の直接反応による自己放電も低下し、電池のク
ーロン効率の向上が図られる。
Furthermore, if a separator with low bromine permeation is used, the amount of bromine that diffuses from the positive electrode to the negative electrode will be reduced, thereby reducing self-discharge due to the direct reaction between zinc and bromine deposited on the negative electrode, thereby improving the Coulombic efficiency of the battery.

したがって2本発明によれば、電気抵抗を増大させるこ
とな(臭素透過性を低下させ、クーロン効率の向上を図
ることができる。電池性能に優れた亜鉛−臭素電池を提
供することができる。
Therefore, according to the present invention, it is possible to improve the coulombic efficiency without increasing the electrical resistance (lowering the bromine permeability), and to provide a zinc-bromine battery with excellent battery performance.

また9本発明によれば5通常のポリオレフィン系微細多
孔膜を単に処理液に浸漬するだけであるため、極めて簡
単に廉価に性能改善が達成される。
Further, according to the present invention, since a conventional polyolefin microporous membrane is simply immersed in a treatment liquid, performance improvement can be achieved extremely easily and at low cost.

〔実施例〕〔Example〕

第1実施例 ポリオレフィン系微細多孔膜中のポリオレフィンを親水
化するため、100%クロロスルフォン酸を使用し、浸
漬時間を変えてその効果を検討した。
First Example In order to make the polyolefin in a microporous polyolefin membrane hydrophilic, 100% chlorosulfonic acid was used and the effect was examined by changing the immersion time.

まず、親水化処理手順は次の通りである。予め十分水洗
いしたポリオレフィン系微細多孔膜を100%クロロス
ルフォン酸液中に所定時間浸漬し。
First, the hydrophilic treatment procedure is as follows. A polyolefin microporous membrane that had been thoroughly washed with water in advance was immersed in a 100% chlorosulfonic acid solution for a predetermined period of time.

その後これを98%濃硫酸、50%濃硫酸、25%濃硫
酸の順に、徐々に硫酸濃度の薄い水溶液で洗浄し、最後
に良く水洗を行った。
Thereafter, this was washed with an aqueous solution of gradually dilute sulfuric acid concentration in the order of 98% concentrated sulfuric acid, 50% concentrated sulfuric acid, and 25% concentrated sulfuric acid, and finally thoroughly washed with water.

次に、上記のごとくして得た。親水化した微細多孔膜を
前記セパレータとして用い、@気抵抗を測定した。
It was then obtained as described above. The hydrophilic microporous membrane was used as the separator, and the air resistance was measured.

第2図に、セパレータの電気抵抗測定に用いた測定セル
を示す、該測定セルは、セパレータ40を内板43.4
4で挟み、該内板43.44と外板45.46との間に
はカーボン電極51.52を設けたものである。そして
、セパレータ40の両側にカーボン電極51.52との
間に電解液室41.42を設ける。なお、符号50は測
定メータ(LCRメータ)である。
FIG. 2 shows a measurement cell used to measure the electrical resistance of the separator.
4, and a carbon electrode 51.52 is provided between the inner plate 43.44 and the outer plate 45.46. Further, electrolyte chambers 41.42 are provided on both sides of the separator 40 between the carbon electrodes 51.52. In addition, the code|symbol 50 is a measurement meter (LCR meter).

しかして、上記のごとく9測定セル中央部にセパレータ
を挟んだ場合と挟まない場合で、カーボン電極間の抵抗
を交流で測定し、その差からセパレータの抵抗を計算す
る。なお、測定電解液には2 m o l / 1の臭
素亜鉛水溶液を用いた。
As described above, the resistance between the carbon electrodes is measured using alternating current, with and without a separator sandwiched in the center of the 9 measurement cells, and the resistance of the separator is calculated from the difference. Note that a 2 mol/1 zinc bromine aqueous solution was used as the electrolytic solution for measurement.

次に、上記親水化した微細多孔膜について、臭素透過係
数を測定した。第3図に、臭素透過係数測定セル6を示
す。本セル6は、中央のセパレータ40により二つの室
に仕切られている。なお。
Next, the bromine permeability coefficient of the hydrophilized microporous membrane was measured. FIG. 3 shows the bromine permeability coefficient measuring cell 6. This cell 6 is partitioned into two chambers by a separator 40 in the center. In addition.

符号63はスターシーである。一方の濃厚室61には2
mol/j!ZnBrz 、0.2moffi//!B
r、の臭素濃度濃厚液を、他方の希薄室62には2mo
l/1ZnBrz、0.02moj2/j!Br、をそ
れぞれ同量入れ1画室の臭素(Br。
Reference numeral 63 is Starcy. In one concentration room 61, there are 2
mol/j! ZnBrz, 0.2moffi//! B
bromine concentration concentrated liquid of 2 mo in the other dilution chamber 62.
l/1ZnBrz, 0.02moj2/j! Add the same amount of each bromine (Br) to one chamber.

)濃度を経時的に測定する。臭素は濃い方の濃厚室61
から薄い方の希薄室62に拡散するため。
) Measure the concentration over time. Bromine is concentrated in the concentrated chamber 61
in order to diffuse into the thinner dilution chamber 62.

fAw−室61の臭素濃度は経時的に低下し、希薄室 
  理によっても電気抵抗は変化せず、低いまま維持6
2の臭素濃度は経時的に増加する。この時の変   で
きることが分る。
The bromine concentration in fAw-chamber 61 decreases over time, and the bromine concentration in the dilute chamber
Electrical resistance does not change and remains low even if
The bromine concentration of 2 increases over time. At this time, I know that I can change things.

化は、Fickの第1法則から次式で表せられる。  
第2表 (クロロスルフォン酸処理)P : 透過係数
(cts/ s e c )A : セパレータ面積(
cJ) V : 電解液量(cd) C: 時刻りでの臭素濃度(mol/#)C6: 初期
臭素濃度(mol/j2)t : 時間(sec) 上記の画室それぞれについて、上記(1)式の左辺を時
間に対してプロットすると直線が得られ。
can be expressed by the following equation from Fick's first law.
Table 2 (Chlorosulfonic acid treatment) P: Permeability coefficient (cts/sec) A: Separator area (
cJ) V: Electrolyte volume (cd) C: Bromine concentration at time (mol/#) C6: Initial bromine concentration (mol/j2) t: Time (sec) For each of the above compartments, the above formula (1) Plotting the left-hand side of against time yields a straight line.

その傾きから臭素透過係数が計算される。The bromine permeability coefficient is calculated from the slope.

第2表は、処理時間を変えたときの臭素透過係数の測定
結果を、まとめたものである。
Table 2 summarizes the measurement results of the bromine permeability coefficient when the treatment time was changed.

同表より知られるごとく、短時間の処理では効果はない
が、4時間以上処理したものでは、未処理に比べ、臭素
透過係数が低下しており、臭素透過性の抑制改善効果が
認められた。また、上記処* 2 m o l / l
 Z n B r 2水溶液で測定第2実施例 ポリオレフィン系微細多孔膜中のポリオレフィンを親水
化するために、クロム酸混液を使用し。
As can be seen from the table, short-term treatment has no effect, but when treated for 4 hours or more, the bromine permeability coefficient was lower than that without treatment, indicating an improvement effect in suppressing bromine permeability. . In addition, the above * 2 m o l / l
Measurement using Z n B r 2 aqueous solution Second Example A chromic acid mixture was used to make the polyolefin in the microporous polyolefin membrane hydrophilic.

処理温度、処理時間を変えたときの処理効果を検討した
We investigated the treatment effects when changing the treatment temperature and treatment time.

クロム酸混液としては1重クロム酸カリ (K。As a chromic acid mixture, potassium monochromate (K.

Crz Oq )30gを水100mff1に溶解した
ものに、濃硫酸200mff1を加え十分撹拌後、n置
して、その上澄み液を用いた。処理温度は室温と80°
Cの二通りとし、80″Cの処理の時には処理液を80
°Cの恒温槽に浸漬して処理を行った。
200 mff1 of concentrated sulfuric acid was added to a solution of 30 g of CrzOq) dissolved in 100 mff1 of water, and after thorough stirring, the mixture was left to stand, and the supernatant liquid was used. Processing temperature is room temperature and 80°
There are two types of C, and when processing at 80"C, the processing solution is 80"C.
The treatment was performed by immersing it in a constant temperature bath at °C.

処理手順は次の通りである。予め十分水洗したポリオレ
フィン系微細多孔膜を上記クロム酸混液中に所定時間浸
漬後、処理した膜を水で十分洗浄した。そして、第1実
施例と同様の測定を行った。
The processing procedure is as follows. The polyolefin microporous membrane, which had been thoroughly washed in advance with water, was immersed in the chromic acid mixture for a predetermined time, and then the treated membrane was thoroughly washed with water. Then, the same measurements as in the first example were performed.

第3表は各々の温度で処理したときの、処理時間と臭素
透過係数の関係を測定した結果である。
Table 3 shows the results of measuring the relationship between treatment time and bromine permeability coefficient when treated at each temperature.

同表より知られるごとく、未処理に較べ、5分以上処理
したものでは臭素透過係数が大きく減少したことが認め
られ、処理時間が多いほど臭素透過係数の減少は大きく
なった。しかし、30分処理品と60分処理品では臭素
透過係数は変わらずこれ以上処理時間を伸ばしても処理
効果は増加しない。また、上記処理によっても、電気抵
抗は変化せず、低いまま維持できることがわかる。
As can be seen from the table, it was observed that the bromine permeability coefficient decreased significantly in the samples treated for 5 minutes or more compared to the untreated sample, and the longer the treatment time, the greater the decrease in the bromine permeability coefficient. However, the bromine permeability coefficient remains unchanged between the products treated for 30 minutes and the products treated for 60 minutes, and the treatment effect does not increase even if the treatment time is extended any further. Further, it can be seen that even with the above treatment, the electrical resistance does not change and can be maintained at a low level.

第3表 (クロム酸混液処理) *2moI!、/IZnBrg水溶液で測定第3実施例 ポリオレフィン系微細多孔膜中のポリオレフィンを親水
化するために1発煙硫酸を使用し、その濃度、処理時間
を変えて処理効果を検討した。
Table 3 (Chromic acid mixture treatment) *2 moI! , /IZnBrg aqueous solution Third Example In order to make the polyolefin in the polyolefin microporous membrane hydrophilic, fuming sulfuric acid was used, and the treatment effect was examined by changing its concentration and treatment time.

発煙硫酸溶液は試薬の60%発煙硫酸液(H2S04x
SOi)を濃硫酸で稀釈し それぞれSOツ濃度が6.
12.24%の処理液を調製した。
The fuming sulfuric acid solution is a reagent of 60% oleum solution (H2S04x
SOi) was diluted with concentrated sulfuric acid until the SO concentration was 6.
A 12.24% treatment solution was prepared.

処理手順は次の通りである。予め十分水洗したポリオレ
フィン系微細多孔膜を上記処理液に所定時間浸漬し、そ
の後98%濃硫酸、50%濃硫酸。
The processing procedure is as follows. A polyolefin microporous membrane that had been sufficiently washed with water in advance was immersed in the above treatment solution for a predetermined time, and then 98% concentrated sulfuric acid and 50% concentrated sulfuric acid.

25%濃硫酸の順に2次第に硫酸濃度の低い水溶液で洗
浄してから十分水洗を行った。
It was washed with 25% concentrated sulfuric acid and then with aqueous solutions with progressively lower sulfuric acid concentrations, and then thoroughly washed with water.

第4図は、12%発煙硫酸液で処理したときの処理時間
と臭素透過係数の関係を示したものである。1時間まで
は処理時間が長いほど上記係数は減少しており、1時間
では係数は20%以上も低減されている。しかし、1時
間以降は処理時間を長くしても係数の低下は認められず
、1時間で処理効果はほぼ飽和することが分かった。
FIG. 4 shows the relationship between treatment time and bromine permeability coefficient when treated with a 12% oleum solution. The coefficient decreases as the processing time increases up to 1 hour, and the coefficient decreases by more than 20% at 1 hour. However, after 1 hour, no decrease in the coefficient was observed even if the treatment time was increased, and it was found that the treatment effect was almost saturated after 1 hour.

第5図は1発煙硫酸濃度の異なる処理液で処理時間5分
の処理を行ったときの臭素透過係数の測定結果であるが
1発煙硫酸濃度による差は認められなかった。また 発
煙硫酸濃度をさらに高くした処理液を用いると、被処理
膜は即座に炭化される傾向が強くなるため、処理液の発
煙硫酸濃度は25%以下程度が良い。
FIG. 5 shows the measurement results of the bromine permeability coefficient when treatment was carried out for 5 minutes using treatment solutions with different concentrations of oleum, and no difference was observed depending on the concentration of oleum. Furthermore, if a treatment liquid with a higher concentration of fuming sulfuric acid is used, the film to be treated tends to be immediately carbonized, so the concentration of oleum in the treatment liquid is preferably about 25% or less.

なお、第6図は12%発煙硫酸を行ったときの電気抵抗
を測定した結果である。同図に示されるように2発煙硫
酸処理による電気抵抗の増加は全く認められなかった。
Note that FIG. 6 shows the results of measuring electrical resistance when 12% oleum was added. As shown in the figure, no increase in electrical resistance was observed due to the oleum treatment.

上記実施例から知られるごとく1本発明によれば、電気
抵抗を増大させることなく、臭素透過性を低下させるこ
とができた。
As can be seen from the above examples, according to the present invention, bromine permeability could be reduced without increasing electrical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関するセパレータを用いた亜鉛−臭素
電池の概略構成図、第2図はセパレータ抵抗測定用セル
の断面図、第3図はセパレータ臭素透過係数測定用セル
の断面図、第4図は発煙硫酸処理を行った場合の処理時
間と臭素透過係数の関係を示す線図、第5図は発煙硫酸
処理時の発煙硫酸濃度と臭素透過係数の関係を示す線図
、第6図は発煙硫酸処理を行った場合の処理時間と電気
抵抗との関係を示す線図である。 311.電池本体。 30.40.、、  セパレータ。 300、、、臭素錯化合物。 31、、、正極室 32、、、負極室。 61、、、臭素濃度濃厚室。 62、、、臭素濃度希薄室。 第1図
FIG. 1 is a schematic diagram of a zinc-bromine battery using a separator according to the present invention, FIG. 2 is a cross-sectional view of a cell for measuring separator resistance, FIG. 3 is a cross-sectional view of a cell for measuring separator bromine permeability coefficient, and FIG. The figure is a diagram showing the relationship between treatment time and bromine permeability coefficient when oleum treatment is performed, Figure 5 is a diagram showing the relationship between fuming sulfuric acid concentration and bromine permeability coefficient during fuming sulfuric acid treatment, and Figure 6 is a diagram showing the relationship between oleum concentration and bromine permeability coefficient. FIG. 3 is a diagram showing the relationship between treatment time and electrical resistance when performing fuming sulfuric acid treatment. 311. Battery body. 30.40. ,, separator. 300, Bromine complex compound. 31,,,Positive electrode chamber 32,,,Negative electrode chamber. 61, Bromine concentration chamber. 62, Bromine concentration dilution chamber. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 亜鉛−臭素電池のセパレータとして用いる、ポリオレフ
ィンとシリカとよりなるポリオレフィン系微細多孔膜に
おいて、ポリオレフィン部分を親水化処理してなること
を特徴とする亜鉛−臭素電池セパレータ。
A zinc-bromine battery separator, which is used as a separator for a zinc-bromine battery, and is made of a polyolefin microporous membrane made of polyolefin and silica, in which the polyolefin portion is treated to make it hydrophilic.
JP63317154A 1988-12-15 1988-12-15 Zinc-bromine battery separator Pending JPH02162663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317154A JPH02162663A (en) 1988-12-15 1988-12-15 Zinc-bromine battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317154A JPH02162663A (en) 1988-12-15 1988-12-15 Zinc-bromine battery separator

Publications (1)

Publication Number Publication Date
JPH02162663A true JPH02162663A (en) 1990-06-22

Family

ID=18085051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317154A Pending JPH02162663A (en) 1988-12-15 1988-12-15 Zinc-bromine battery separator

Country Status (1)

Country Link
JP (1) JPH02162663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241254A (en) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 Metal air battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241254A (en) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 Metal air battery

Similar Documents

Publication Publication Date Title
JP6581635B2 (en) Redox flow battery based on support solution containing chloride
Gao et al. Poly (vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries
KR102410425B1 (en) All-vanadium sulfate acid redox flow battery system
KR100350840B1 (en) Modified cation exchange membranes and methods of making such membranes for use in electrochemical cells
JP7013306B2 (en) Ionic liquid as a promoter to improve the performance of oxygen reduction catalysts used in fuel cells
Dewi et al. Cationic polysulfonium membrane as separator in zinc–air cell
Braun et al. Thermodynamic aspects of redox reactions on electrodes coated with thin, ion exchanging polymer films
Wu et al. A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte
US20060008692A1 (en) Solid electrolyte and electrochemical system including the solid electrolyte
JP2022535691A (en) Redox flow battery system and methods of manufacture and operation
Nishikami et al. Oxygen-enriched electrolytes based on perfluorochemicals for high-capacity lithium–oxygen batteries
CN1417252A (en) Ionic solid electrolyte, its preparation process and electrochemical system with the electrolyte
Stadniychuk et al. Sol‐Gel‐Derived Thin‐Film Manganese Dioxide Cathodes
Kondou et al. Rate performance of LiCoO2 half-cells using highly concentrated lithium bis (fluorosulfonyl) amide electrolytes and their relevance to transport properties
CN105789657A (en) Modified PES (polyether sulfones)-PVP (polyvinylpyrrolidone) hybrid anion exchange membrane for vanadium redox battery and preparation method of modified PES-PVP hybrid anion exchange membrane
JP7207130B2 (en) flow battery
JPH02162663A (en) Zinc-bromine battery separator
Harth et al. Application of nafion as a polymer solid electrolyte for voltammetry in the absence of a contacting electrolyte solution
Vijayakumar et al. Investigation on electrochemical performance of new flexible nanocomposite poly (vinylidene fluoride-co-hexafluoropropylene) polymer electrolytes
Seeponkai et al. The effects of sulfonated graphene oxides (sGO) on ion conductivity and permeability of the vanadium redox flow batteries membranes based on sulfonated poly (ether ether ketone) composite
WO2021253128A1 (en) Separators for aqueous zinc-ion cells and batteries, zinc metal batteries, and methods of fabricating a separator for use in a zinc metal battery
JPH04312764A (en) Separator for zinc-bromine battery
CN108134096B (en) Modification method of carbon felt electrode for all-vanadium redox flow battery
JPH0395856A (en) Lithium secondary battery
JPH01157071A (en) Separator for zinc-bromine battery