JPH02161616A - Production of magnetic recording steel sheet - Google Patents

Production of magnetic recording steel sheet

Info

Publication number
JPH02161616A
JPH02161616A JP31596088A JP31596088A JPH02161616A JP H02161616 A JPH02161616 A JP H02161616A JP 31596088 A JP31596088 A JP 31596088A JP 31596088 A JP31596088 A JP 31596088A JP H02161616 A JPH02161616 A JP H02161616A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
point
magnetic
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31596088A
Other languages
Japanese (ja)
Inventor
Chuzo Sudo
須藤 忠三
Teruo Kaneko
金子 輝雄
Takeshi Yamamoto
剛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31596088A priority Critical patent/JPH02161616A/en
Publication of JPH02161616A publication Critical patent/JPH02161616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To allow the use of the recording steel sheet under severe environment by subjecting a specific austenitic steel sheet to a soln. heat treatment to make the same into a ferromagnetic material, heating a part of the surface thereof by irradiation of a high energy density beam, and thereby converting this part to a nonmagnetic material. CONSTITUTION:The austenitic steel contg., by weight %, 7 to 21.5% Cr and having >=-20 deg.C Ms point expressed by the formula I is subjected to the soln. heat treatment and is then subjected to subzero holding to the temp. lower by >=50 deg.C than the Ms point by which the steel sheet is converted to the ferromagnetic material. Part of such surface is further heated by the irradiation of the high energy density beam and is thereby converted to the nonmagnetic material. In the formula I, element symbols denote the contents of the respective elements. The resulted steel sheet has the ferromagnetic martensite structure in the substrate and the nonmagnetic austenite structure exists locally therein. The information recording medium having the excellent environmental resistance and high practicability is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ディジタル情報を記録し、読みとることに
よって種々の情報処理を行う分野において使用する磁気
記録体、特に、苛酷な環境下で使用でき、かつ安価な磁
気記録鋼板の製造方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a magnetic recording medium used in the field of recording and reading digital information to perform various information processing, especially magnetic recording media that cannot be used in harsh environments. , and a method for producing an inexpensive magnetic recording steel plate.

(従来の技術) ディジタル情報を記録する方法は掻めて多岐にわたって
いる。最もよく用いられてきたのはいわゆる磁気テープ
や磁気ディスクなどのように基体上に磁性被膜を形成し
、その被膜を特定のビットパターンに磁化して情報を記
録する方法である。
(Prior Art) There are a wide variety of methods for recording digital information. The most commonly used method is to form a magnetic film on a substrate, such as a so-called magnetic tape or magnetic disk, and to record information by magnetizing the film into a specific bit pattern.

また最近ではコンパクトディスクなどのように光学的な
記録方法もよく用いられている。
Recently, optical recording methods such as compact discs have also been widely used.

これらの方法は記録密度が非常に高く、大量のデータを
処理するには適当であるが、一般によく管理された穏や
かな環境下で使用されるものであって、高温高温、塵埃
、腐食などの影響を受け、場合によっては放射線に曝さ
れるような過酷な環境下ではほとんどその用を成さない
、しかしながら、工場ではこの種の環境はしばしば現れ
るので、例えば、機械的な動作をコンピュータ制御によ
って自動化するために、工場内で情報を処理する場合な
どに使用する情報記録体としては、かかる環境下でも安
定した性能を保持できるもの(便宜的に耐環境性という
)が望まれている。
Although these methods have very high recording densities and are suitable for processing large amounts of data, they are generally used in well-controlled and mild environments, and are free from high temperatures, dust, corrosion, etc. However, this kind of environment often occurs in factories, so for example, mechanical movements can be controlled by computer. For automation purposes, information recording media used when processing information in factories are desired to be able to maintain stable performance even under such environments (for convenience, referred to as environmental resistance).

特公昭62 32407号公報には、金属材の表面を局
部的に熱処理して磁気変質部を形成し、変位検出に用い
ることが提案されている。しかし、ここに開示されてい
る金属材は高価なNi基合金(Fe25χ−N!75χ
合金)を用いるもので、しかも磁気変質部を設ける手段
は溶融点以下の温度での加熱−急冷という熱処理であっ
て、安価で磁気特性の優れた記録体を安定して製造する
には不向きである8本発明らは、L記特公昭62−32
407号公報に示される磁気記録体とは異なるFe系の
材料を使用し、しかもその一部を溶融処理して磁気変位
部を製造することに成功し、先に、特願昭60−225
737号として出願した(特開昭62−83620号)
、この先願発明は、準安定オーステナイトステンレス鋼
に冷間塑性加工を施し、加工誘起変態を生じせしめて強
磁性体に変換1−1これに高エネルギー密度ビームを照
射融解して局部的に非磁性体に変換し、この非磁性−強
磁性の対を用いて磁気尺(l気目盛り)を構成するとい
うものである。この原理は情報を記録することにも応用
できる。これはステンレス鋼の&11m変化を利用して
いるので、高温、放射線、腐食等の影響を被る苛酷な環
境にあっても記録は損傷せず、また外部磁場によって記
録が消失しないなど、耐環境性に優れている。
Japanese Patent Publication No. 62-32407 proposes that the surface of a metal material be locally heat treated to form a magnetically altered portion and used for displacement detection. However, the metal material disclosed here is an expensive Ni-based alloy (Fe25χ-N!75χ
Furthermore, the means of creating the magnetically altered portion is a heat treatment of heating and rapid cooling at a temperature below the melting point, which is not suitable for stably manufacturing inexpensive recording media with excellent magnetic properties. There are 8 inventors of the present invention,
Using a Fe-based material different from that of the magnetic recording material shown in Publication No. 407, we succeeded in manufacturing a magnetic displacement part by melting a part of the material, and previously filed a patent application in 1986-225.
Filed as No. 737 (Japanese Unexamined Patent Publication No. 83620/1983)
In this prior invention, metastable austenitic stainless steel is subjected to cold plastic working to cause a deformation-induced transformation, converting it into a ferromagnetic material. This nonmagnetic-ferromagnetic pair is used to construct a magnetic scale (I scale). This principle can also be applied to recording information. This utilizes the &11m variation of stainless steel, so it has environmental resistance such that records will not be damaged even in harsh environments affected by high temperatures, radiation, corrosion, etc., and records will not be erased by external magnetic fields. Excellent.

(発明が解決しようとする課題) 優れた耐環境性を得るためには、上記の本発明者らが提
案したオーステナイIllの&111炭化を利用する方
法が望ましい、しかし7、この方法の欠点として、冷間
塑性加工を行うためコストが高く、残留歪みのため熱的
に不安定であることがあげられる。また高エネルギー密
度ビーム照射においては、製造管理が容易な溶融法を用
いて加熱深度を大きくしているが、薄板の場合は加熱深
度が大きいと曲がり等の変形が生じやすいので望ましく
ない。
(Problem to be Solved by the Invention) In order to obtain excellent environmental resistance, it is desirable to utilize the &111 carbonization of austenai Ill proposed by the present inventors as described above.7 However, as disadvantages of this method, It is expensive due to cold plastic working, and is thermally unstable due to residual strain. In addition, in high energy density beam irradiation, the heating depth is increased using a melting method that facilitates manufacturing control, but in the case of thin plates, a large heating depth is undesirable because deformation such as bending is likely to occur.

本発明の目的は、基本的には安価なFe系の合金を使用
し、更に、コストの高い冷間塑性加工による加工誘起変
態を用いずに、磁気記録媒体となる薄板(調板)を製造
する方法の提供にある。
The purpose of the present invention is to manufacture a thin plate (temperature plate) that can be used as a magnetic recording medium by basically using an inexpensive Fe-based alloy and without using process-induced transformation due to expensive cold plastic working. The aim is to provide a method to do so.

(!IiJを解決するための手段) 準安定オーステナイ+1は室温では非磁性のオーステナ
イト組織であるが、これを室温以下に冷却保持すること
によってその一部はマルテンサイト組織に変化し強磁性
体となる。また、このマルテンサイト組織は、およそ5
00℃以上の加熱によって、再びオーステナイト組織に
戻り非磁性体となる。このような&11織変化を実用的
な条件で起こさセるにはその成分組成の選択が最も重要
である。
(Means for solving !IiJ) Metastable austenite +1 has a non-magnetic austenitic structure at room temperature, but when it is kept cooled below room temperature, a part of it changes to a martensitic structure and becomes a ferromagnetic material. Become. Moreover, this martensitic structure is approximately 5
By heating to 00° C. or higher, it returns to an austenitic structure and becomes a nonmagnetic material. In order to cause such a &11 weave change under practical conditions, the selection of the component composition is most important.

本発明は、このような鋼の金属学的な組織の変化(変態
)の原理を応用し、現実の工場などにおける使用条件を
考慮してなされたもので、その要旨は下記のとおりであ
る。
The present invention has been made by applying the principle of change (transformation) in the metallurgical structure of steel and taking into consideration the conditions of use in actual factories, etc., and the gist thereof is as follows.

1重量%でCrを7〜21,5%含み、かつ下記の0式
で示されるMs点が一20″C以上であるオーステナイ
ト鋼に溶体化処理を施し、次いでMs点より50’C以
上低い温度に深冷保持して強磁性体とし、更に、その表
面の一部を高エネルギー密度ビームの照射により加熱し
て非磁性化することを特徴とする磁気記録鋼板の製造方
法J Ms(℃)−1326−41,7Cr  61.INi
 −33,3Mr+−27.8Si−1670(C+N
)・・・・・・■ 上記の0式において、元素記号はそれぞれの元素の含有
!(重量%)を表す。
An austenitic steel containing 7 to 21.5% Cr at 1% by weight and whose Ms point shown by the following formula 0 is 120'C or more is subjected to solution treatment, and then is 50'C or more lower than the Ms point. A method for producing a magnetic recording steel sheet, characterized in that it is made into a ferromagnetic material by being cryogenically kept at a temperature, and then a part of its surface is heated by irradiation with a high energy density beam to make it non-magnetic J Ms (°C) -1326-41,7Cr 61.INi
-33,3Mr+-27.8Si-1670(C+N
)......■ In the above formula 0, the element symbol is the content of each element! (% by weight).

(作用) 以下、本発明の各構成要件につき、その作用効果を説明
する。なお、本明細書において、成分の含有量を表す%
は、全て重量%である。
(Function) Hereinafter, the function and effect of each component of the present invention will be explained. In addition, in this specification, % representing the content of components
are all weight %.

:、素材の鋼板について 本発明においては、Crを7〜21.5%含有する、い
わゆる準安定オーステナイトステンレス鋼を素材として
使用する。即ち、素材の鋼は、非磁性状態を得るために
、溶体化温度以上の高温から急冷したとき、オーステナ
イト単相でなければならない、後記のMs点の制約を満
足する成分系を前提とするとき、Crが7%未満ではオ
ーステナイト+マルテンザイトの2相組織となり、また
C「が21.5%を超える場合は、オーステナイト+フ
ェライトの2相組織になるので、本発明の目的には適さ
ないのである。
: Regarding the steel plate as a material In the present invention, a so-called metastable austenitic stainless steel containing 7 to 21.5% Cr is used as a material. That is, in order to obtain a non-magnetic state, the steel material must have a single austenite phase when rapidly cooled from a high temperature above the solution temperature, assuming a composition system that satisfies the constraints of the Ms point described later. If Cr is less than 7%, a two-phase structure of austenite + martenzite will be formed, and if C exceeds 21.5%, a two-phase structure of austenite + ferrite will be formed, which is not suitable for the purpose of the present invention. be.

ii、Ms点について Ms点は、オーステナベ1−11’l織の安定性を表す
指標で、この点板下の温度では非磁性のオーステナイl
が強磁性のマルテンサイトに変態することを意味する。
ii. About the Ms point The Ms point is an index expressing the stability of the austenite 1-11'l weave, and at a temperature below this point plate, non-magnetic austenite l
This means that it transforms into ferromagnetic martensite.

鋼の成分がこのMs点に及ぼす影響はそれぞれ異なるが
、それら各成分の影響を考慮すると、Ms点は前記■式
によって表すことができる。
The influence of each component of steel on this Ms point is different, but when the influence of each component is taken into account, the Ms point can be expressed by the above equation (2).

実用上、使用温度(または保存温度)では変態しないこ
とが保証されなければならないから、Ms点は、使用ま
たは保存温度以下でなければならない。
In practice, it must be ensured that there is no transformation at the use (or storage) temperature, so the Ms point must be below the use or storage temperature.

はとんどの工業的な応用ではその温度は一20℃以上と
みれば充分であるから、本発明ではMs点の北限を一2
0℃とした。
In most industrial applications, it is sufficient to consider the temperature to be 120°C or higher, so in the present invention, the northern limit of the Ms point is set to 120°C or higher.
The temperature was 0°C.

Ms点の下限には、特に制約はないが、製造上は深冷処
理の冷却能で制限される。工業的に安全で安価な冷媒の
・うち最も低温が得られるのは液体窒素で、その冷却温
度は−196“Cである。これ以下の低温を得るには液
体水素や液体ヘリウムなどを使用するが、これらは取扱
いが危険であったり高価であるなどの欠点がある。従っ
て、実用的には一196’Cが深冷温度の下限とみなさ
れる。後に述べるように材料を充分変態させるには、M
s点より更に50’C以上低い温度に冷却するのが望ま
しい。
There is no particular restriction on the lower limit of the Ms point, but in terms of manufacturing, it is limited by the cooling capacity of the deep cooling process. Among industrially safe and inexpensive refrigerants, liquid nitrogen provides the lowest temperature, with a cooling temperature of -196"C. To obtain lower temperatures than this, liquid hydrogen, liquid helium, etc. are used. However, these have drawbacks such as being dangerous to handle and expensive.Therefore, in practice, -196'C is considered the lower limit of cryogenic temperature.As will be described later, in order to sufficiently transform the material, ,M
It is desirable to cool the temperature to a temperature 50'C or more lower than the s point.

従って、材料のMs点の下限を−145’Cとしておけ
ば、液体窒素の使用によって、これより更に50″C以
−に低い温度で深冷処理を行うことができる。
Therefore, if the lower limit of the Ms point of the material is set at -145'C, deep cooling treatment can be performed at a temperature lower than this by 50'C by using liquid nitrogen.

なお、素材の鋼は、前記のCrと、■式を満足するよ・
うな量のバランスで旧、Mn、 Si、、C,Nの1種
板」二を含有する外、例えば、P、 5XTe、、Bi
、Alのような成分を含んでいてもよい。
In addition, the steel material satisfies the above-mentioned Cr and formula ■.
For example, P, 5XTe, Bi
, and may contain components such as Al.

ili、溶体化処理について 素材の組織的な不均一をなくし、かつ全面を非磁性化す
る目的で溶体化処理を行う、まず、鋼板の種々の析出物
を固溶させ、組線をオーステナイト単相にするため、1
000℃以上の温度に加熱する。
Regarding solution treatment, solution treatment is performed for the purpose of eliminating structural non-uniformity of the material and making the entire surface non-magnetic.First, various precipitates in the steel sheet are dissolved in solid solution, and the wire braid is made into an austenite single phase. To make it 1
Heating to a temperature of 000°C or higher.

この時の保持温度は5秒以上が望ましい、加熱終了後、
ただちに500℃以下の温度に急冷する。急冷は、高温
のオーステナイト組織を室温までもちきたすために必要
であり、5℃/秒以上の冷却速度が望ましい。冷却速度
が小さ過ぎると、材料に脆い第二相が生成し、製品の靭
性や耐食性が損なわれる。
The holding temperature at this time is preferably 5 seconds or more. After heating is complete,
Immediately quench to a temperature below 500°C. Rapid cooling is necessary to bring the high-temperature austenite structure to room temperature, and a cooling rate of 5° C./sec or more is desirable. If the cooling rate is too low, a brittle second phase will form in the material, impairing the toughness and corrosion resistance of the product.

iv、深冷処理について 材料に磁気的な記録を行うために、最初にオーステナイ
ト−マルテンサイト変態を起こさせて強磁性化処理を行
なうのが深冷処理である。工業的に実施し易いのは所要
温度の冷媒中に浸漬する方法である。そのときの深冷温
度は、材料のMs点よりおよそ100℃程度低くすると
変態が最も促進されることが知られており、それより高
いと変態率は順次低下する。深冷温度とtls点との差
を過冷度という、この過冷度が50℃未満では強磁性化
が充分でな(、磁気記録性能が低下するため、本発明で
は深冷温度を、Ms点より更に50″C以上低い温度、
即ち、Ms点−50℃以下とした。
iv. Deep cooling treatment In order to perform magnetic recording on a material, deep cooling treatment first causes austenite-martensitic transformation to make it ferromagnetic. A method that is easy to implement industrially is immersion in a refrigerant at a required temperature. It is known that transformation is most promoted when the deep cooling temperature is about 100° C. lower than the Ms point of the material, and when it is higher than that, the transformation rate gradually decreases. The difference between the deep cooling temperature and the TLS point is called the degree of supercooling.If this degree of supercooling is less than 50°C, ferromagnetization is insufficient (and the magnetic recording performance deteriorates, so in the present invention, the deep cooling temperature is Temperature 50″C or more lower than the point,
That is, the Ms point was set to -50°C or lower.

■、高エネルギー密度ビームの照射について深冷処理に
よって強磁性化した材料は600℃以上に再加熱すれば
ちとの非磁性にもどる。この原理を情報記録に応用する
ために、高エネルギー密度ビームを局部的に照射して微
小面積を加熱する。
(2) Regarding irradiation with high energy density beams Materials that have become ferromagnetic through deep cooling will return to their original non-magnetic state if reheated to 600°C or higher. In order to apply this principle to information recording, a high energy density beam is locally irradiated to heat a minute area.

なお、加熱温度は原理的には600℃以上であればよい
のであるが、磁気変質相を表面からできるだけ深く形成
しかつ作業上の温度管理を容易にするには、他に悪影響
を及ぼさない範囲で溶融させるのが望ましい。
In principle, the heating temperature should be 600°C or higher, but in order to form the magnetically altered phase as deep as possible from the surface and to facilitate temperature control during work, it must be within a range that does not adversely affect others. It is desirable to melt it at

高エネルギー密度ビームとしては、レーザービーム、電
子ビームなどが使用できる。これらのビームの照射エネ
ルギー密度を通運に選んで、上記600℃以上の温度、
望ましくは、材料の溶融温度以上に局部加熱する。ビー
ムによって溶融した部分は周囲への伝熱によって急冷さ
れ、その組織は溶体化処理の状態、即ち、深冷処理以前
の&[1lli(非磁性のオーステナイト組織l織)に
なる。
A laser beam, an electron beam, etc. can be used as the high energy density beam. By carefully selecting the irradiation energy density of these beams, the temperature above 600°C,
Desirably, local heating is performed above the melting temperature of the material. The portion melted by the beam is rapidly cooled by heat transfer to the surroundings, and its structure becomes the state of solution treatment, that is, the &[1lli (non-magnetic austenite structure) before deep cooling treatment.

以上の工程によって得られる鋼板は、基質が強磁性のマ
ルテンサイト組織で、その中に局部的に非磁性のオース
テナイト組織が存在するものである。高エネルギー密度
ビームを用いれば、上記の非磁性部分は、任意の位置に
、かつ任意の大きさ、任意の個数で形成させることが可
能である。従って、こうして得られた鋼板は、磁性−非
磁性の幾何学的パターンの配置によって特定の情報を記
録したものとなり、例えば情報記録カード、ラベル、タ
グ等の形で利用できる。
The steel sheet obtained by the above process has a matrix of a ferromagnetic martensitic structure, in which a non-magnetic austenite structure exists locally. By using a high energy density beam, the above-mentioned non-magnetic portion can be formed at any position, in any size, and in any number. Therefore, the steel plate thus obtained has specific information recorded by the arrangement of magnetic-nonmagnetic geometric patterns, and can be used, for example, in the form of information recording cards, labels, tags, etc.

(実施例1・・・化学組成の影響) 第1表に示す組成の素材を冷間圧延して0゜6Mの薄板
とし、1100℃で15分加熱した後、強制空冷で溶体
化処理を行った。次に液体窒素(−196℃)中に3時
間保持する深冷処理を行った。
(Example 1: Influence of chemical composition) A material with the composition shown in Table 1 was cold-rolled into a 0°6M thin plate, heated at 1100°C for 15 minutes, and then solution-treated with forced air cooling. Ta. Next, deep cooling treatment was performed by holding the sample in liquid nitrogen (-196°C) for 3 hours.

次いで、出力100WのYAGレーザーを用いて表面に
第1図に示すように線間隔50μ銅、線幅50μmで照
射した。このときの照射深度(組織が変化した部分の深
さ)は20μ請、線の長さは10s+mとした。
Next, the surface was irradiated with a YAG laser with an output of 100 W at a copper line spacing of 50 μm and a line width of 50 μm, as shown in FIG. At this time, the irradiation depth (the depth of the part where the tissue changed) was 20 μm, and the line length was 10 s+m.

上記によって得られた鋼板をパフ研磨した後、−20’
C(これは保存温度に相当する)で3時間保持した後、
室温において照射線に直角方向に磁気ヘッドで走査して
900にfizの高周波1を磁誘導法により検出し、そ
の出力電圧のSN比を測定した。測定結果を第1表中に
示す。なお、第1表に併記した室温&11m(−20℃
)、ffi冷1tl1wt(−196’C) 、![、
それぞれ−20’Cおよび−196℃(液体窒素中)に
3時間保持した後、室温で観察した組織である。
After puff polishing the steel plate obtained above, -20'
After holding for 3 hours at C (which corresponds to the storage temperature),
At room temperature, a magnetic head was scanned in a direction perpendicular to the irradiation line, and a high frequency 1 of 900 fiz was detected by the magnetic induction method, and the S/N ratio of the output voltage was measured. The measurement results are shown in Table 1. In addition, room temperature & 11m (-20℃) listed in Table 1
), ffi cold 1tl1wt (-196'C),! [,
These are the tissues observed at room temperature after being maintained at -20'C and -196C (in liquid nitrogen) for 3 hours, respectively.

第1表の結果かられかるように、Cr7%未満の鋼(試
料20)では、ビーム照射部も強磁性化し、Crが21
.5%を超える鋼(試料3.8)では基体部も非磁性化
して、いずれも照射部と基体部の磁気特性の差が不明瞭
になるためSN比が低い。
As can be seen from the results in Table 1, in steel with less than 7% Cr (sample 20), the beam irradiation part also becomes ferromagnetic, and the Cr content is 21%.
.. In the case of steel with a magnetic flux exceeding 5% (sample 3.8), the base portion also becomes nonmagnetic, and the difference in magnetic properties between the irradiated portion and the base portion becomes unclear, resulting in a low S/N ratio.

また、Ms点が使用温度(保存温度)以上の鋼(試料1
.4.9.17.23)はSN比が低い。これは使用(
保存)中に照射部に変態が起こるためである。Ms点が
−145’C以下の鋼(試料7.16.19.22.2
G)は、液体窒素による冷却では深冷の過冷度が不足す
るため基体部の強磁性化が不十分であり、やはりSN比
は低下する。これらは、更に低温の冷却媒体で、Ms点
よりも50’C以上低い温度に深冷処理すれば、SN比
は向上する。
In addition, steel whose Ms point is higher than the operating temperature (storage temperature) (sample 1
.. 4.9.17.23) has a low SN ratio. This is used (
This is because metamorphosis occurs in the irradiated area during storage. Steel with Ms point of -145'C or less (sample 7.16.19.22.2
In case of G), cooling with liquid nitrogen does not sufficiently subcool the base portion, resulting in insufficient ferromagnetization of the base portion, and the S/N ratio also decreases. These are cooling media at lower temperatures, and the S/N ratio can be improved by deep cooling to a temperature 50'C or more lower than the Ms point.

(以下、余白) (実施例2・・・保存温度とMs点) 実施例1のうちNo、 11の試料(ビーム照射後のも
の)を用いて、種々の温度に8時間保持したのち、実施
例1と同様の方法でSN比を再測定し、その変化を調べ
た。
(Hereinafter, blank space) (Example 2...Storage temperature and Ms point) Using the sample No. 11 (after beam irradiation) in Example 1, it was held at various temperatures for 8 hours, and then carried out. The SN ratio was measured again in the same manner as in Example 1, and its changes were investigated.

第2図は、保持温度とMs点温度(−82,5℃)との
差と、保持前後のSN比の割合との関係を示したもので
ある。図示のように、保持温度がMs点以下になるとS
N比が大きく低下する。これから、保存温度を一20゛
Cとみれば、Ms点は一20℃以下にする必要があるこ
とが明らかである。
FIG. 2 shows the relationship between the difference between the holding temperature and the Ms point temperature (-82.5° C.) and the ratio of the S/N ratio before and after holding. As shown in the figure, when the holding temperature falls below the Ms point, S
The N ratio decreases significantly. From this, it is clear that if the storage temperature is -20°C, the Ms point needs to be below -20°C.

(実施例3・・・深冷処理温度の影9)実施例1のうら
No、11の試料(ビーム照射前のもの)を用いて、種
々の温度で3時間の深冷処理を行った。冷媒としては、
−60℃まではエチルアルコール中に適量の液体窒素を
混合したものを、−60’Cから−150’Cまではフ
レオン中に適量の液体窒素を混合したものを用いた。
(Example 3...Shadow of deep cooling treatment temperature 9) Using the sample No. 11 (before beam irradiation) of Example 1, deep cooling treatment was performed at various temperatures for 3 hours. As a refrigerant,
For temperatures up to -60°C, a mixture of an appropriate amount of liquid nitrogen in ethyl alcohol was used, and for temperatures from -60'C to -150'C, a mixture of an appropriate amount of liquid nitrogen in Freon was used.

これに実施例1と同様にビーム処理を施し出力SN比を
測定した。第3図は、深冷温度と1点(82,5℃)の
差、即ち過冷度、とSN比との関係を図示したものであ
る。同図かられかるように、過冷度とともにSN比は上
昇し、はぼ過冷度が100℃前後でSN比は最大となる
。それ以上に適冷するとSN比は低下してくるが、この
領域は実用上大きな問題にならない、ここでSN比の限
界レベルを5(倍)とみると、必要な過冷度は50℃と
なる。言い換えれば、深冷処理温度を(Ms点=50)
 ’C以下とすれば、SN比は5以上になるのである。
This was subjected to beam processing in the same manner as in Example 1, and the output SN ratio was measured. FIG. 3 illustrates the relationship between the deep cooling temperature and the difference at one point (82.5° C.), that is, the degree of supercooling, and the S/N ratio. As can be seen from the figure, the SN ratio increases with the degree of supercooling, and reaches its maximum when the degree of supercooling is around 100°C. If the S/N ratio is cooled more than that, the S/N ratio will decrease, but this area does not pose a big problem in practice.If we assume that the S/N ratio limit level is 5 (times), the required degree of supercooling is 50℃. Become. In other words, the deep cooling treatment temperature (Ms point = 50)
If it is below 'C, the SN ratio will be 5 or above.

(発明の効果) 本発明は、比較的安価なステンレス鋼の金属学的な組瞑
変化を利用し、一つの仮に磁気的性質の異なる部位を人
為的に形成して情報を記録する方法を提供した。この方
法によれば、特定の情報を表現するパターンを平面的に
形成することによりデジタル情報の記録手段とすること
ができる。この方法によって得られる磁気記録体は、外
部磁場や放射線などの影響を受けず、また実用温度域で
は温度変化の影響もなく、しかも葉材はステンレス鋼で
あるため、高温高温、或いは腐食性ガスなどによって記
録内容が変化することがないゃ即ち、耐環境性が著しく
優れ、実用性の高い情報記録体として、例えば、工場内
の製品職別のための自動読取り用ラベルや、高温1、放
射線などを受ける環境下で用いる自動化機器の制御用情
報記録体、改ざん、喪失を避けたい重要記録の保存用カ
ードなどに高い信頼性をもって利用できる。
(Effects of the Invention) The present invention provides a method of recording information by artificially forming a single region with different magnetic properties by utilizing the metallurgical texture changes of relatively inexpensive stainless steel. did. According to this method, by forming a two-dimensional pattern expressing specific information, it can be used as a recording means for digital information. The magnetic recording material obtained by this method is not affected by external magnetic fields or radiation, and is not affected by temperature changes in the practical temperature range.Furthermore, since the leaf material is stainless steel, it is not affected by high temperatures or corrosive gases. As long as the recorded contents do not change due to environmental factors such as It can be used with high reliability in information recording media for controlling automated equipment used in environments subject to similar conditions, as well as cards for storing important records that should be prevented from being tampered with or lost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法で製造する磁気記録鋼板の一例を
示すもので、+a)が平面し、To)か(a)のT3−
1面図である。 第2図は、磁気記録鋼板を種々の温度に8時間保持した
後の、(保持温度−Ms点)と保持前後のSN比の割合
との関係を示す図、 第3図は、磁気記録鋼板の過冷度とSN比との関係を示
す図、である。 χ 1 フ
Fig. 1 shows an example of a magnetic recording steel plate manufactured by the method of the present invention, in which +a) is flat and T3- of To) or (a) is shown.
It is a front view. Figure 2 is a diagram showing the relationship between (holding temperature - Ms point) and the ratio of S/N ratio before and after holding the magnetic recording steel plate after holding it at various temperatures for 8 hours. FIG. 2 is a diagram showing the relationship between the degree of subcooling and the SN ratio. χ 1 f

Claims (1)

【特許請求の範囲】 重量%でCrを7〜21.5%含み、かつ下式で示され
るMs点が−20℃以上であるオーステナイト鋼板に溶
体化処理を施し、次いでMs点より50℃以上低い温度
に深冷保持して強磁性体とし、更に、その表面の一部を
高エネルギー密度ビームの照射により加熱して非磁性化
することを特徴とする磁気記録鋼板の製造方法。 Ms(℃)=1326−41.7Cr−61.1Ni−
33.3Mn−27.8Si−1670(C+N) ただし、上記の式中の元素記号はそれぞれの元素の含有
量(重量%)を表す。
[Claims] An austenitic steel plate containing 7 to 21.5% Cr by weight and whose Ms point expressed by the following formula is -20°C or higher is subjected to solution treatment, and then 50°C or higher than the Ms point. A method for manufacturing a magnetic recording steel sheet, which comprises making it a ferromagnetic material by keeping it deep-chilled at a low temperature, and further heating a part of its surface by irradiation with a high energy density beam to make it non-magnetic. Ms(℃)=1326-41.7Cr-61.1Ni-
33.3Mn-27.8Si-1670 (C+N) However, the element symbol in the above formula represents the content (weight %) of each element.
JP31596088A 1988-12-13 1988-12-13 Production of magnetic recording steel sheet Pending JPH02161616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31596088A JPH02161616A (en) 1988-12-13 1988-12-13 Production of magnetic recording steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31596088A JPH02161616A (en) 1988-12-13 1988-12-13 Production of magnetic recording steel sheet

Publications (1)

Publication Number Publication Date
JPH02161616A true JPH02161616A (en) 1990-06-21

Family

ID=18071660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31596088A Pending JPH02161616A (en) 1988-12-13 1988-12-13 Production of magnetic recording steel sheet

Country Status (1)

Country Link
JP (1) JPH02161616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468522A (en) * 1992-08-31 1995-11-21 Aichi Steel Works, Ltd. Method of manufacturing a composite magnetic component
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468522A (en) * 1992-08-31 1995-11-21 Aichi Steel Works, Ltd. Method of manufacturing a composite magnetic component
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Similar Documents

Publication Publication Date Title
US4236946A (en) Amorphous magnetic thin films with highly stable easy axis
US4710243A (en) Wear-resistant alloy of high permeability and method of producing the same
Bozorth et al. Heat treatment of magnetic materials in a magnetic field II. Experiments with two alloys
US4639278A (en) Method of manufacturing an amorphous magnetic alloy
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
US4312684A (en) Selective magnetization of manganese-aluminum alloys
JP2907271B2 (en) Vitreous alloy with perminbar properties
EP0406004A2 (en) Method of introducing magnetic anisotropy into magnetic material
JPH02161616A (en) Production of magnetic recording steel sheet
Arai et al. Grain growth characteristics and magnetic properties of rapidly quenched silicon steel ribbons
US6029895A (en) Magnetic recording medium and method of making the same
JPH03244108A (en) Manufacture of bulk alpha'' iron nitride with high saturated magnetic flux density
JP2021515098A (en) Magnetic calorific alloy useful for magnetic refrigeration applications
Malkoc et al. Production of CoAl and CoAlCr FSMAs and determination of their thermal, microstructure, and magnetic properties
US3657025A (en) Nickel-iron base magnetic material with high initial permeability at low temperatures
US5614329A (en) Soft-magnetic thin film
JPH0312047A (en) Steel plate for information recording and recording method using the same
SU627530A1 (en) Method of recording information on thin-film ferromagnetic carrier
RU2282252C2 (en) Method for recording analog information onto magneto-optical carrier
Rein et al. Thermomagnetically written domains in TbFeCo thin films
KR970003339B1 (en) Amorphous metal making method for optomagnetic material
JPS6320429A (en) Thermally stable amorphous alloy having high magnetic flux density
Yan et al. Amorphous RE-TR magnetic alloys formed by ion mixing
JPS5816048A (en) High permeability amorphous alloy with superior corrosion resistance and its manufacture
JPH0288715A (en) Production of heat resistant magnetic scale