JPH02161168A - Intake device for four-cycle internal combustion engine - Google Patents

Intake device for four-cycle internal combustion engine

Info

Publication number
JPH02161168A
JPH02161168A JP1297625A JP29762589A JPH02161168A JP H02161168 A JPH02161168 A JP H02161168A JP 1297625 A JP1297625 A JP 1297625A JP 29762589 A JP29762589 A JP 29762589A JP H02161168 A JPH02161168 A JP H02161168A
Authority
JP
Japan
Prior art keywords
intake
fuel
valve
injection valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1297625A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshikawa
雅明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1297625A priority Critical patent/JPH02161168A/en
Publication of JPH02161168A publication Critical patent/JPH02161168A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To prevent fuel from adhering to the wall surface of an intake passage to improve its flammability in an engine provided with three mutually adjacent intake valves by providing a fuel injection valve in a communicating chamber formed near the intake valve on the intake passage, and specifying the injection range of the fuel injection valve. CONSTITUTION:In an engine whose each cylinder head 12 is provided with two exhaust valves 18 and three intake valves 20 (20a-20c) which are opened and closed by two overhead cam shaft type valve systems, the first and the second intake passage 41a, 41b are formed in an intake pipe 38 of each cylinder, and the downstream side of the passages 40a, 40b is connected to a communicating chamber 46 provided in the cylinder head 12, and a fuel injection valve 48 is mounted on an upper part of the chamber 46. The fuel injection valve 48 is allocatedly provided so that its center line Z may be pointed between a straight line X connecting the centers of end faces on the side of bevel parts of the intake valves 20a, 20c on both the sides of the center line Z and a straight line Y which is parallel to the straight line X and includes the center of an end face on the side of a bevel part of the central intake valve 20b, and the fuel is therefore jetted extensively within a range including the straight lines X, Y.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1つの気筒に対して3個の互いに隣接する吸
気弁を有し、吸気通路に1個の燃料噴射弁から燃料を噴
射する4サイクル内燃機関の吸気装置に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention has three intake valves adjacent to each other for one cylinder, and fuel is injected from one fuel injection valve into the intake passage. This invention relates to an intake system for a four-stroke internal combustion engine.

(発明の背景) 1つの気筒に対して3個の互いに隣接する吸気弁を設け
た4サイクル内燃機関がある。この種の機関で、1つの
気筒に1つの燃料噴射弁を用い、この噴射弁により吸気
通路に燃料を噴射する場合には、噴射弁の取付は位置が
燃焼に大きな影響を与える。すなわち、吸気弁から遠い
位置に燃料を噴射したのでは、燃料が吸気通路内壁に付
着して壁面流となり、燃料の霧化が悪化する。また吸気
弁にあまり接近して燃料を噴射すると、特定の吸気弁に
のみ燃料が集中して供給されることになり、回転速度な
どの運転状況の変化に対して好ましい燃焼が得られなく
なる状況が生じ得るという問題がある。
BACKGROUND OF THE INVENTION There are four-stroke internal combustion engines that have three adjacent intake valves for one cylinder. In this type of engine, when one fuel injection valve is used for one cylinder and this injection valve injects fuel into the intake passage, the mounting position of the injection valve has a large effect on combustion. That is, if fuel is injected far from the intake valve, the fuel will adhere to the inner wall of the intake passage and form a wall flow, resulting in poor atomization of the fuel. Additionally, if fuel is injected too close to the intake valve, the fuel will be concentrated and supplied only to a specific intake valve, resulting in a situation where favorable combustion will not be achieved in response to changes in operating conditions such as rotational speed. There are problems that can arise.

(発明の目的) 本発明はこのような事情に鑑みなされたものであり、隣
接する3つの吸気弁を有する4サイクル内燃機関で、1
つの燃料噴射弁により燃料を吸気通路に供給する場合に
、燃料の霧化が良好であり、特定の吸気弁にのみ燃料が
集中するのを防止し各吸気弁の吸気の流量に応じた適切
な量の燃料が導かれるようにして燃焼を好ましいものと
することが可能な4サイクル内燃機関の吸気装置を提供
することを目的とするものである。
(Object of the Invention) The present invention was made in view of the above circumstances, and is a four-stroke internal combustion engine having three adjacent intake valves.
When fuel is supplied to the intake passage using two fuel injection valves, the fuel is atomized well, prevents the fuel from concentrating on specific intake valves, and allows the fuel to be properly adjusted according to the intake flow rate of each intake valve. It is an object of the present invention to provide an intake system for a four-stroke internal combustion engine, which allows a large amount of fuel to be introduced to achieve favorable combustion.

(発明の構成) 本発明によればこの目的は、1つの気筒に対し互いに隣
接する3個の吸気弁を有する4サイクル内燃機関におい
て、前記吸気弁に連通ずる吸気通路を前記吸気弁付近で
互いに連通ずる連通室と、この連通室に燃料を噴射する
1個の燃料噴射弁とを備え、前記燃料噴射弁は、両側の
2つの吸気弁の傘部側端面の中心を結ぶ直線と、この直
線に平行で中央の吸気弁の傘部側端面の中心を含む直線
とを含む範囲内に燃料を広げて噴射することを特徴とす
る4サイクル内燃機関の吸気装置により達成される。
(Structure of the Invention) According to the present invention, in a four-stroke internal combustion engine having three intake valves adjacent to each other for one cylinder, the intake passages communicating with the intake valves are connected to each other near the intake valves. The fuel injection valve includes a communication chamber that communicates with each other and one fuel injection valve that injects fuel into the communication chamber, and the fuel injection valve is connected to a straight line connecting the centers of the umbrella side end surfaces of the two intake valves on both sides, and this straight line. This is achieved by an intake system for a four-stroke internal combustion engine, which is characterized in that it spreads and injects fuel within a range that includes a straight line that is parallel to and includes the center of the umbrella side end surface of the central intake valve.

(作用) 燃料噴射弁は、両側の吸気弁の傘部側の端面の中心を結
ぶ直線と、この直線に平行で中央の吸気弁の傘部側端面
の中心を含む直線とを含む範囲内に燃料を広げて噴射す
るから、燃料は吸気通路の壁面に殆ど付着することなく
、また特定の吸気弁のみに集中的に供給されることなく
各吸気弁に分散して供給される。燃料は吸気弁に到達す
る前に拡散するので、吸気流量が吸気弁毎に相違すれば
、燃料は吸気流量が多い吸気弁に多くまた吸気流量の少
ない吸気弁に少なくなるように自動的に配分される。
(Function) The fuel injection valve operates within a range that includes a straight line connecting the centers of the end surfaces of the umbrella side of the intake valves on both sides, and a straight line that is parallel to this straight line and includes the center of the end surface of the central intake valve on the umbrella side. Since the fuel is spread out and injected, the fuel hardly adheres to the wall of the intake passage, and is not concentratedly supplied to any particular intake valve, but is distributed and supplied to each intake valve. Since fuel diffuses before reaching the intake valve, if the intake flow rate differs between intake valves, the fuel is automatically distributed so that more fuel is distributed to the intake valve with a higher intake flow rate and less fuel is distributed to the intake valve with a lower intake flow rate. be done.

(実施例) 第1図は本発明の第1実施例を一部断面した平面図、第
2図はそのII −II線断面図、第3図はトルク特性
図である・、第1.2図において符号lOはシリンダボ
デー; 12はシリンダヘッド、14はピストンであり
、これらにより燃焼室16が形成される。シリンダヘッ
ド12には1気筒につき2個の排気弁18 (18a、
18b)と、3個の互いに隣接する吸気弁20 (20
a、20b、20C)が設けられている。これらの排・
吸気弁18.20は、それぞれ頭上カム軸22.24、
スイングアーム26.28などからなる公知のスイング
アーム方式の2頭上カム軸式動弁機構により開閉される
。30はシリンダヘッドカバー、32は排気弁18に連
通ずる排気通路、また第1図で34は点火栓である。
(Example) Fig. 1 is a partially sectional plan view of the first embodiment of the present invention, Fig. 2 is a sectional view taken along the line II-II, and Fig. 3 is a torque characteristic diagram. In the figure, 10 is a cylinder body; 12 is a cylinder head; 14 is a piston, and a combustion chamber 16 is formed by these. The cylinder head 12 has two exhaust valves 18 (18a,
18b) and three mutually adjacent intake valves 20 (20
a, 20b, 20C) are provided. These wastes and
The intake valves 18.20 each have an overhead camshaft 22.24,
It is opened and closed by a known swing arm double overhead camshaft valve mechanism comprising swing arms 26 and 28. 30 is a cylinder head cover, 32 is an exhaust passage communicating with the exhaust valve 18, and 34 in FIG. 1 is an ignition plug.

36はサージタンク、38は各気筒ごとにサージタンク
36とシリンダヘッド12とをつなぐ吸気管である。吸
気管38内には、第1吸気通路40a、第2吸気通路4
0bが形成されている。
36 is a surge tank, and 38 is an intake pipe that connects the surge tank 36 and the cylinder head 12 for each cylinder. Inside the intake pipe 38, there are a first intake passage 40a and a second intake passage 4.
0b is formed.

第1吸気通路40aと第2吸気通路40bとは略同径で
、またこれらの通路40a、40bを貫通する弁軸42
には、第2吸気通路40bを開閉する蝶型の制御弁44
が取付けられている。この制御弁44は運転条件、例え
ば運転負荷や機関回転速度の増減に対応して開閉するよ
うに制御される。吸気通路40の下流側はシリンダヘッ
ド12に設けた連通室46に接続され、この連通室46
は3つの吸気弁20に接近してこれらに連通している。
The first intake passage 40a and the second intake passage 40b have approximately the same diameter, and a valve shaft 42 passes through these passages 40a and 40b.
includes a butterfly-shaped control valve 44 that opens and closes the second intake passage 40b.
is installed. This control valve 44 is controlled to open and close in response to operating conditions, such as increases and decreases in operating load and engine speed. The downstream side of the intake passage 40 is connected to a communication chamber 46 provided in the cylinder head 12.
is close to and communicates with the three intake valves 20.

48は電磁式燃料噴射弁である。この噴射弁48は第2
図に示すように、吸気管38の上部に配設した分配管5
0と、シリンダヘッド12の連通室46上部との間に位
置する。その噴射口すなわち噴射弁48の中心線Zは、
第2図に示すように、両側の2つの吸気弁20a、20
cの傘部側端面の中心を結ぶ直線Xと、この直線Xと平
行でかつ中央の吸気弁20bの傘部側端面の中心を含む
直線yとの間を指向している。またこの中心線Zは第1
図に示すように、平面視で中央の吸気弁20bを指向し
ている。この燃料噴射弁48はまた、第2図に示すよう
に、中心線Zの回りの角度θの円錐形の範囲内に燃料を
広げて噴射する。この噴射法がり角度θの範囲内には、
直線X及びyが共に含まれるようになっている。
48 is an electromagnetic fuel injection valve. This injection valve 48 is the second
As shown in the figure, the distribution pipe 5 disposed at the upper part of the intake pipe 38
0 and the upper part of the communication chamber 46 of the cylinder head 12. The center line Z of the injection port, that is, the injection valve 48 is
As shown in FIG. 2, two intake valves 20a, 20 on both sides
It is oriented between a straight line X connecting the centers of the end surfaces on the side of the umbrella portion of c and a straight line y parallel to this straight line X and including the center of the end surface on the side of the umbrella portion of the central intake valve 20b. Also, this center line Z is the first
As shown in the figure, it is directed toward the central intake valve 20b in plan view. The fuel injection valve 48 also spreads and injects fuel within a conical area of an angle θ around the center line Z, as shown in FIG. Within the range of this injection angle θ,
Straight lines X and y are both included.

この燃料噴射弁48は制御器(図示せず)が出力する電
気信号により所定のタイミングで開弁じ、所定圧に加圧
された分配管50内の燃料を連通室46内へ間欠的に噴
射する。
The fuel injection valve 48 opens at a predetermined timing in response to an electric signal output from a controller (not shown), and intermittently injects fuel in the distribution pipe 50 pressurized to a predetermined pressure into the communication chamber 46. .

この第1実施例の動作は次の通りである。低負荷・低速
運転時には、制御弁44は閉じ第゛1吸気通路40aか
ら吸気は連通室46へ導かれる。低速運転では吸気の脈
動が大きく、また第1吸気通路40aは小径なので吸気
慣性も大きい、このため吸気弁20が閉じた時には吸気
は第1吸気通路40aから連通室46に入って強い乱流
を生成する。連通室46に間欠的に噴射された燃料は、
吸気の乱流によって速やかにかつ良好に霧化され、均一
化した混合気となって吸気弁20の開弁に伴い燃焼室1
6に流入する。この際連通室46内の乱流がスワールを
強化することにもなり、燃焼安定化も図れる。
The operation of this first embodiment is as follows. During low load/low speed operation, the control valve 44 is closed and intake air is guided from the first intake passage 40a to the communication chamber 46. During low-speed operation, the intake air pulsates greatly, and since the first intake passage 40a has a small diameter, the intake inertia is also large. Therefore, when the intake valve 20 closes, the intake air enters the communication chamber 46 from the first intake passage 40a, creating strong turbulence. generate. The fuel intermittently injected into the communication chamber 46 is
The turbulent flow of intake air quickly and well atomizes the air mixture, creating a homogenized air-fuel mixture that flows into the combustion chamber 1 as the intake valve 20 opens.
6. At this time, the turbulent flow within the communication chamber 46 also strengthens the swirl, and combustion can be stabilized.

高負荷・高速運転時には制御弁44が開き、吸気は第1
、第2吸気通路40a、40bから連通室46に入る。
During high-load/high-speed operation, the control valve 44 opens and the intake air flows into the first
, enters the communication chamber 46 from the second intake passages 40a, 40b.

噴射弁48から噴射された燃料は角度θの広がりを持っ
ているるばかりでなく比較的広い連通室46内を長い距
離の間内壁に当たることなく拡散する。このため内壁に
付着する燃料が減り、燃料の霧化が促進される。
The fuel injected from the injection valve 48 not only has a spread of angle θ but also diffuses within the relatively wide communication chamber 46 over a long distance without hitting the inner wall. This reduces the amount of fuel adhering to the inner wall and promotes atomization of the fuel.

第3図で実線Aは制御弁44を開き続けた場合のトルク
特性であり、中低速での吸気慣性効果の減少によりトル
ク低下が著しいことを示している。同図鎖線Bは制御弁
44を閉じた場合のトルク特性である。制御弁44を中
速域で開閉させることによりこれらの2つの特性A、B
を組合せ、トルク特性の改善を図ることができる。
In FIG. 3, the solid line A represents the torque characteristic when the control valve 44 is kept open, and shows that the torque decreases significantly due to the decrease in the intake inertia effect at medium and low speeds. The dashed line B in the figure is the torque characteristic when the control valve 44 is closed. These two characteristics A and B can be adjusted by opening and closing the control valve 44 in the medium speed range.
By combining these, it is possible to improve the torque characteristics.

第4図は第2実施例を一部断雪した平面図である。この
実施例は、前記第1実施例における第1吸気通路40a
を第2吸気通路40bより小径に形成したものである。
FIG. 4 is a plan view of the second embodiment with some snow removed. This embodiment is similar to the first intake passage 40a in the first embodiment.
is formed to have a smaller diameter than the second intake passage 40b.

この実施例によれば噴射弁48の噴射口が第1、第2吸
気通路40a、40b間の壁より第2吸気通路40b側
に偏位している。この結果高負荷・高速時に制御弁44
が開くと第2吸気通路40bから連通室46に流入した
吸気は、第1実施例に比べ、噴射弁48から噴射された
燃料に一層よく当たり、燃料の霧化がさらに促進される
。また第2吸気通路40bが小径なので、第1実施例に
比べて一層低速から吸気慣性によるトルク増加を図るこ
とができる。さらに第1吸気通路40aの連通室46に
対する偏位量は、第1実施例に比べて大きくなるから、
制御弁44が閉じている低速時には連通室46に生成さ
れる渦流が一層強くなり、吸気弁20の開弁時にはこの
渦流により燃焼室16内に一層強いスワール(吸入渦流
)が発生する。このため低速時の燃焼が安定化され、低
速運転が円滑になる効果が一層顕著になる。
According to this embodiment, the injection port of the injection valve 48 is offset toward the second intake passage 40b from the wall between the first and second intake passages 40a and 40b. As a result, the control valve 44
When the second intake passage 40b opens, the intake air flowing into the communication chamber 46 from the second intake passage 40b hits the fuel injected from the injection valve 48 more effectively than in the first embodiment, and the atomization of the fuel is further promoted. Furthermore, since the second intake passage 40b has a small diameter, it is possible to increase the torque due to intake inertia from a lower speed than in the first embodiment. Furthermore, since the amount of deviation of the first intake passage 40a with respect to the communication chamber 46 is larger than that in the first embodiment,
At low speeds when the control valve 44 is closed, the vortex generated in the communication chamber 46 becomes even stronger, and when the intake valve 20 is opened, this vortex generates an even stronger swirl (intake vortex) in the combustion chamber 16. Therefore, combustion at low speeds is stabilized, and the effect of smoothing low speed operation becomes even more pronounced.

第5図は第3実施例の一部断面した平面図であり、この
実施例は第1吸気通路40aを中央に配置する一方第2
吸気通路40bを2つに分割し、それぞれに制御弁44
.44を設けたものである。この実施例によれば、制御
弁44が閉じる低負荷・低速時に第1吸気通路を通る吸
気は、噴射弁48から噴射された燃料に良好に当たり、
特に低負荷・低速時の霧化が前記第1.2実施例に比べ
て一層改善される。
FIG. 5 is a partially sectional plan view of the third embodiment, in which the first intake passage 40a is arranged in the center, while the second
The intake passage 40b is divided into two parts, each with a control valve 44.
.. 44. According to this embodiment, the intake air passing through the first intake passage during low load and low speed when the control valve 44 is closed hits the fuel injected from the injection valve 48 well.
In particular, atomization at low load and low speed is further improved compared to the above-mentioned Embodiment 1.2.

第6図は第4実施例の一部断面した平面図であり、この
実施例は第1、第2、第3吸気通路40゜a、40b、
40cを備え、第1吸気通路40aを挟む第2、第3吸
気通路40b、40cには、開閉時期が互いに異なる制
御弁44a、44bを配設した。
FIG. 6 is a partially sectional plan view of the fourth embodiment, which includes first, second, and third intake passages 40°a, 40b,
40c, and control valves 44a and 44b, which open and close at different times, are disposed in second and third intake passages 40b and 40c sandwiching the first intake passage 40a.

この実施例によれば第3実施例〔第5図〕と同様に低速
時の霧化が促進されるだけでなく、トルク特性の改善も
同時に図れる。すなわち第7図はこの第4実施例のトク
ル特性図であり、この図の実線へは制御弁44a、44
bを開き続けた場合の特性、破線Bは低速域で制御弁4
4a、44bの両方を閉じた場合の特性、また鎖線Cは
中速域で制御弁44bのみを開いた場合の特性である。
According to this embodiment, as in the third embodiment (FIG. 5), not only atomization at low speeds is promoted, but also torque characteristics can be improved at the same time. That is, FIG. 7 is a torque characteristic diagram of this fourth embodiment, and the solid line in this diagram shows the control valves 44a, 44.
Characteristics when b is kept open, broken line B shows control valve 4 in the low speed range.
The characteristic when both control valves 4a and 44b are closed, and the chain line C is the characteristic when only the control valve 44b is opened in the medium speed range.

制御弁44a、44bを異なる運転速度で開閉させてこ
れら特性A、B、Cを組み合わせることにより、前記第
1〜3実施例に比べ中速域でのトルク改善を図ることが
できる。
By opening and closing the control valves 44a and 44b at different operating speeds and combining these characteristics A, B, and C, it is possible to improve the torque in the medium speed range compared to the first to third embodiments.

第8図は第5実施例の一部断面した平面図であり、この
実施例は第4実施例(第6図)における第1吸気通路4
0aと第2吸気通路40bとの位置を入れ換えたもので
ある。この実施例によれば前記第4実施例〔第6図〕と
同様に、中速域でのトルクを増加できるだけでなく、前
記第2実施例(第4図)と同様に低速域でスワールが強
化されるので、低速運転時の回転が一層円滑になる。
FIG. 8 is a partially sectional plan view of the fifth embodiment, and this embodiment shows the first intake passage 4 in the fourth embodiment (FIG. 6).
0a and the second intake passage 40b are interchanged in position. According to this embodiment, like the fourth embodiment (Fig. 6), it is possible not only to increase the torque in the medium speed range, but also to reduce the swirl in the low speed range as in the second embodiment (Fig. 4). Since it is reinforced, rotation becomes smoother during low speed operation.

なお第2〜5実施例においても、燃料噴射弁48の中心
線は第1実施例と同様に、直線Xと直線yとの間であっ
てかつ中央の吸気弁20b方向を指向し、またその燃料
噴射の広がり角度θ内に直線Xとyとが含まれる。
In the second to fifth embodiments as well, the center line of the fuel injection valve 48 is between the straight line Straight lines X and y are included within the fuel injection spread angle θ.

なお、第4.5.6.8図では第1図と同一部分に同一
符号を付したので、その説明は繰り返さない。
In addition, in FIG. 4.5.6.8, the same parts as in FIG. 1 are given the same reference numerals, so the description thereof will not be repeated.

(発明の効果) 本発明は以上のように、燃料噴射弁(48)は両側の吸
気弁(20a、 c)の傘部側の端面の中心を結ぶ直線
(X、)と、この直線(X)に平行でかつ中央の吸気弁
(20b)の傘部側端面の中心を含む直線(y)とを含
む範囲内に燃料を広げて連通室(46)内に燃料を噴射
するから、燃料は吸気通路(40)の壁面に殆ど付着す
ることなく連通室(46)内の比較的長い距離を飛散す
る間に拡散し霧化が良好となる。このため燃料は特定の
吸気弁のみに集中的に供給されることがなくなる。燃料
は吸気弁に到達する前に連通室内で吸気中に拡散される
ので、吸気流量が吸気弁毎に相違すれば、燃料は吸気流
量が多い吸気弁に多くまた吸気流量の少ない吸気弁に少
なくなるように燃料が自動的に配分される。このため常
に好ましい燃料量が各吸気弁に供給され燃焼が良好にな
る。
(Effects of the Invention) As described above, the present invention provides a fuel injection valve (48) that is connected to a straight line ( ) and a straight line (y) that includes the center of the umbrella side end surface of the central intake valve (20b) and injects the fuel into the communication chamber (46). It spreads while scattering over a relatively long distance within the communication chamber (46) without almost adhering to the wall surface of the intake passage (40), resulting in good atomization. Therefore, fuel is no longer concentratedly supplied only to a specific intake valve. Fuel is diffused into the intake air in the communication chamber before reaching the intake valve, so if the intake flow rate is different for each intake valve, more fuel will be in the intake valve with a higher intake flow rate and less in the intake valve with a lower intake flow rate. The fuel will be automatically distributed accordingly. Therefore, a preferable amount of fuel is always supplied to each intake valve, resulting in good combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を一部断面した平面図、第
2図はそのII −II ill断面図、第3図はトル
ク特性図である。また第4.5.6.8図は他の実施例
の一部断面した平面図、第7図は第6図の実施例のトル
ク特性図である。 20a、20c・・・両側の吸気弁、 20b・・・中央の吸気弁、 40・・・吸気通路、 46・・・連通室、 48・・・燃料噴射弁、 x、y・・・直線、θ・・・燃料噴射法がり角度。 特許出願人 ヤマハ発動機株式会社
FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along II-II ill, and FIG. 3 is a torque characteristic diagram. 4.5.6.8 is a partially sectional plan view of another embodiment, and FIG. 7 is a torque characteristic diagram of the embodiment of FIG. 6. 20a, 20c... Intake valves on both sides, 20b... Central intake valve, 40... Intake passage, 46... Communication chamber, 48... Fuel injection valve, x, y... Straight line, θ...Fuel injection angle. Patent applicant Yamaha Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 1つの気筒に対し互いに隣接する3個の吸気弁を有する
4サイクル内燃機関において、 前記吸気弁に連通する吸気通路を前記吸気弁付近で互い
に連通する連通室と、この連通室に燃料を噴射する1個
の燃料噴射弁とを備え、前記燃料噴射弁は、両側の2つ
の吸気弁の傘部側端面の中心を結ぶ直線と、この直線に
平行で中央の吸気弁の傘部側端面の中心を含む直線とを
含む範囲内に燃料を広げて噴射することを特徴とする4
サイクル内燃機関の吸気装置。
[Scope of Claims] A four-stroke internal combustion engine having three intake valves adjacent to each other for one cylinder, comprising: a communication chamber in which an intake passage communicating with the intake valve communicates with each other near the intake valve; one fuel injection valve that injects fuel into the chamber, and the fuel injection valve is connected to a straight line connecting the centers of the umbrella side end surfaces of the two intake valves on both sides, and a line that is parallel to this straight line and connects the center of the central intake valve. 4. The fuel is spread and injected within a range including a straight line including the center of the side end surface of the umbrella part.
Cycle internal combustion engine intake system.
JP1297625A 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine Pending JPH02161168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297625A JPH02161168A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297625A JPH02161168A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57200367A Division JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Publications (1)

Publication Number Publication Date
JPH02161168A true JPH02161168A (en) 1990-06-21

Family

ID=17848989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297625A Pending JPH02161168A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02161168A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770914A (en) * 1980-10-20 1982-05-01 Yamaha Motor Co Ltd Air intake controller for multi-valvetype internal combustionn engine
JPS57102516A (en) * 1980-12-13 1982-06-25 Yamaha Motor Co Ltd Intake device for engine
JPS57105534A (en) * 1980-12-22 1982-07-01 Yamaha Motor Co Ltd Intake structure of multiple intake valve engine
JPS57176311A (en) * 1981-04-22 1982-10-29 Yamaha Motor Co Ltd Four-cycle engine
JPS5990717A (en) * 1982-11-17 1984-05-25 Yamaha Motor Co Ltd Intake device for 4-cycle internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770914A (en) * 1980-10-20 1982-05-01 Yamaha Motor Co Ltd Air intake controller for multi-valvetype internal combustionn engine
JPS57102516A (en) * 1980-12-13 1982-06-25 Yamaha Motor Co Ltd Intake device for engine
JPS57105534A (en) * 1980-12-22 1982-07-01 Yamaha Motor Co Ltd Intake structure of multiple intake valve engine
JPS57176311A (en) * 1981-04-22 1982-10-29 Yamaha Motor Co Ltd Four-cycle engine
JPS5990717A (en) * 1982-11-17 1984-05-25 Yamaha Motor Co Ltd Intake device for 4-cycle internal-combustion engine

Similar Documents

Publication Publication Date Title
JPH0415937Y2 (en)
JPH057555B2 (en)
JPH02161167A (en) Intake device for four-cycle internal combustion engine
US5060616A (en) Intake system for multiple-valve engine
US5720259A (en) Fuel injected multi-valve engine
JPH02161168A (en) Intake device for four-cycle internal combustion engine
JPS58135323A (en) Air inlet device for diesel engine
JP2576905B2 (en) Intake device for 4-cycle internal combustion engine
JPH0650093B2 (en) Internal combustion engine intake system
JPS60233314A (en) Aspiration control device for internal-combustion engine
JP3506769B2 (en) Engine intake control device
JPH052804B2 (en)
JPH02161169A (en) Intake device for four-cycle internal combustion engine
JPH0759922B2 (en) Intake device for 4-cycle internal combustion engine
JPH02161124A (en) Intake device for four-cycle internal combustion engine
JPH02161125A (en) Intake device for four-cycle internal combustion engine
JPH0148379B2 (en)
JPH045469A (en) Fuel injection device
JPH0481522A (en) Intake device of engine
JP2556419B2 (en) Intake device for 4-cycle internal combustion engine
JPH036858Y2 (en)
JPH048295Y2 (en)
JP3447810B2 (en) 4-cycle engine intake system
JPH048251Y2 (en)
JPH0540271Y2 (en)