JPH02158305A - Manufacture of woody molding - Google Patents

Manufacture of woody molding

Info

Publication number
JPH02158305A
JPH02158305A JP31256488A JP31256488A JPH02158305A JP H02158305 A JPH02158305 A JP H02158305A JP 31256488 A JP31256488 A JP 31256488A JP 31256488 A JP31256488 A JP 31256488A JP H02158305 A JPH02158305 A JP H02158305A
Authority
JP
Japan
Prior art keywords
catalyst
container
supplied
vessel
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31256488A
Other languages
Japanese (ja)
Inventor
Takashi Nagase
高志 長瀬
Yoshio Taguchi
田口 喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31256488A priority Critical patent/JPH02158305A/en
Publication of JPH02158305A publication Critical patent/JPH02158305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PURPOSE:To perform easily and efficiently a catalytic effect by selecting a matter as a binding agent in which the cure thereof is promoted by a catalyst, and supplying a gasified catalyst into the material aggregate within a laminating vessel or transporting vessel by placing it on a heated air prior to the compression mold. CONSTITUTION:A molding material is supplied to a laminating vessel 1 for forming a material aggregate W. The catalytic gas supplied into the laminating vessel 1 is directed to the side of an upper part transporting vessel 7 passing through the formative member 2 of the laminating vessel 1, and circulating through the material aggregate W. The catalytic gas is held at a predetermined temperature through a heated air, and the material aggregate W is held at a predetermined low temperature through a low temperature holder 10, whereby the catalyst is liquefied through the temperature difference being produced between the both, and trapped in a molding material for forming the material aggregate W. The great part of the catalyst supplied comes to be trapped, and thus, the contact efficiency of the catalyst is improved considerably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車の内装材、建築−家具用基材等に利用
される木質系成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a wood-based molded article used as an interior material for automobiles, a base material for architecture/furniture, and the like.

(従来の技術) この種の木質系成形体は、従来一般には、木材チップを
解繊して得た木質tih維に合成樹脂等の結合剤を加え
、−旦マット化した後、成形型に供給して圧縮成形する
方法によって製造されていたが、最近、成形素材をマッ
ト化することなく直接圧縮成形する製造方法が確立され
、既に特開昭62−90203号公報、特開昭82−1
34215号公報等に明らかにされている。この方法は
、結合剤を含ませた木質繊維を積層用容器に供給して低
密度の素材集合体を形成し、この素材集合体を搬送用容
器に移して成形型に供給し圧縮成形するようにしたもの
で、マット化が不要になる分、工程の簡略化、材料歩留
りの向上、深絞り性の向上等を達成できる利点がある。
(Prior art) This type of wood-based molded article has conventionally been produced by adding a binder such as a synthetic resin to wood TIH fibers obtained by defibrating wood chips, and then making the wood into a mat after forming it into a mold. Previously, it was produced by supplying and compression molding, but recently a production method has been established in which the molding material is directly compression molded without matting, and has already been published in Japanese Patent Application Laid-Open Nos. 62-90203 and 1982-1.
This is disclosed in Publication No. 34215 and the like. In this method, wood fibers impregnated with a binder are fed into a lamination container to form a low-density material aggregate, which is then transferred to a transport container and fed into a mold for compression molding. This eliminates the need for matting, which has the advantage of simplifying the process, improving material yield, and improving deep drawability.

ところで、上記した木質系成形体の製造においては、木
質m維に含ませる結合剤として、専らフェノール樹脂や
尿素樹脂のような熱硬化性樹脂を用いており、これを硬
化させるため、熱を加えつ覧圧縮成形を行なわなければ
ならないという制約があった。そして通常は、予め成形
型を加熱しておいて熱を加えるようにしているが、その
加熱温度はかなりの高温(200〜250°C)となり
、エネルギー消費の拡大が避けられないという問題があ
った。
By the way, in the production of the above-mentioned wood-based molded articles, thermosetting resins such as phenol resins and urea resins are used exclusively as binders included in the wood fibers, and in order to harden them, heat is applied. There was a constraint that visual compression molding had to be performed. Normally, the mold is heated in advance and then heat is applied, but the heating temperature is quite high (200-250°C), which inevitably increases energy consumption. Ta.

そこで、結合剤として触媒によって硬化するもの(例え
ば、イソシアネートプレポリマー)を用い、圧縮成形中
に成形型を通じて成形素材に触媒(例えば、トリエチル
アミン)をガス状あるいはエアロゾル状で接触させる方
法が開発され、既に特開昭59−158242号公報、
特開昭59−201844号公報等に明らかにされてい
る。この方法によれば、成形型を全く加熱する必要がな
いか、わずか加熱(50〜80°C)するだけで足り、
省エネルギーの面できわめて有利となる。
Therefore, a method was developed in which a binder that is cured by a catalyst (e.g., isocyanate prepolymer) is used, and a catalyst (e.g., triethylamine) is brought into contact with the molding material in gas or aerosol form through the mold during compression molding. Already published in Japanese Patent Application Laid-Open No. 59-158242,
This is disclosed in Japanese Patent Application Laid-Open No. 59-201844. According to this method, there is no need to heat the mold at all, or only a slight heating (50-80°C) is sufficient.
This is extremely advantageous in terms of energy conservation.

(発明が解決しようとする課題) しかしながら、上記触媒による硬化を利用する方法によ
れば、触媒を供給するための手段を成形型に付設しなけ
ればならないため、成形型の大型、複雑化が避けられな
いようになり、その上、多数設けた触媒導入孔に成形素
材が入り込んで成形体の面粗度が悪化するという問題が
あった。また触媒をエアツル状またはガス状でで供給し
た場合は、短時間で成形型の隅ずみまでいきわたらす、
高価な触媒の大φ使用を余儀なくされ、コスト負担が増
大するという問題があった。特にエアゾル状で供給した
場合は、成形型や導べ管の汚染がひどいため、成形後、
長時間通気してこれらに信性した触媒を排除しなければ
ならず、その時間分、生産性が芥H害されるという問題
があった。
(Problems to be Solved by the Invention) However, according to the method using curing by a catalyst, a means for supplying the catalyst must be attached to the mold, which avoids making the mold large and complicated. Furthermore, there was a problem in that the molding material entered the catalyst introduction holes provided in large numbers and the surface roughness of the molded body deteriorated. In addition, when the catalyst is supplied in the form of an air drop or gas, it can be distributed to every corner of the mold in a short period of time.
This necessitates the use of an expensive catalyst with a large diameter, resulting in an increased cost burden. Especially when supplied in aerosol form, molds and conduit tubes are severely contaminated, so after molding,
It is necessary to remove the reliable catalyst by aeration for a long time, and there is a problem in that productivity is adversely affected by that time.

本発明は、上記従来の問題を解決することを課題として
なされたもので、その目的とするところは、触媒効果を
容易かつ効率的に発揮させることができる木質系成形体
の製造方法を提供することにある。
The present invention was made to solve the above-mentioned conventional problems, and its purpose is to provide a method for manufacturing a wood-based molded body that can easily and efficiently exert a catalytic effect. There is a particular thing.

(課題を解決するための手段) 本発明は、上記課題を解決するため、結合剤を含ませた
木質繊維を積層用容器に供給して低密度の素材集合体を
形成し、この素材集合体を搬送用容器に移して成形型に
供給し圧縮成形する木質系成形体の製造方法において、
前記結合剤として触媒により硬化が促進されるものを選
択し、圧縮成形前に、ガス化した触媒を加熱空気に乗せ
て前記積層用容器または搬送用容器内の素材集合体中に
供給するようにしたことを要旨とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention supplies wood fibers impregnated with a binder to a lamination container to form a low-density material aggregate. In a method for producing a wood-based molded body, the wood-based molded body is transferred to a transportation container, supplied to a mold, and compression-molded.
A binder whose curing is promoted by a catalyst is selected, and before compression molding, the gasified catalyst is carried on heated air and supplied into the material aggregate in the lamination container or transport container. The summary is what was done.

本発明で使用する結合剤および触媒の種類は、特に限定
するものでないが、−例として、結合剤としてイソシア
ネートプレポリマーを、触媒としてトリエチルアミン、
トリエチレンジアミン等を選択することができる。
The type of binder and catalyst used in the present invention is not particularly limited, but includes, for example, an isocyanate prepolymer as a binder, triethylamine as a catalyst,
Triethylenediamine and the like can be selected.

上記触媒のガス化前の状態は任意であり、液体であって
も固体であっても良い。またこの液体または固体の触媒
をガス化する方法も任意であり、例えば加熱方式により
ガス化する専用の触媒ガス化装置を用い、あるいは機械
的にガス化する汎用のガスジェネレータを用いることが
できる。
The state of the catalyst before gasification is arbitrary and may be either liquid or solid. Further, the method of gasifying this liquid or solid catalyst is also arbitrary, and for example, a dedicated catalyst gasifier that gasifies by heating method can be used, or a general-purpose gas generator that gasifies mechanically can be used.

本発明において、ガス化した触媒(触媒ガス)は加熱空
気に乗せて積層用容器または搬送用容器内の素材集合体
中に供給するが、この加熱空気を得る方法は任意であり
、例えば別途加熱源を用いて加熱しても、配管をバント
ヒータ等で被覆して供給経路内で加熱しても、あるいは
−1−記のように触媒のガス化のだめの専用の触媒ガス
化装置を用いる場合は、この装置を経由させて触媒と同
時加熱するようにしても良い。
In the present invention, the gasified catalyst (catalyst gas) is carried on heated air and supplied into the material assembly in the stacking container or the transportation container, but this heated air can be obtained by any method. Even if you heat it using a source, cover the piping with a bunt heater etc. and heat it in the supply route, or use a dedicated catalyst gasification device for catalyst gasification as in -1- , it may be heated simultaneously with the catalyst via this device.

また本発明においては、素材集合体と触媒ガスとの間に
積極的に温度差を持たせるようにするため、積層用容器
または搬送用容器の周りを低温保持体で覆い、素材集合
体を比較的低温に保持しておくのが望ましい。
In addition, in the present invention, in order to actively create a temperature difference between the material assembly and the catalyst gas, the stacking container or the transportation container is covered with a low-temperature retainer, and the material assembly is compared. It is preferable to keep it at a relatively low temperature.

(作用) 」−記構成の木質系成形体の製造方法においては、積層
用容器または搬送用容器を通じて素材集合体中に触媒ガ
スを供給するので、成形型に特別の触媒ガス供給手段を
付設する必要がなくなる。また触媒ガスを加熱空気に乗
せて供給するので、結合剤を含む成形素材との間に温度
差が生じ、この温度差によって触媒が液化または固化し
て成形素材にトラップされるようになり、触媒接触の効
率が高まる。
(Function) In the method for producing a wood-based molded article having the configuration described above, a catalyst gas is supplied into the material assembly through a stacking container or a transport container, so a special catalyst gas supply means is attached to the mold. There will be no need. In addition, since the catalyst gas is supplied in heated air, a temperature difference occurs between it and the molding material containing the binder, and this temperature difference causes the catalyst to liquefy or solidify and become trapped in the molding material. Increased contact efficiency.

(実施例) 以下、本発明の実施例を添付図面にもとづいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

本発明にか〜る木質系成形体の製造方法は、前記した先
行技術(特開昭82−90203号公報、特開昭62−
134215号公報等)に示される方法と基本的に変わ
りがなく、木材チップを解繊して得た木質繊維1こ結合
剤を含ませる工程と、これを後述する積層用容器へ供給
して低密度の素材集合体を形成する工程と、この素材集
合体を後述する搬送用容器に移して成形型まで搬送する
工程と、成形型を型閉じして圧縮成形する工程とから成
っている。しかして、本発明においては、前記した一連
の工程の中で、結合剤として触媒によって硬化するもの
を選択し、かつ圧縮成形前にガス化した触媒を加熱空気
に乗せて前記積層用容器または搬送用容器へ供給し、該
触媒ガスを、前記容器内の素材集合体中に流すようにし
ている。
The method for producing a wood-based molded article according to the present invention is based on the prior art described above (Japanese Unexamined Patent Application Publication No. 82-90203, Japanese Unexamined Patent Publication No. 62-62-
There is basically no difference from the method shown in Japanese Patent Publication No. 134215, etc., which includes the step of adding a binder to one wood fiber obtained by defibrating wood chips, and supplying this to a lamination container described later to reduce the The process consists of a process of forming a dense material aggregate, a process of transferring this material aggregate to a transport container (to be described later) and transporting it to a mold, and a process of closing the mold and performing compression molding. Therefore, in the present invention, in the series of steps described above, a binder that is cured by a catalyst is selected, and the gasified catalyst is placed on heated air before compression molding to be carried out in the lamination container or conveyed. The catalytic gas is supplied to a container for use, and the catalyst gas is caused to flow into the material aggregate within the container.

以下、本発明の実施例を具体的に説明する。Examples of the present invention will be specifically described below.

実施例1 結合剤としてインシアネートプレポリマー(例えば、日
本ポリウレタン社 コロネート3053)を選択し、先
ずこの結合剤を木質繊維に含ませて成形素材を得る。イ
ソシアネートプレポリマーは、木質#&維のセルロース
OH基や木質繊維に含まれる水分と反応して硬化するも
のであるが、その反応は遅く、後述する触媒ガスによっ
て反応が促進される。
Example 1 Incyanate prepolymer (for example, Coronate 3053, manufactured by Nippon Polyurethane Co., Ltd.) is selected as a binder, and this binder is first impregnated with wood fibers to obtain a molding material. The isocyanate prepolymer is cured by reacting with the cellulose OH groups of the wood fibers and the moisture contained in the wood fibers, but the reaction is slow and is promoted by the catalyst gas described below.

次に上記成形素材を、第2図に示す積層用容器1へ供給
し、素材集合体中を形成する。積層用容器1の内部には
パンチングメタル等から成る行形部材2が張設されてお
り、また積層用容器1の下部には真空引き手段(図示略
)から延びるバキューム管3と後述する触媒ガス化装置
11(第1図)から延びる送気管4とが左右に別れて接
続されている。バキューム管3と送気管4のそれぞれに
はバルブ5.6が介装されており、素材集合体−を形成
するに際しては、バキューム管3内のバルブ5が開かれ
る一方、送気管4内のバルブ6が閉じられるようになる
Next, the above molding material is supplied to the stacking container 1 shown in FIG. 2 to form a material aggregate. A linear member 2 made of punched metal or the like is stretched inside the stacking container 1, and a vacuum pipe 3 extending from a vacuum means (not shown) and a catalyst gas, which will be described later, are provided at the bottom of the stacking container 1. The air pipe 4 extending from the oxidizing device 11 (FIG. 1) is connected to the left and right parts separately. Valves 5 and 6 are interposed in each of the vacuum pipe 3 and the air supply pipe 4, and when forming a material assembly, the valve 5 in the vacuum pipe 3 is opened, while the valve in the air supply pipe 4 is opened. 6 will be closed.

成形素材は、この積層用容器1に対して上方から散布用
容器(図示略)を介して散布され、バキューム管3から
吸引される空気の流れに乗って降下し、何形部材2上に
堆積する。そして適宜堆積した時点で成形素材の散布を
停止すれば、所定高さを有する素材集合体Wが形成され
る。
The molding material is sprayed from above into the lamination container 1 through a spray container (not shown), descends on the flow of air sucked from the vacuum pipe 3, and is deposited on the shaped member 2. do. If the spreading of the forming material is stopped when the forming material is appropriately deposited, a material aggregate W having a predetermined height is formed.

次に、上記のように形成された素材集合体Wを納めたま
\の積層用容器1に対して、同じく第2図に示す搬送用
容器7を被せ、第1図に示すように両者を一体化する。
Next, the stacking container 1 containing the material assembly W formed as described above is covered with the transport container 7 shown in FIG. 2, and the two are integrated as shown in FIG. become

この搬送用容器7にも、その内部に行形部材8が張設さ
れると共に、その底部に真空引き手段(図示略)から延
びるバキューム管8が接続されている。積層用容器1と
搬送用容器7とは、その周りの一部または全部が低温保
持体10.10により覆われている。低温保持体lOは
、例えば冷却媒体の流通するジャケットを有するものか
ら成り、この中に冷気、温水あるいは加温油液を循環さ
せることにより前記一体化された容器内の雰囲気を所定
の低温度に保持することができ、したがって容器内の素
材集合体Wも所定の低温度に保持される。
This transport container 7 also has a line member 8 stretched therein, and a vacuum pipe 8 extending from a vacuum evacuation means (not shown) is connected to the bottom thereof. The stacking container 1 and the transport container 7 are partially or entirely covered with a low temperature holder 10.10. The low-temperature holding body 1O is composed of, for example, a jacket through which a cooling medium flows, and by circulating cold air, hot water, or heated oil liquid through the jacket, the atmosphere inside the integrated container is brought to a predetermined low temperature. Therefore, the material assembly W in the container is also maintained at a predetermined low temperature.

ご覧で、触媒ガス化装置11は、第1図に示すように、
触媒Xの収納空間を形成する密閉のハウジング12を備
え、このハウジング12の天井部に前記積層用容器lに
結ぶ送気管4を接続し、かつ空気を導入するためのエア
配管13の一端をハウジングX2の内底部まで取入れて
いる。ハウジング12は、その周りに配したヒータ(図
示略)によって所定の温度に加温されるようになってお
り、その全体が断熱材14で覆われている。エア配管1
3の他端はブロワ(図示略)に接続されており、その中
間にはバルブ15と三方弁16とが介装されている。ま
た送気管4のハウジング12に近接する部分にもバルブ
17が介装されている。なお送気管4の周りは、その全
長にわたって保温材18で覆われている。
As shown in FIG. 1, the catalytic gasification device 11 is
A closed housing 12 is provided which forms a storage space for the catalyst Even the inner bottom of the X2 is incorporated. The housing 12 is heated to a predetermined temperature by a heater (not shown) disposed around the housing 12, and the entire housing 12 is covered with a heat insulating material 14. Air piping 1
The other end of 3 is connected to a blower (not shown), and a valve 15 and a three-way valve 16 are interposed between them. A valve 17 is also interposed in a portion of the air pipe 4 that is close to the housing 12. Note that the air pipe 4 is covered with a heat insulating material 18 over its entire length.

本実施例においては、」−記触媒Xとしてトリエチルア
ミンを選択し、これを触媒ガス化装置11のハウジング
12内に所定量投入し、送気管4内のバルブ17を閉じ
てハウジング12内を所定温度に保持しておく。一方、
積層用容器1に搬送用容器7を被せた第1図図示の状態
において、積層用容器1に通じるバキューム管3のバル
ブ5を閉じると共に送気管4内のバルブ8を開き、さら
に低温保持体10に冷却媒体を循環させて、これら容器
内を低温に保持しておく。前記準備完了後、エア配管1
3内の三方弁16を切替え、かつ送気管4内のバルブ1
6を開く。すると、圧縮空気がハウジング12内に導入
され、触vj:M中を通って所定温度に加熱されて送気
管4へ流れる。これと同時に触媒Nの気化が進行し、触
媒ガスが前記加熱空気とともに送気管4に流入し、積層
用容器l内の底部へと供給される。 積層用容器l内へ
供給された触媒ガスは、積層用容器1の月形部材2を通
って素材集合体−を流通して」一部の搬送用容器7側へ
向かう。しかして、触媒カスは加熱空気によって所定の
高温に保持されかつ素材集合体Wは低温保持体10によ
って所定の低温に保持されており、両者の間に生しる温
度差によって触媒が液化し、素材集合体Wを形成する成
形素材にトラップされる。いま、触媒にを60°Cに保
持し、ハウジンク12内に5父の空気を導入したとすれ
ば、触媒の蒸気圧は285mmHgであり、約10gの
アミンが発生する。一方、素材集合体−が20℃保持さ
れていたとすれば、20℃における触媒の蒸気圧は57
mmHgであり、触媒ガスが60℃から20°Cに降下
したことで、約9.5gの触媒が析出する。
In this example, triethylamine is selected as the catalyst Keep it in. on the other hand,
In the state shown in FIG. 1 in which the stacking container 1 is covered with the transport container 7, the valve 5 of the vacuum pipe 3 leading to the stacking container 1 is closed, the valve 8 in the air supply pipe 4 is opened, and the cryostat 10 is closed. The inside of these containers is kept at a low temperature by circulating a cooling medium. After completing the above preparation, air piping 1
Switch the three-way valve 16 in the air pipe 4, and switch the three-way valve 16 in the air pipe 4.
Open 6. Then, the compressed air is introduced into the housing 12, passes through the air pipe M, is heated to a predetermined temperature, and flows into the air pipe 4. At the same time, vaporization of the catalyst N progresses, and the catalyst gas flows into the air pipe 4 together with the heated air and is supplied to the bottom of the stacking container l. The catalyst gas supplied into the stacking container 1 passes through the moon-shaped member 2 of the stacking container 1, flows through the material aggregate, and heads toward a portion of the transport container 7. Thus, the catalyst scum is kept at a predetermined high temperature by the heated air, and the material aggregate W is kept at a predetermined low temperature by the low temperature holder 10, and the catalyst liquefies due to the temperature difference between the two. It is trapped in the molding material forming the material aggregate W. Now, if the catalyst is maintained at 60° C. and 50% of air is introduced into the housing 12, the vapor pressure of the catalyst is 285 mmHg, and about 10 g of amine is generated. On the other hand, if the material assembly is maintained at 20℃, the vapor pressure of the catalyst at 20℃ is 57
mmHg, and as the catalyst gas dropped from 60°C to 20°C, about 9.5g of catalyst was precipitated.

すなわち、供給した触媒の大部分は成形素材にトラップ
されるようになり、触媒の接触効率は著しく向上する。
That is, most of the supplied catalyst comes to be trapped in the molding material, and the contact efficiency of the catalyst is significantly improved.

なおトラップされない余分な触媒ガスは、加熱空気とと
もに搬送用容器7に接続するバキューム管9に至り、そ
こから外部へと排出される。
Note that the excess catalyst gas that is not trapped reaches the vacuum pipe 9 connected to the transport container 7 together with the heated air, and is discharged from there to the outside.

そして、素材集合体W中へ適当−の触媒ガスを通した後
、送気管4内のバルブ17を閉じ、バキューム管9に接
続する真空引き手段を作動させる。すると、搬送用容器
7の底部側が排気され、積層用容器1内の素材集合体W
が搬送用容器7の行形部材8上に吸引保持される。その
後、搬送用容器7は搬送手段(図示略)により積層用容
器lから切り離されて成形型まで移動し、そこで真空引
きが解除される。この真空弓きの解除により行形部材8
上の素材集合体−は自重により成形型内へ落下し、その
後、直ちに成形型による圧縮成形が行われる。しかして
この圧縮成形の間、成形素材にトラップされた触媒の作
用で結合剤の硬化が進行し、圧縮成形終了とともに硬質
の成形体が得られるようになる。しかも、成形型には、
従来のように触媒導入用の孔が明けられていないので、
成形体の面精度も著しく向上する。
After passing a suitable catalyst gas into the material assembly W, the valve 17 in the air supply pipe 4 is closed, and the evacuation means connected to the vacuum pipe 9 is activated. Then, the bottom side of the transport container 7 is evacuated, and the material assembly W in the stacking container 1 is
is sucked and held on the row member 8 of the transport container 7. Thereafter, the transport container 7 is separated from the stacking container 1 by a transport means (not shown) and moved to the mold, where the vacuum is released. By releasing this vacuum bowing, the row member 8
The upper material assembly falls into the mold due to its own weight, and is then immediately compression-molded by the mold. However, during this compression molding, the hardening of the binder progresses due to the action of the catalyst trapped in the molding material, and a hard molded body is obtained when the compression molding is completed. Moreover, in the mold,
Since there is no hole for introducing the catalyst like in the past,
The surface accuracy of the molded body is also significantly improved.

実施例2 触媒として固形のトリエチレンジアミン(エアブロタク
ト社PABCO)を用い、これを1−記実流側1で用い
た触媒ガス化装置11(第1図)に収納する。この場合
、トリエチレンジアミンは吸水性が大きいため、配管1
3を通して給送する圧縮気体として乾燥空気を用いる。
Example 2 Solid triethylene diamine (PABCO, manufactured by Airbrotact Co., Ltd.) was used as a catalyst, and was stored in the catalytic gasifier 11 (FIG. 1) used in 1- Actual flow side 1. In this case, since triethylenediamine has high water absorption, the piping 1
Dry air is used as the compressed gas fed through 3.

本実施例においては、触媒を40°Cに保持し、かつ素
材集合体Wを10°Cに保持して5文の空気を給送すれ
ば、約5秒で必要量の触媒が成形素材にトラップされる
。しかして、このトリエチレンジアミンはインシアネー
ト系結合剤の硬化反応に非常に高い触媒効果を有し、圧
縮成形終了時点において成形体の硬化はより完全となる
In this example, if the catalyst is maintained at 40°C, the material assembly W is maintained at 10°C, and 5 liters of air is fed, the required amount of catalyst will be applied to the molding material in about 5 seconds. Trapped. Therefore, this triethylenediamine has a very high catalytic effect on the curing reaction of the incyanate binder, and the curing of the molded article becomes more complete at the end of compression molding.

実施例3 実施例1.2における触媒ガス化装置に代え、第3図に
示す市販のガスジェネレータ(例えば、新東工業社KG
G20) 21を用いる。この場合は、同図に示すよう
に、ガスジェネレータ21に、触媒Xを収納するタンク
22から延びる配管23と上記積層用容器1に結ぶ送気
管4とを接続し、前記送気管4の途中にブロワ24から
延びるエア配管25を接続し、かつ送気管4の周りをバ
ンI・ヒータを含む加熱体2日で覆うようにする。
Example 3 Instead of the catalytic gasifier in Example 1.2, a commercially available gas generator (for example, Shinto Kogyo KG
G20) 21 is used. In this case, as shown in the figure, a pipe 23 extending from a tank 22 containing the catalyst X and an air pipe 4 connected to the stacking container 1 are connected to the gas generator 21. An air pipe 25 extending from the blower 24 is connected, and the air pipe 4 is covered with a heating element including a van I heater.

か覧る構成により、ガスジェネレータ21でガス化され
た触媒は、ブロワ24から給送される空気とともに送気
管4を流通し、この間所定温度に加熱されて第1図に示
す態様の積層用容器1へと供給され、実施例1と同様に
素材集合体W中の成形素材にトラップされる。なお、こ
の実施例3において、ブロワ24に加熱源を併設し、加
熱した空気を送気管4へ給送するようにしても良い。
With this configuration, the catalyst gasified by the gas generator 21 flows through the air pipe 4 together with the air fed from the blower 24, and during this time is heated to a predetermined temperature to form the laminated container of the embodiment shown in FIG. 1, and is trapped in the molding material in the material aggregate W as in Example 1. In this third embodiment, a heating source may be provided in addition to the blower 24 to feed heated air to the air pipe 4.

実施例4 実施例1〜3における触媒ガスの積層用容器lへの供給
に代え、第4図に示すように、成形型(下型)31に合
わされた搬送用容器7へ触媒カスを供給する。搬送用容
器7には、その底部に触媒ガス化装置11(第1図)ま
たはガスジェネレータ21(第3図)から延びる送気管
4が接続され、かつまたそのバキューム管8にバルブ3
2が介装される。一方、保持枠33で囲まれた成形型(
下型)31には、その成形面上に連通ずるように、真空
引き手段(図示路)から延びる複数のバキューム管34
.34が接続されている。
Example 4 Instead of supplying the catalyst gas to the stacking container l in Examples 1 to 3, catalyst scum was supplied to the transport container 7 fitted with the mold (lower mold) 31, as shown in FIG. . An air supply pipe 4 extending from a catalyst gasifier 11 (FIG. 1) or a gas generator 21 (FIG. 3) is connected to the bottom of the transport container 7, and a valve 3 is connected to the vacuum pipe 8.
2 is interposed. On the other hand, the mold (
The lower mold) 31 has a plurality of vacuum pipes 34 extending from a vacuum evacuation means (path shown) so as to communicate with the molding surface thereof.
.. 34 are connected.

本実施例においては、積層用容器1 (第2図)で素材
集合体Wを形成した後、この素材集合体Wを積層用容器
1から搬送用容器7へ移し、続いて搬送手段(図示路)
により該搬送用容器7を成形型31上まで移動させて、
第4図に示すように該成形型31に合わせる。この状態
のもと、バキューム管9からの真空引きを解除すると、
搬送用容器7内の素材集合体域は自重により成形型31
上に落下する。これにタイミングを合わせてバキューム
管9内のバルブ32を閉じ、送気管4内のバルブ6を開
き、かつバキューム管34に接続する真空引き手段を作
動させる。すると、触媒ガスが加熱空気とともに搬送用
容器7内に供給され、素材集合体−を流通してバキュー
ム管34から排出され、この間、素材集合体W中の成形
素材にトラップされ、圧縮成形終了とともに硬質の成形
体が得られるようになる。
In this embodiment, after forming the material assembly W in the stacking container 1 (FIG. 2), the material assembly W is transferred from the stacking container 1 to the transportation container 7, and then the transportation means (through the illustrated path )
to move the transport container 7 onto the mold 31,
Fit into the mold 31 as shown in FIG. Under this condition, when the vacuum from the vacuum tube 9 is released,
The material assembly area in the transport container 7 is compressed by the mold 31 due to its own weight.
fall on top. At the same time, the valve 32 in the vacuum pipe 9 is closed, the valve 6 in the air supply pipe 4 is opened, and the evacuation means connected to the vacuum pipe 34 is activated. Then, the catalyst gas is supplied into the conveying container 7 together with heated air, flows through the material assembly, and is discharged from the vacuum pipe 34. During this time, it is trapped in the molding material in the material assembly W, and upon completion of compression molding, A hard molded body can now be obtained.

(発明の効果) 以」二、詳細に説明したように、本発明にか〜る木質系
成形体の製造方法によれば、成形型に特別の触媒供給手
段を付設する必要がないので、成形型の小型、簡略化を
達成できるばかりか、面精度に優れた成形体を得ること
ができる効果がある。また結合剤を含む成形素材と触媒
ガスとの間の温度差を利して触媒を効率良く成形素材に
トラップさせることができ、触媒使用量の削減はもとよ
り、生産性の向上をも達成できる効果がある。
(Effects of the Invention) Second, as explained in detail, according to the method for producing a wood-based molded article according to the present invention, there is no need to attach a special catalyst supply means to the mold, so that the molding Not only can the mold be made smaller and simpler, but also a molded product with excellent surface accuracy can be obtained. In addition, the catalyst can be efficiently trapped in the molding material by taking advantage of the temperature difference between the molding material containing the binder and the catalyst gas, which not only reduces the amount of catalyst used but also improves productivity. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にか覧る木質系成形体の製造方法の第
1実施例を示す断面図、第2図は本発明で用いる積層用
容器および搬送用容器の断面図、第3図は本発明の第3
実施例を示す模式図、第4図は本発明の第4実施例を示
す断面図である。 ■ ・・・ 積層用容器 行形部材 低温保持体 触媒ガス化装置 エア配管 ガスジェネレータ 成形型 触媒 素材集合体 7 ・・・ 搬送用容器 牙 図 13.25・ 二重配管 21・ 1゛スニ゛2キL−ダ 第 図
FIG. 1 is a cross-sectional view showing a first embodiment of the method for manufacturing a wood-based molded article according to the present invention, FIG. 2 is a cross-sectional view of a lamination container and a transport container used in the present invention, and FIG. is the third aspect of the present invention.
FIG. 4 is a schematic diagram showing an embodiment. FIG. 4 is a sectional view showing a fourth embodiment of the present invention. ■ ... Container for stacking Rowing member Low-temperature holding body Catalyst gasifier Air piping Gas generator Molded catalyst material assembly 7 ... Container for transport Fig. 13.25 Double piping 21 1゛Sni゛2 Kid L-da chart

Claims (1)

【特許請求の範囲】[Claims] (1)結合剤を含ませた木質繊維を積層用容器に供給し
て低密度の素材集合体を形成し、この素材集合体を搬送
用容器に移して成形型に供給し圧縮成形する木質系成形
体の製造方法において、前記結合剤として触媒により硬
化が促進されるものを選択し、圧縮成形前に、ガス化し
た触媒を加熱空気に乗せて前記積層用容器または搬送用
容器内の前記素材集合体中に供給することを特徴する木
質系成形素体の製造方法。
(1) A wood-based system in which wood fibers impregnated with a binder are supplied to a lamination container to form a low-density material aggregate, and this material aggregate is transferred to a transport container and supplied to a mold for compression molding. In the method for manufacturing a molded article, a binder whose curing is promoted by a catalyst is selected, and before compression molding, the gasified catalyst is placed in heated air to release the material in the lamination container or transportation container. A method for producing a wood-based molded element, characterized in that it is supplied into an aggregate.
JP31256488A 1988-12-10 1988-12-10 Manufacture of woody molding Pending JPH02158305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31256488A JPH02158305A (en) 1988-12-10 1988-12-10 Manufacture of woody molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31256488A JPH02158305A (en) 1988-12-10 1988-12-10 Manufacture of woody molding

Publications (1)

Publication Number Publication Date
JPH02158305A true JPH02158305A (en) 1990-06-18

Family

ID=18030731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31256488A Pending JPH02158305A (en) 1988-12-10 1988-12-10 Manufacture of woody molding

Country Status (1)

Country Link
JP (1) JPH02158305A (en)

Similar Documents

Publication Publication Date Title
US9238337B2 (en) Molding die and molding method
US5108691A (en) Compressing and shaping thermoformable mats using superheated steam
JP5509212B2 (en) Manufacturing of structural composite elements
US4102964A (en) Method for manufacturing rigid articles having a cushioned surface
CN1147224A (en) Method and apparatus for forming structural articles
CN102216057A (en) Method for producing a concave-shaped in particular u-shaped piece in a composite material and device for carrying out the same
US20110277920A1 (en) Method for the production of a molded part
US20040045488A1 (en) Molded table and its method of manufacture
KR870009844A (en) Method for manufacturing multilayer molded part
US20070275229A1 (en) Molded article with foam-encased adhesion-resistant reinforcing member and method
JP4965296B2 (en) Preform and FRP manufacturing method
JPH02158305A (en) Manufacture of woody molding
JP3571724B2 (en) Method and apparatus for forming fiber clusters
US20050129921A1 (en) Molded article with foam-encased reinforcing member
EP0281596B1 (en) Process of forming a contoured insulating sheet
US4798763A (en) Method of molding a laminated foamable sheet
JPS6149102B2 (en)
PL322828A1 (en) Method of moulding components having layers of controllable thickness
KR101712173B1 (en) Molding device and methods for expandable resin, foamed expandable mold using the same
JPS60206618A (en) Method of molding resin item
KR101213356B1 (en) Gel Coated Reinforced Composite
JPH10296939A (en) Fiber reinforced urethane resin duplicate layer foam and its manufacture
JPH04259530A (en) Manufacture of hollow frp molding
ES484904A1 (en) Method of producing moulded articles from rigid polyurethane foam boards provided with covering layers.
JPH0392301A (en) Manufacture of woody molded product