JPH02158100A - Plasma load resistance control apparatus - Google Patents

Plasma load resistance control apparatus

Info

Publication number
JPH02158100A
JPH02158100A JP63310027A JP31002788A JPH02158100A JP H02158100 A JPH02158100 A JP H02158100A JP 63310027 A JP63310027 A JP 63310027A JP 31002788 A JP31002788 A JP 31002788A JP H02158100 A JPH02158100 A JP H02158100A
Authority
JP
Japan
Prior art keywords
antenna
bias voltage
load resistance
plasma
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310027A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshioka
健 吉岡
Mitsuji Abe
充志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63310027A priority Critical patent/JPH02158100A/en
Publication of JPH02158100A publication Critical patent/JPH02158100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To prevent load from undergoing a sudden change even at the time of being transferred to a high-level mode, by applying the variable bias of electrostatic voltage to an antenna for keeping loading resistance in the antenna constant in a tokamak type nuclear fusion device. CONSTITUTION:Directional couplers 3 arranged respectively in the middle of transmission paths monitor an advancing wave and a reflected wave, and then a load resistance estimation circuit 4 estimates loading resistance R in an antenna 1 on the basis of the monitored data. The difference between this estimated loading resistance value R and a target value R0 is inputted as a signal into a PI type feedback compensation circuit 5 which outputs a bias voltage command value Vc. A bias voltage generator circuit 6 generates dc voltage Vb ranging from 0V to 200V in response to the command value Vc for applying the generated voltage Vb to an antenna conductor. Whereby local electrostatic fields are formed to lower the density of local plasma generated on the frontal face of the antenna 1. The loading resistance is controlled at a constant value by deepening the bias voltage of the antenna at the time of being transferred to a high-level mode, namely, having at least a low-level mode, and therefore a load matching condition is prevented from being broken even at the time of being transferred to the high-level mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトカマク型核融合装置に係り、特に、プラズマ
を高温に加熱するための高周波加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tokamak-type nuclear fusion device, and particularly to a high-frequency heating device for heating plasma to a high temperature.

〔従来の技術〕[Conventional technology]

近年の核融合研究の進展により5 トカマクプラズマを
加熱すればする程、プラズマの閉じ込め性能が劣化する
こと(Lモードスケーリングと呼ばれる。)が発見され
、成る一定の特殊な運転条件下では劣化していた閉じ込
め性能がステップ的に回復するような現象(Hモード遷
移と呼ばれる。)も存在し得ることがわかってきた。こ
のトエモード遷移は、将来の核融合炉実現には必須条件
と見なされ、一方、Hモードのための運転条件は微妙で
、−旦、遷移が起っても、定常的には続かず100m5
から15の周期で、Lモードへの転落と■(モード遷移
をくり返す性質をもっている。
Due to recent advances in nuclear fusion research, it has been discovered that the more a tokamak plasma is heated, the more the plasma confinement performance deteriorates (referred to as L-mode scaling). It has become clear that there may also be a phenomenon in which the confinement performance recovers in a stepwise manner (referred to as H-mode transition). This Toe mode transition is considered an essential condition for the realization of future fusion reactors, but on the other hand, the operating conditions for H mode are delicate, and even if the transition occurs, it will not continue steadily and will not continue for 100 m5.
It has the property of repeating a fall to L mode and a (mode transition) at a cycle of 15.

一方、トカマクプラズマへの追加熱の代表的手段として
ICRF(イオンサイクロイロン共鳴周波数)加熱法が
ある。これは50 M Hz程度の高周波電力をループ
アンテンを通じてプラズマに供給する方法である。この
場合、一般に、電力をプラズマに無、駄なく送るには、
負荷の整合がとれている必要があり、通常、アンテナ近
傍に置かれたスタブチューナと呼ぶ整合器を用いる。
On the other hand, ICRF (ion cyclotron resonance frequency) heating is a typical means of adding heat to tokamak plasma. This is a method in which high frequency power of about 50 MHz is supplied to the plasma through a loop antenna. In this case, in general, in order to send power to the plasma without waste,
The load must be matched, and a matching device called a stub tuner is usually used near the antenna.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この整合条件は、プラズマ負荷の状態がかわると容易に
破れてしまい、伝送電力が下る。LモードからHモード
へ遷移すると、伝送電力が定格値から、約50%出力に
急減してしまうというのが、問題であった。このプラズ
マ負荷が、LモードとFIモードとで大きく異なるのは
アンテナ前面のプラズマ密度が異なるためである。l(
モード遷移時にアンテナ前面の密度が下り、プラズマ負
荷抵抗値が下って、負荷不整合を招き、伝送電力を急減
させる。この負荷不整合は、加熱効率の低下以外に、電
力用真空管の損傷、Hモード状態の不安定。
This matching condition is easily broken when the state of the plasma load changes, and the transmitted power decreases. The problem was that when transitioning from L mode to H mode, the transmission power suddenly decreased from the rated value to about 50% output. The reason why this plasma load differs greatly between the L mode and the FI mode is because the plasma density in front of the antenna is different. l(
During mode transition, the density in front of the antenna decreases, and the plasma load resistance value decreases, causing load mismatch and causing a sudden decrease in transmitted power. This load mismatch causes not only a decrease in heating efficiency but also damage to the power vacuum tube and instability of the H-mode state.

プラズマ中への不純物の混入等の感作用を及ぼし。It causes sensitization effects such as impurities entering the plasma.

回避されるべきものであった。It should have been avoided.

この負荷の急変ごとにスタブチューナを再調整して整合
をとり直すという考えは、スタブチューナ操作が機械的
操作であるため、変化の特徴的時間10m5に追従する
のは不可能であり、現実的でない。
The idea of readjusting the stub tuner and re-aligning it every time there is a sudden change in load is not realistic because the stub tuner operation is a mechanical operation, and it is impossible to follow the characteristic time of change of 10 m5. Not.

本発明の目的は、Hモード遷移時にも、負荷の急変を来
たさないような装置を提供することにある。
An object of the present invention is to provide a device that does not cause sudden changes in load even when transitioning to H mode.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために1本発明では、アンテナに
静電圧の可変バイアスをかけ、アンテナ前面の局所プラ
ズマ密度をフィードバック制御する。第2図に示すよう
に、アンテナLが、プラズマ2に対して直流バイアス電
圧Vbを持っていると、局所的な1%電場E、が形成さ
れ、それとトロイダル磁場B、とのEXBドリフトによ
って、荷電粒子は、ポロイダル方向(V、方向)にドリ
フトを受け、アンテナ前面の局所的なプラズマ密度を下
げる働きをする。従って、Lモード時にはバイアスを深
くしておき、Hモード遷移時にはバイアスを少なくする
方向で制御すれば、Lモード。
In order to achieve the above object, the present invention applies a variable electrostatic voltage bias to the antenna to feedback-control the local plasma density in front of the antenna. As shown in FIG. 2, when the antenna L has a DC bias voltage Vb with respect to the plasma 2, a local 1% electric field E is formed, and due to EXB drift between it and the toroidal magnetic field B, The charged particles undergo a drift in the poloidal direction (V, direction) and serve to lower the local plasma density in front of the antenna. Therefore, if you control the bias to be deep in the L mode and reduce the bias in the H mode transition, the L mode will be achieved.

Hモード時を通じて、アンテナ前面密度を、低目の一定
値に保持することができ、負荷抵抗の値を定値制御する
ことが出来る。
Throughout the H mode, the antenna front density can be maintained at a constant low value, and the value of the load resistance can be controlled at a constant value.

このバイアス電圧に対するプラズマの応答は充分に速い
ので、以下に述へるようなフィードバック制御の方法を
とることにより、 I(モード遷移のような負荷急変に
、充分、追従することが出来る。
Since the response of the plasma to this bias voltage is sufficiently fast, sudden changes in load such as I mode transition can be sufficiently followed by using the feedback control method described below.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

第1図は、本発明の第一実施例の構成を示す図である。FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.

アンテナ負荷抵抗の値Rは、伝送路途中に設置した方向
性結合器3で益進波Vt と反射波V、をモニタし、第
3図の負荷抵抗推定回路4で推定される。推定抵抗値R
と、目癲値Roとの差信号は、PI型ラフイードバック
補償回路5人力し、バイアス電圧指令値Vcを出力する
。バイアス電圧発生口16は、指令値に応じてO〜20
0■の直流電圧Vbを発生し、アンテナ導体に印加され
る。伝送線路上には、直流分はカットし、高周波分は導
通となるようなりCカット7が設置され、また、アンテ
ナlと真空容器部分8もセラミックスフィードスルー9
によって絶縁され、直流バイアスがアンテナのみにかか
るようになっている。
The value R of the antenna load resistance is estimated by the load resistance estimating circuit 4 shown in FIG. 3 by monitoring the forward wave Vt and the reflected wave V by a directional coupler 3 installed in the middle of the transmission path. Estimated resistance value R
The difference signal between the current value Ro and the reference value Ro is input to a PI type rough feedback compensation circuit 5 and outputs a bias voltage command value Vc. The bias voltage generation port 16 has a voltage of 0 to 20 depending on the command value.
A DC voltage Vb of 0.0 cm is generated and applied to the antenna conductor. A C-cut 7 is installed on the transmission line to cut the DC component and conduct the high frequency component, and the antenna l and the vacuum vessel part 8 are also connected to a ceramic feedthrough 9.
is insulated so that DC bias is applied only to the antenna.

第3図は、負荷抵抗推定回路4である。反射波と前進波
をクリスタルマウントで検波して比の平方根をとると電
圧反射率Fが求まる。また、反射波V、と前進波Vi 
との位相差を検出回路42で検出し、これをφとすると
、これらF、φを入力として、図に示したような演算処
理によって、方結上の負荷抵抗R’ 、X’ を推定し
、さらに、伝送線路の公式に従ってアンテナ負荷抵抗値
Rを推定する。ここでQは方結からアンテナまでの電気
量であり、βは位相定数である。
FIG. 3 shows the load resistance estimation circuit 4. The reflected wave and the forward wave are detected with a crystal mount and the square root of the ratio is taken to find the voltage reflectance F. Also, the reflected wave V and the forward wave Vi
The detection circuit 42 detects the phase difference between the F and φ, and if this is φ, the load resistances R' and , Furthermore, the antenna load resistance value R is estimated according to the transmission line formula. Here, Q is the electrical quantity from the connection to the antenna, and β is the phase constant.

第4図は、本発明に使用するICRFアンテナlの一例
を示したものであり、ハツチングで示したセラミックブ
レーク9で1周りの真空容器8から絶縁している点と、
静電圧導入端子v6を設けている点が通常のICRFア
ンテナと異なる。
FIG. 4 shows an example of an ICRF antenna 1 used in the present invention, in which it is insulated from the surrounding vacuum container 8 by a ceramic break 9 shown by hatching.
It differs from a normal ICRF antenna in that it has a static voltage introduction terminal v6.

第5図は、本発明の第二の実施例を示すものである。第
5図のフィードバック制御の思想は■1モード+遷移し
たことを種々の検出手段50を用いて検知して、制御情
報として積極的に活用しようというものである。可視分
光計測51や、電磁計測52を用いて、Hモード遷移を
検知し、検知信号53を用いてあらかじめ一定のバイア
ス′市圧VL、を印加していたものを、別の一定電圧(
Lモード時のものより低い値)に切換える。すなわち、
この実施例は二値制御である。この方式のものは、既に
、トカマク装置には装備されている種々の計測情報を活
用し、第一の実施例よりもシンプルな制御系を構成でき
る。一定バイアスの設定値は経験的に定めればよい。
FIG. 5 shows a second embodiment of the invention. The idea behind the feedback control shown in FIG. 5 is to detect (1) mode+transition using various detection means 50 and actively utilize it as control information. The H-mode transition is detected using the visible spectroscopic measurement 51 or the electromagnetic measurement 52, and the detection signal 53 is used to apply a constant bias 'city pressure VL' to another constant voltage (
(lower value than in L mode). That is,
This embodiment is a binary control. This method utilizes various measurement information already installed in the tokamak device, and can configure a simpler control system than the first embodiment. The set value of the constant bias may be determined empirically.

第6図は、本発明の第三の実施例を示す。これは、種々
計測情報を用いずに、第一の実施例よりもシンプルな制
御系を目指すものである。方向性結合器3はスタブチュ
ーナ9よリーヒ流側に設置し、反射波端子にクリスタル
マウント41をつけて反射電力P、のみをモニタするも
のとする。第7図に示すように、Lモード運転時に、成
る一定のバイアス電圧のもとて負荷整合がとれるように
、スタブチューナ9で調整をとっておくものとすれば、
そのときの反射電力対バイアス電圧特性は、第7図の曲
線Aのようになる。Hモード遷移時には。
FIG. 6 shows a third embodiment of the invention. This aims at a simpler control system than the first embodiment without using various measurement information. The directional coupler 3 is installed on the Leahy flow side of the stub tuner 9, and a crystal mount 41 is attached to the reflected wave terminal to monitor only the reflected power P. As shown in FIG. 7, if adjustment is made with the stub tuner 9 so that load matching can be achieved under a constant bias voltage during L mode operation,
The reflected power vs. bias voltage characteristic at this time is as shown by curve A in FIG. When transitioning to H mode.

この曲線はBのように移動するので、最急降下法アルゴ
リズムで新しい最適点V h 2を探索すればよい。第
6図の制御回路5には、この様な最急降下アルゴリズム
が納めてあり、バイアス電圧■、を制御する。
Since this curve moves like B, a new optimal point V h 2 can be searched for using the steepest descent algorithm. The control circuit 5 in FIG. 6 contains such a steepest descent algorithm, and controls the bias voltage (2).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1−Iモード遷移等の原因でプラズマ
負荷が急変したときにも、負荷整合状態をくずすことな
く、定格パワーの高周波をプラズマに結合することがで
きる。
According to the present invention, even when the plasma load suddenly changes due to a 1-I mode transition or the like, high frequency waves of rated power can be coupled to the plasma without disrupting the load matching state.

【図面の簡単な説明】 第1図は、本発明の一実施例の系統図、第2図は本発明
の原理図、第3図は第1図の負荷抵抗推定回路図、第4
図は本発明中のICRFアンテナの断面図、第5図は本
発明の第二の実施例の系統図、第6図は本発明の第三の
実施例の系統図、第7図は本発明の第三の実施例の原理
図である。 1・・・アンテナ、2・・・プラズマ、3・・・方向性
結合器、4・・負荷抵抗検知手段、5・・・制御回路、
6・・直流バイアス電圧発生手段、7− D Cブレー
ク、8・・ゲ ク 第 図 第2区 @3図
[Brief Description of the Drawings] Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a principle diagram of the present invention, Fig. 3 is a load resistance estimation circuit diagram of Fig. 1, and Fig. 4 is a system diagram of an embodiment of the present invention.
The figure is a cross-sectional view of an ICRF antenna according to the present invention, FIG. 5 is a system diagram of a second embodiment of the present invention, FIG. 6 is a system diagram of a third embodiment of the present invention, and FIG. 7 is a system diagram of a third embodiment of the present invention. It is a principle diagram of the third example. DESCRIPTION OF SYMBOLS 1... Antenna, 2... Plasma, 3... Directional coupler, 4... Load resistance detection means, 5... Control circuit,
6. DC bias voltage generation means, 7-DC break, 8. Geku diagram 2nd section @ 3 diagram

Claims (1)

【特許請求の範囲】 1、イオンサイクロトロン共鳴周波数帯域の高周波加熱
装置を備えたトカマク型核融合装置において、 そのアンテナのローディング抵抗の急変を検知する手段
と、前記アンテナに対して直流バイアス電圧を印加する
手段と、前記ローディング抵抗を一定に保つようにバイ
アス電圧を決定する制御手段とを設けたことを特徴とす
るプラズマ負荷抵抗制御装置。 2、特許請求の範囲第1項において、 前記ローディング抵抗検知手段の、高周波伝送路上に置
かれた方向性結合器により、反射波と入射波の電力およ
び反射波・入射波間の位相を検知し、伝送線路理論によ
り導かれる公式により前記アンテナの負荷抵抗を演算す
る方式を採り、かつ前記制御手段で、演算された負荷抵
抗の目標値からの偏差を、比例積分演算によるフィード
バック動作によつてバイアス電圧を決定する方式を採つ
たことを特徴とするプラズマ負荷抵抗制御装置。 3、特許請求の範囲第1項において、 通常のトカマク型核融合装置に具備されている計測器類
からの情報を用い、プラズマの閉じ込め状態が急変した
ことを検知する手段と、その急変に応じてあらかじめ定
めた一定電圧のバイアス電圧に切換える手段とを設けた
ことを特徴とするプラズマ負荷抵抗制御装置。 4、特許請求の範囲第1項において、 伝送路線路上に設けた前記方向性結合器で、反射波電力
のみを検知し、前記反射波電力が最小となるようなバイ
アス電圧を探索する制御手段を設けたことを特徴とする
プラズマ負荷抵抗制御装置。
[Claims] 1. In a tokamak-type nuclear fusion device equipped with a high-frequency heating device in the ion cyclotron resonance frequency band, means for detecting a sudden change in the loading resistance of the antenna, and applying a DC bias voltage to the antenna. A plasma load resistance control device comprising: means for controlling the load resistance; and control means for determining a bias voltage so as to keep the loading resistance constant. 2. In claim 1, the loading resistance detecting means detects the power of the reflected wave and the incident wave and the phase between the reflected wave and the incident wave by a directional coupler placed on the high frequency transmission path, A method is adopted in which the load resistance of the antenna is calculated using a formula derived from transmission line theory, and the deviation of the calculated load resistance from the target value is determined by the control means as a bias voltage by feedback operation using proportional integral calculation. 1. A plasma load resistance control device characterized by adopting a method for determining . 3. In claim 1, there is provided a means for detecting a sudden change in the plasma confinement state using information from measuring instruments included in a normal tokamak type nuclear fusion device, and a means for detecting a sudden change in the plasma confinement state, and responding to the sudden change. 1. A plasma load resistance control device comprising means for switching to a predetermined constant bias voltage. 4. Claim 1 provides a control means for detecting only the reflected wave power in the directional coupler provided on the transmission line and searching for a bias voltage that minimizes the reflected wave power. A plasma load resistance control device characterized in that:
JP63310027A 1988-12-09 1988-12-09 Plasma load resistance control apparatus Pending JPH02158100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310027A JPH02158100A (en) 1988-12-09 1988-12-09 Plasma load resistance control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310027A JPH02158100A (en) 1988-12-09 1988-12-09 Plasma load resistance control apparatus

Publications (1)

Publication Number Publication Date
JPH02158100A true JPH02158100A (en) 1990-06-18

Family

ID=18000279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310027A Pending JPH02158100A (en) 1988-12-09 1988-12-09 Plasma load resistance control apparatus

Country Status (1)

Country Link
JP (1) JPH02158100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500702A (en) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 Plasma generating apparatus and work processing apparatus using the same
CN103795661B (en) * 2012-11-02 2017-06-16 瑞昱半导体股份有限公司 Communicator and the estimating and measuring method being applied thereon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500702A (en) * 2006-09-13 2010-01-07 ノーリツ鋼機株式会社 Plasma generating apparatus and work processing apparatus using the same
US8128783B2 (en) 2006-09-13 2012-03-06 Amarante Technologies, Inc. Plasma generator and work processing apparatus provided with the same
CN103795661B (en) * 2012-11-02 2017-06-16 瑞昱半导体股份有限公司 Communicator and the estimating and measuring method being applied thereon

Similar Documents

Publication Publication Date Title
JP5334914B2 (en) Plasma processing equipment
TW201127223A (en) Detecting and preventing instabilities in plasma processes
US6646386B1 (en) Stabilized oscillator circuit for plasma density measurement
JPH01302700A (en) High frequency multi-electrode linear accelerator
JP2643153B2 (en) High frequency bias sputtering equipment
WO2003103348A1 (en) Discharging power source, sputtering power source, and sputtering device
Wen et al. Phase modulation in pulsed dual-frequency capacitively coupled plasmas
JPH02158100A (en) Plasma load resistance control apparatus
Kolemen et al. Real-time mirror steering for improved closed loop neoclassical tearing mode suppression by electron cyclotron current drive in DIII-D
EP1232513B1 (en) Stabilized oscillator circuit for plasma density measurement
JP3856153B1 (en) Magnetron oscillator
KR20200097161A (en) The Driving Frequency Control Method of The Pulsed Frequency Variable RF Generator
JPH11172436A (en) High-frequency power source device for deposition apparatus, position regulator and discharge state fluctuation rate monitor
Park et al. Resistive wall mode active control physics design for KSTAR
Smadi et al. An Improved Reactive Power Sharing in an Isolated Microgrid with a Local Load Detection
Maroli et al. Wave-dynamical treatment of the ordinary electron cyclotron mode propagating perpendicularly to the magnetic field across the resonance region
Jarnyk et al. Control of an unstable electron cyclotron resonance plasma
Rummel et al. Methods for modeling microwave plasma system stability
Xu et al. Control of the gyrotron filament power supplies for the experimental advanced superconducting tokamak
KR102639956B1 (en) Multiple phase-locked loop system for low voltage ride-through of grid connected photovotaic system and controlling method thereof
Uckan et al. Feedback control and stabilization experiments on the Texas Experimental Tokamak (TEXT)
Islam et al. Investigation of edge plasmas in the anchor cell region of GAMMA 10
TW202225438A (en) Waveform shape factor for pulsed pvd power
JPS6246960B2 (en)
Kang et al. Axial feedback stabilization of flute modes for mirror machines