JPH02157703A - Long-size molded lens - Google Patents

Long-size molded lens

Info

Publication number
JPH02157703A
JPH02157703A JP31142188A JP31142188A JPH02157703A JP H02157703 A JPH02157703 A JP H02157703A JP 31142188 A JP31142188 A JP 31142188A JP 31142188 A JP31142188 A JP 31142188A JP H02157703 A JPH02157703 A JP H02157703A
Authority
JP
Japan
Prior art keywords
lens
optical axis
long
thickness
molded lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31142188A
Other languages
Japanese (ja)
Inventor
Yoji Kubota
洋治 久保田
Ryoichi Shiratori
白鳥 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP31142188A priority Critical patent/JPH02157703A/en
Publication of JPH02157703A publication Critical patent/JPH02157703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the occurrence of a shrink mark, etc., in addition to distortion caused by internal stress produced due to a difference in cooling speed in such a lens by providing a lens thickness correcting section where the thickness of the lens in the direction perpendicular to the length direction and optical axis of the lens is gradually reduced toward the central part of the lens from both end sections of the effective section of the lens in the length direction. CONSTITUTION:In a long-size molded lens 1 formed to have a long size in one direction (x) perpendicular to the optical axis (r) of the lens, a correcting section where the thickness of the lens in the direction perpendicular to the optical axis (r) and length direction (x) is gradually reduced toward the central part of the lens from both end sections of the effective section 2 of the lens in the length direction (x) is provided. Since no much difference exists in volume between the central part and end sections of the lens 1 in the length direction (x), the relation between the volume and surface area can be balanced almost equally at each part of the lens 1 and the cooling speed of the molded body of the lens at the time of molding becomes almost equal at each part. Therefore, occurrence of distortion caused by internal strain due to a difference in cooling speed between each part and remaining of the distortion can be prevented. In addition, the deterioration of shape transferring accuracy, occurrence of shrink marks, etc., at the surface caused by a difference in cooling speed between each section can also be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光走査用光学系、計測機器用光学系、画像処
理用光学系等に用いられる長尺成形レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an elongated molded lens used in optical scanning systems, measuring instrument optical systems, image processing optical systems, and the like.

(従来の技術) 光走査用光学系のfθレンズや、計測機器用光学系、画
像処理用光学系等に用いられるレンズとして、光軸に対
して直交する一つの軸方向に長い長尺成形レンズが知ら
れている。
(Prior art) Long molded lenses that are long in the direction of one axis orthogonal to the optical axis are used as fθ lenses in optical scanning optical systems, optical systems for measuring instruments, optical systems for image processing, etc. It has been known.

第1θ図は従来の長尺成形レンズの一例を示しており、
この長尺成形レンズ11は光軸r方向から見たときの平
面形状が角形形状となっており、光軸rに対して直交す
る一つの軸方向に長尺に形成されており、その長尺方向
の周辺部から中央部に向かって光軸r方向の肉厚が暫時
増大した正の屈折率を有するレンズとなっている。
Figure 1θ shows an example of a conventional long molded lens.
This long molded lens 11 has a rectangular planar shape when viewed from the direction of the optical axis r, and is formed long in one axis direction perpendicular to the optical axis r. The lens has a positive refractive index in which the thickness in the optical axis r direction gradually increases from the peripheral part to the central part.

ところで、第10図に示すような形状の長尺成形レンズ
11は、一般に樹脂成形やガラス成形等の型成形によっ
て形成されているが、近年では、成形の容易さや、光学
系の軽量化が図りやすいという点で、樹脂材料を用いた
型成形(通常、射出成形)によって形成される長尺成形
レンズ、いわゆる内診プラスチックレンズが主流となっ
ている。
Incidentally, the long molded lens 11 having the shape shown in FIG. 10 is generally formed by molding such as resin molding or glass molding, but in recent years, efforts have been made to make molding easier and to reduce the weight of optical systems. Long molded lenses formed by molding (usually injection molding) using resin materials, so-called pelvic examination plastic lenses, have become mainstream because they are easy to use.

しかしながら、樹脂成形によって第10図に示すような
形状の角形プラスチックレンズを形成する場合、プラス
チックは熱伝導性が悪く、しかもレンズの周辺部と中央
部とでは肉圧が異なるため、型成形時においてレンズの
中心部と周辺部とでは樹脂材料の冷却速度が異なり、こ
のため、レンズ内に型成形時に生じた内部応力による歪
が生じやすく、この歪によってレンズ形状(寸法や光入
出射面の曲率等)が変化し、光学特性が悪化するという
問題がある。
However, when forming a rectangular plastic lens in the shape shown in Figure 10 by resin molding, plastic has poor thermal conductivity, and the wall pressure differs between the periphery and the center of the lens. The cooling rate of the resin material is different between the center and the periphery of the lens, and as a result, internal stress generated during molding tends to cause distortion within the lens. etc.) and the optical properties deteriorate.

そこで、角形プラスチックレンズの形状及び光学特性の
安定化を図るため、第9図に示すように、レンズ部10
bの周縁部全域にわたって枠型状のリブ10aを設け、
レンズ内部の歪によるレンズの形状変化を防止したもの
が提案されている。
Therefore, in order to stabilize the shape and optical characteristics of the square plastic lens, as shown in FIG.
A frame-shaped rib 10a is provided over the entire peripheral edge of b,
A lens that prevents changes in lens shape due to distortion inside the lens has been proposed.

(発明が解決しようとする課題) しかしながら、第9図に示すように、レンズ部10bの
周縁部にリブ10aを設けた構造の角形プラスチックレ
ンズでは、厚肉のリブ10aによってレンズ部10bの
周縁部全域を補強しているため、形状の変化を押さえる
ことはできるが、レンズ部10bの中心部と周辺部及び
リプ10a部分との肉厚の差異が大きいため、レンズの
各部位における体積が不均一であり、また、レンズの体
積に対する表面積のバランスも悪いため、型成形時にお
けるプラスチック素材の冷却速度がレンズ部の中心部と
周辺部、及びリブ部とで異なり、この結果レンズ内に内
部応力による歪が残りやすく、光学特性が不安定となる
という問題があった。また、レンズ内に成形時の歪が残
留しやすいため、レンズの光入出射面にも歪やヒケ等が
生じやすく、面精度の向上を図ることが困難であるとい
う問題もあった。
(Problems to be Solved by the Invention) However, as shown in FIG. 9, in a square plastic lens having a structure in which ribs 10a are provided at the peripheral edge of the lens portion 10b, the thick ribs 10a prevent the peripheral edge of the lens portion 10b from being Since the entire area is reinforced, changes in shape can be suppressed, but since there is a large difference in thickness between the center and peripheral parts of the lens part 10b and the lip 10a, the volume of each part of the lens is uneven. In addition, because the balance between the surface area and the lens volume is poor, the cooling rate of the plastic material during molding differs between the center, periphery, and ribs of the lens, resulting in internal stress inside the lens. There is a problem in that distortion tends to remain and optical characteristics become unstable. Furthermore, since distortions during molding tend to remain in the lens, distortions, sink marks, etc. are likely to occur on the light input/output surface of the lens, making it difficult to improve the surface precision.

尚、第9図、第10図に示す長尺成形レンズをガラス成
形によって形成する場合、ガラスの熱伝導率はプラスチ
ックより大きく、熱膨張率はプラスチックより小さいた
め、型成形時の各部の冷却速度の差異によって生じるレ
ンズ内の歪はプラスチック成形の場合より少なく形状変
化を起すほどではないが、成形後のレンズ内にはやはり
歪が残り。
In addition, when forming the long molded lenses shown in Figs. 9 and 10 by glass molding, the cooling rate of each part during molding is difficult because the thermal conductivity of glass is higher than that of plastic, and the coefficient of thermal expansion is lower than that of plastic. Although the distortion within the lens caused by the difference is less than in the case of plastic molding and is not enough to cause a change in shape, distortion still remains within the lens after molding.

この内部に残留した歪のため、やはり光学特性が低下す
るという問題があった。
Due to this residual strain inside, there was still a problem in that the optical characteristics deteriorated.

本発明は上記事情に鑑みてなされたものであって、型成
形時における冷却速度がレンズ各部で略一定であり、型
成形時における歪が生じにくい構造の長尺成形レンズを
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an elongated molded lens having a structure in which the cooling rate during molding is approximately constant in each part of the lens, and distortion is less likely to occur during molding. shall be.

(課題を解決するための手段) 上記目的を達成するため、本発明では、光軸に対して直
交する一つの軸方向の長さを長尺に形成した長尺成形レ
ンズにおいて、上記光軸と上記長尺方向とに直交する方
向の厚さを上記長尺方向のレンズ有効部分の最周辺部か
ら中央部に向かって漸次減少させたレンズ厚の補正部分
を設けたことを特徴とする (作   用) 本発明による長尺成形レンズでは、レンズの長尺方向及
び光軸方向とに直交する方向のレンズの厚さを上記長尺
方向のレンズ有効部分の最周辺部から中央部に向かって
漸次減少させたレンズ厚の補正部分を設けたことにより
、レンズ各部位の体積と表面積とのバランスが略一定に
保たれ、型成形時における冷却速度がレンズの各部位で
略一定となり、冷却速度の差に起因して生じる内部応力
による歪の発生や、ヒケ等の発生が防止される。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an elongated molded lens formed to have a long length in one axial direction perpendicular to the optical axis. A lens thickness correction portion is provided in which the thickness in a direction perpendicular to the longitudinal direction is gradually decreased from the most peripheral portion toward the central portion of the lens effective portion in the longitudinal direction. In the long molded lens according to the present invention, the thickness of the lens in the direction orthogonal to the longitudinal direction of the lens and the optical axis direction is gradually adjusted from the most peripheral part to the central part of the effective part of the lens in the longitudinal direction. By providing a correction section for the reduced lens thickness, the balance between the volume and surface area of each part of the lens is kept approximately constant, and the cooling rate during molding is approximately constant for each part of the lens, which reduces the cooling rate. Distortion due to internal stress caused by the difference, sink marks, etc. are prevented from occurring.

(実 施 例) 以下1本発明を図示の実施例に基づいて詳細に説明する
(Embodiments) The present invention will be described in detail below based on illustrated embodiments.

第1図は本発明の一実施例を示す長尺成形レンズの斜視
図、第2図(a)は同上長尺成形レンズを光軸r方向か
ら見た時の平面図、第2図(b)は同上長尺成形レンズ
の第2図(a)A−A線断面図、第2図(Q)は同上長
尺成形レンズの第2図(a)B−B線断面図を夫々示し
ており、本実施例における長尺成形レンズ1は、光軸r
に対して直交する一軸、例えば、図中X軸方向に長く形
成されており、レンズとして有効に作用するレンズ有効
部分2の周縁部全域には、枠型状のリブ1aが一体に設
けられている。
FIG. 1 is a perspective view of a long molded lens showing an embodiment of the present invention, FIG. 2(a) is a plan view of the same long molded lens as viewed from the optical axis r direction, and FIG. ) shows a sectional view taken along the line A-A in FIG. 2(a) of the same long molded lens as above, and FIG. 2(Q) shows a sectional view taken along the line BB in FIG. 2(a) of the same long molded lens as above. Therefore, the long molded lens 1 in this embodiment has an optical axis r
A frame-shaped rib 1a is integrally provided on the entire peripheral edge of the lens effective portion 2, which is formed long in one axis orthogonal to the lens, for example, the X-axis direction in the figure, and acts effectively as a lens. There is.

また、レンズ有効部分2は、光軸r方向の厚さが、長尺
方向(図中X軸方向)のレンズ有効部分2周辺部から中
央部に向かって所定の曲線状に漸次増大した正の屈折率
を有するレンズとなっている。
In addition, the lens effective portion 2 is a positive lens whose thickness in the optical axis r direction gradually increases in a predetermined curved shape from the peripheral portion of the lens effective portion 2 in the longitudinal direction (X-axis direction in the figure) toward the central portion. The lens has a refractive index.

ここで、第1図及び第2図に示す長尺成形レンズ1にお
いては、レンズの長尺方向(図中X軸方向)及び光軸r
方向とに直交する図中y方向のレンズの厚さを上記長尺
方向のレンズ有効部分2の最周辺部から中央部に向かっ
て所定の曲線形状に漸次減少させたレンズ厚の補正部分
が設けられており、このレンズ厚の補正部分によってレ
ンズ各部位の体積と表面積とのバランスが略一定に保た
れるように構成されている。
Here, in the long molded lens 1 shown in FIGS. 1 and 2, the long direction of the lens (X-axis direction in the figure) and the optical axis r
A lens thickness correction portion is provided in which the lens thickness in the y direction in the figure, which is perpendicular to the direction, is gradually reduced in a predetermined curved shape from the most peripheral portion to the central portion of the lens effective portion 2 in the longitudinal direction. The lens thickness is corrected so that the balance between the volume and surface area of each part of the lens is kept substantially constant.

すなわち、第1図及び第2図に示す形状の長大成形レン
ズ1では、レンズの光軸r方向の肉厚の増加に対応して
、光軸r及び長尺方向とに直交する方向のレンズの厚さ
が減少される構造のため、第3図に示すように、レンズ
有効部分2の周辺部から中心部に到る範囲における各部
位の体積の差を、第9図、第1O図に示した従来品と比
較して大幅に小さくすることができる。
That is, in the long molded lens 1 having the shape shown in FIGS. 1 and 2, the thickness of the lens in the direction perpendicular to the optical axis r and the longitudinal direction increases in response to the increase in the wall thickness in the direction of the optical axis r of the lens. Due to the structure in which the thickness is reduced, as shown in FIG. 3, the difference in volume of each part in the range from the periphery to the center of the lens effective portion 2 is shown in FIGS. 9 and 1O. It can be significantly smaller than conventional products.

したがって、第1図及び第2図に示す形状の長尺成形レ
ンズ1においては、レンズ各部位の体積と表面積とのバ
ランスが略一定に保たれ、型成形時における冷却速度が
レンズの各部位で略一定となり、冷却速度の差に起因し
て生じる内部応力による歪の発生や歪の残留を防止する
ことができると共に、レンズ表面の冷却速度の差異によ
る形状転写精度の悪化(レンズ表面が成形後にわずかに
変化する現象)及びヒケ等の発生を防止することができ
、この結果、光学特性が極めて安定した長尺成形レンズ
を提供することができる。
Therefore, in the long molded lens 1 having the shape shown in FIGS. 1 and 2, the balance between the volume and surface area of each part of the lens is kept approximately constant, and the cooling rate during molding is different for each part of the lens. It becomes almost constant, and it is possible to prevent the occurrence of distortion or residual distortion due to internal stress caused by differences in cooling rate, as well as deterioration of shape transfer accuracy due to difference in cooling rate of the lens surface (if the lens surface does not change after molding) This makes it possible to prevent the occurrence of phenomena such as slight change (phenomenon of slight change) and sink marks, and as a result, it is possible to provide a long molded lens with extremely stable optical properties.

次に、第4図は本発明の別の実施例を示す長尺成形レン
ズの斜視図、第5図(a)は同上長尺成形レンズを光軸
r方向から見た時の平面図、第5図(b)は同上長尺成
形レンズを長尺方向(第4図工方向)から見たときの側
面図、第5図(c)は同上長尺成形レンズの第5図(a
)“C−C線断面図を夫々示しており、この実施例では
、リブ構造を持たない場合の長尺成形レンズ3形状の一
例を示している。
Next, FIG. 4 is a perspective view of a long molded lens showing another embodiment of the present invention, FIG. 5(a) is a plan view of the same long molded lens as seen from the optical axis r direction, Figure 5(b) is a side view of the same long molded lens as seen from the longitudinal direction (fourth drawing direction), and Figure 5(c) is a side view of the same long molded lens as shown in Figure 5(a).
)"C-C line sectional views are shown, and this example shows an example of the shape of the elongated molded lens 3 without a rib structure.

この実施例における長尺成形レンズ3は、光軸rに対し
て直交する一つの軸方向(例えば、図中X軸方向)に長
く形成されており、光軸r方向の厚さが、長尺方向(図
中X軸方向)のレンズ有効部分4周辺部から中央部に向
かって所定の曲線状に漸次増大した正の屈折率を有する
レンズとなっている。
The long molded lens 3 in this embodiment is formed to be long in one axis direction (for example, the X-axis direction in the figure) perpendicular to the optical axis r, and the thickness in the optical axis r direction is The lens has a positive refractive index that gradually increases in a predetermined curve shape from the periphery of the lens effective portion 4 toward the center in the direction (X-axis direction in the figure).

ここで、第4図及び第5図に示す長尺成形レンズ3にお
いては、レンズの長尺方向(′@中中軸軸方向及び光軸
r方向とに直交する図中y方向のレンズの厚さを上記長
尺方向のレンズ有効部分4の最周辺部から中央部に向か
って所定の曲線形状に漸次減少させたレンズ厚の補正部
分が設けられており、このレンズ厚の補正部分によって
レンズ各部位の体積と表面積とのバランスが略一定に保
たれるように構成されている。
Here, in the long molded lens 3 shown in FIGS. 4 and 5, the thickness of the lens in the longitudinal direction of the lens (' A lens thickness correction portion is provided in which the lens thickness is gradually reduced in a predetermined curved shape from the most peripheral portion to the center portion of the lens effective portion 4 in the longitudinal direction, and each portion of the lens is The structure is such that the balance between volume and surface area is kept approximately constant.

すなわち、第4図及び第5図に示す形状の長尺成形レン
ズ3では、レンズの光軸r方向の肉厚の増加に対応して
、光軸r及び長尺方向とに直交する方向のレンズの厚さ
が減少された構造のため、第1図及び第2図に示した長
尺成形レンズの場合と同様に、レンズ有効部分4の周辺
部から中心部に到る範囲における各部位の体積の差を大
幅に小さくすることができる。
That is, in the elongated molded lens 3 having the shape shown in FIGS. 4 and 5, the thickness of the lens in the direction perpendicular to the optical axis r and the longitudinal direction corresponds to an increase in the wall thickness in the direction of the optical axis r of the lens. Because of the structure in which the thickness of the lens is reduced, the volume of each part in the range from the periphery to the center of the lens effective portion 4 is reduced, as in the case of the long molded lens shown in FIGS. 1 and 2. The difference can be significantly reduced.

したがって、第4図及び第5図に示す形状の長尺成形レ
ンズ3においても、レンズ各部位の体積と表面積とのバ
ランスが略一定に保たれ、型成形時における冷却速度が
レンズの各部位で略一定となるため、各部位の冷却速度
の差に起因して生じる内部応力による歪の発生や歪の残
留を防止することができると共に、レンズ表面の冷却速
度の差異による形状転写精度の悪化(レンズ表面が成形
後にわずかに変化する現象)及びヒケ等の発生を防止す
ることができ、この結果、形状安定性及び光学特性の安
定性を向上することができる。
Therefore, even in the long molded lens 3 having the shape shown in FIGS. 4 and 5, the balance between the volume and surface area of each part of the lens is kept approximately constant, and the cooling rate during molding is controlled at each part of the lens. Since it is approximately constant, it is possible to prevent distortion from occurring or remaining distortion due to internal stress caused by differences in the cooling rate of each part, and to prevent deterioration of shape transfer accuracy due to differences in the cooling rate of the lens surface ( The phenomenon in which the lens surface changes slightly after molding) and the occurrence of sink marks can be prevented, and as a result, the shape stability and the stability of optical properties can be improved.

次に、第7図は本発明の第3の実施例を示す長尺成形レ
ンズの斜視図を示しており、この実施例における長尺成
形レンズ5では、レンズ有効部分6の周縁部全域にリブ
5aが設けられており、レンズ有効部分6の長尺方向の
最周辺部から中央部に向かって光軸と長尺方向とに直交
する方向の厚さが減少されるように構成されているが1
本実施例による長尺成形レンズ5のレンズ有効部分6の
長尺方向の中央部は平面状に薄く形成されている。
Next, FIG. 7 shows a perspective view of a long molded lens showing a third embodiment of the present invention. 5a, and is configured such that the thickness of the lens effective portion 6 in the direction orthogonal to the optical axis and the longitudinal direction is decreased from the most peripheral part in the longitudinal direction to the central part. 1
The central portion in the longitudinal direction of the lens effective portion 6 of the elongated molded lens 5 according to this embodiment is formed to be thin and planar.

尚、第7図に示す形状に長尺成形レンズを形成した場合
にも、第1図に示す形状の長尺成形レンズと同様の作用
効果を得ることができる。
Note that even when the elongated molded lens is formed in the shape shown in FIG. 7, the same effects as those of the elongated molded lens in the shape shown in FIG. 1 can be obtained.

また、第8図は本発明の第4の実施例を示す長尺成形レ
ンズの斜視図を示しており、この実施例における長尺成
形レンズ7は、リブ構造を持たず、且つレンズ有効部分
8の長尺方向の最周辺部から中央部に向かって光軸と長
尺方向とに直交する方向の厚さが減少されるように構成
されているが、レンズ有効部分8の長尺方向の中央部は
平面状に薄く形成されている。
Further, FIG. 8 shows a perspective view of a long molded lens showing a fourth embodiment of the present invention, and the long molded lens 7 in this embodiment does not have a rib structure and has a lens effective portion 8. The thickness in the direction orthogonal to the optical axis and the longitudinal direction is decreased from the most peripheral part in the longitudinal direction to the central part, but the thickness in the direction perpendicular to the optical axis and the longitudinal direction is reduced. The portion is formed thin and flat.

尚、第8図に示す形状に長尺成形レンズを形成した場合
にも、第4図に示す形状の長尺成形レンズと同様の作用
効果を得ることができる。
Incidentally, even when the elongated molded lens is formed in the shape shown in FIG. 8, the same effects as those of the elongated molded lens in the shape shown in FIG. 4 can be obtained.

ところで、一般に長尺成形レンズを樹脂成形で形成する
場合、成形のショットサイクル、すなわち、金型内に溶
融樹脂を充填してから冷却して取1\ り出すまでの時間は、樹脂材料の熱伝導性の悪さに起因
して成形品(プラスチックレンズ)の最大体積で決まる
が、第1図、第4図、第7図、第8図に夫々示した本発
明による長尺成形レンズでは、この最大体積部(通常、
レンズの中央部)が相対的に小体積となるため、ショッ
トサイクルの大幅な短縮が可能となり、この結果成形コ
ストの低減をも図ることができる。
By the way, when long molded lenses are generally formed by resin molding, the shot cycle of molding, that is, the time from filling the mold with molten resin to cooling it and taking it out, is the heat of the resin material. This is determined by the maximum volume of the molded product (plastic lens) due to its poor conductivity, but in the long molded lenses according to the present invention shown in FIGS. Maximum volume part (usually
Since the central portion of the lens has a relatively small volume, the shot cycle can be significantly shortened, and as a result, molding costs can also be reduced.

さて、以上のように本発明による長尺成形レンズは、レ
ンズの光軸方向の肉厚の変化に対応して、光軸及び長尺
方向とに直交する方向のレンズの厚さを補正し、レンズ
有効部分の周辺部から中心部に到る範囲における各部位
の体積をほぼ均一としたものであるが、レンズの長尺方
向の中央部と最周辺部との体積比は以下のように設定す
るとよい。
Now, as described above, the long molded lens according to the present invention corrects the thickness of the lens in the direction orthogonal to the optical axis and the long direction in response to the change in the thickness in the optical axis direction of the lens, The volume of each part in the range from the periphery to the center of the effective part of the lens is almost uniform, but the volume ratio between the central part and the most peripheral part in the longitudinal direction of the lens is set as follows. It's good to do that.

すなわち、第6図に示すように、レンズ有効部分4の長
尺方向の最周辺部と中央部とに長尺方向の距離りが等し
い間隔内にある仮想体積Vc、 Vsを想定した場合、
その体積比はVsを1としたとtj V cが3以下と
なるように設定すると良好な長尺成形レンズが得られる
。尚、Vs=1としたとき、Vc≦2.5とすれば、よ
り良好な長尺成形レンズを得ることができる。
That is, as shown in FIG. 6, assuming that virtual volumes Vc and Vs are located within an interval with equal distances in the longitudinal direction between the most peripheral part and the central part in the longitudinal direction of the effective lens portion 4,
If the volume ratio is set so that tj V c is 3 or less when Vs is 1, a good long molded lens can be obtained. Note that when Vs=1, if Vc≦2.5, a better long molded lens can be obtained.

ところで、以上の各実施例では正の屈折率を有する長尺
成形レンズの例を示したが、本発明は、光軸方向の厚さ
が周辺部より中央部の方が薄く形成された負の屈折率を
有する長尺成形レンズにも同様に適用することが可能な
ものであり、この場合には、レンズの光軸及び長尺方向
に直交する方向の厚さは、上記長尺方向の周辺部から中
央部に向かって漸次増加するように構成される。したが
って、負の屈折率を有する長尺成形レンズにおいても、
前述した各実施例における長尺成形レンズと同様の作用
効果を得ることができる。
By the way, in each of the above embodiments, an example of a long molded lens having a positive refractive index was shown, but the present invention is a negative molded lens in which the thickness in the optical axis direction is thinner in the central part than in the peripheral part. It can be similarly applied to a long molded lens having a refractive index, and in this case, the thickness in the direction perpendicular to the optical axis and the long direction of the lens is equal to the periphery in the long direction. It is configured to gradually increase from the central part to the central part. Therefore, even in a long molded lens having a negative refractive index,
It is possible to obtain the same effects as the elongated molded lens in each of the embodiments described above.

また1本発明は、樹脂成形によって形成される長尺成形
レンズにおいて特に顕著な作用効果を得ることができる
ものであるが、ガラス成形によって形成される長尺成形
レンズにおいても成形時の歪の発生が防止されるため、
光学特性の向上等、有効な効果を得ることができる。
In addition, the present invention can obtain particularly remarkable effects in long molded lenses formed by resin molding, but even in long molded lenses formed by glass molding, distortion occurs during molding. is prevented,
Effective effects such as improved optical properties can be obtained.

(発明の効果) 以上、実施例に基づいて説明したように、本発明による
長尺成形レンズでは、レンズ有効部分の長尺方向の中央
部と周辺部との体積差がほとんど無いため、レンズ各部
位の体積と表面積とのバランスが略一定に保たれ、型成
形時における冷却速度がレンズの各部位で略一定となる
ため、各部位の冷却速度の差に起因して生じる内部応力
による歪の発生や歪の残留を防止することができると共
に、レンズ表面の冷却速度の差異による形状転写精度の
悪化及びヒケ等の発生を防止することができ、この結果
、形状安定性及び光学特性の安定性を向上することがで
きる。
(Effects of the Invention) As described above based on the examples, in the long molded lens according to the present invention, there is almost no difference in volume between the central part and the peripheral part in the longitudinal direction of the lens effective part, so each lens Since the balance between the volume and surface area of each part is kept approximately constant, and the cooling rate during molding is approximately constant for each part of the lens, distortion due to internal stress caused by differences in the cooling rate of each part is reduced. In addition to preventing the generation and residual distortion, it is also possible to prevent the deterioration of shape transfer accuracy and the occurrence of sink marks due to differences in the cooling rate of the lens surface. As a result, shape stability and stability of optical properties are improved. can be improved.

また、本発明による長尺成形レンズでは、レンズ有効部
分の長尺方向の中央部と周辺部との体積差がほとんど無
い形状のため、レンズ全体の体積を従来品に比べて小さ
くでき、型成形時におけるショットサイクルの大幅な短
縮が可能となり、この結果成形コストの低減をも図るこ
とができる。
In addition, the long molded lens according to the present invention has a shape that has almost no difference in volume between the central part and the peripheral part in the longitudinal direction of the lens effective part, so the volume of the entire lens can be made smaller than that of conventional products, and molding is possible. It becomes possible to significantly shorten the shot cycle at the time, and as a result, it is also possible to reduce molding costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す長尺成形レンズの斜視
図、第2図(a)は同上長尺成形レンズを光軸方向から
見た時の平面図、第2図(b)は同上長尺成形レンズの
第2図(a)A−A線断面図、第2図(Q)は同上長尺
成形レンズの第2図(a)B−B線断面図、第3図は本
発明による長尺成形レンズと従来の長尺成形レンズの長
尺方向の体積変化を夫々示す線図、第4図は本発明の別
の実施例を示す長尺成形レンズの斜視図、第5図(a)
は同上長尺成形レンズを光軸方向から見た時の平面図、
第5図(b)は同上長尺成形レンズを長尺方向から見た
ときの側面図、第5図(c)は同上長尺成形レンズの第
5図(a)C−CM断面図、第6図は本発明による長尺
成形レンズの長尺方向層辺部の部分体積と長尺方向中央
部の部分体積との関係を説明するための図、第7図及び
第8図は本発明のさらに別の実施例を夫々示す長尺成形
レンズの斜視図、第9図は従来技術の一例を示す長尺成
形レンズの斜視図、第10図は従来技術の別の例を示す
長尺成彩レンズの斜視図である。 1.3,5,7・・・・長尺成形レンズ、2,4゜6.
8・・・・レンズ有効部分、r・・・・光軸。 見 図 滲 ■ 亮 (i2) 木 見 <C> 汽 q ■ 篤 因
FIG. 1 is a perspective view of a long molded lens showing an embodiment of the present invention, FIG. 2(a) is a plan view of the same long molded lens as viewed from the optical axis direction, and FIG. 2(b) 2(a) is a sectional view taken along the line A-A of the same long molded lens as above, FIG. 2(Q) is a sectional view taken along the line B-B of FIG. 4 is a diagram showing volume changes in the longitudinal direction of the elongated molded lens according to the present invention and the conventional elongated molded lens, respectively. FIG. 4 is a perspective view of the elongated molded lens showing another embodiment of the present invention, and FIG. Diagram (a)
is a plan view of the same long molded lens as seen from the optical axis direction,
FIG. 5(b) is a side view of the same long molded lens as seen from the longitudinal direction, FIG. FIG. 6 is a diagram for explaining the relationship between the partial volume of the layer side portion in the longitudinal direction and the partial volume of the central portion in the longitudinal direction of the elongated molded lens according to the present invention, and FIG. 7 and FIG. FIG. 9 is a perspective view of a long molded lens showing another example of the conventional technology; FIG. 10 is a long molded lens showing another example of the prior art. It is a perspective view of a lens. 1.3,5,7...long molded lens, 2,4°6.
8...Lens effective part, r...Optical axis. Mizuhi ■ Ryo (i2) Kimi <C> Q ■ Attributive cause

Claims (1)

【特許請求の範囲】[Claims]  光軸に対して直交する一つの軸方向の長さを長尺に形
成した長尺成形レンズであって、上記光軸と上記長尺方
向とに直交する方向の厚さを上記長尺方向のレンズ有効
部分の最周辺部から中央部に向かって漸次減少させたレ
ンズ厚の補正部分を設けたことを特徴とする長尺成形レ
ンズ。
A long molded lens formed to have a long length in one axial direction perpendicular to the optical axis, wherein the thickness in the direction perpendicular to the optical axis and the longitudinal direction is the same as the length in the longitudinal direction. 1. A long molded lens characterized by being provided with a lens thickness correction portion that gradually decreases from the outermost periphery toward the center of the lens effective portion.
JP31142188A 1988-12-09 1988-12-09 Long-size molded lens Pending JPH02157703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31142188A JPH02157703A (en) 1988-12-09 1988-12-09 Long-size molded lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31142188A JPH02157703A (en) 1988-12-09 1988-12-09 Long-size molded lens

Publications (1)

Publication Number Publication Date
JPH02157703A true JPH02157703A (en) 1990-06-18

Family

ID=18016998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31142188A Pending JPH02157703A (en) 1988-12-09 1988-12-09 Long-size molded lens

Country Status (1)

Country Link
JP (1) JPH02157703A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133179A (en) * 2005-11-10 2007-05-31 Ricoh Co Ltd Plastic optical element, insert, metallic mold, optical scanner, and image forming apparatus mounted with optical scanner
JP2007271666A (en) * 2006-03-30 2007-10-18 Konica Minolta Business Technologies Inc Laser beam scanner
JP2009115697A (en) * 2007-11-08 2009-05-28 Suzuki Giken:Kk Optical fiber sensor
JP2010060637A (en) * 2008-09-01 2010-03-18 Ricoh Co Ltd Plastic optical element, optical scanning apparatus, and image forming apparatus
CN102207562A (en) * 2010-03-31 2011-10-05 兄弟工业株式会社 Long-length lens
JP2014115367A (en) * 2012-12-07 2014-06-26 Brother Ind Ltd Scanning lens
JP2014167569A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Plastic optical element, optical scanner, and image forming apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133179A (en) * 2005-11-10 2007-05-31 Ricoh Co Ltd Plastic optical element, insert, metallic mold, optical scanner, and image forming apparatus mounted with optical scanner
JP4751184B2 (en) * 2005-11-10 2011-08-17 株式会社リコー Plastic optical element, optical scanning device, and image forming apparatus equipped with the optical scanning device
JP2007271666A (en) * 2006-03-30 2007-10-18 Konica Minolta Business Technologies Inc Laser beam scanner
JP4640232B2 (en) * 2006-03-30 2011-03-02 コニカミノルタビジネステクノロジーズ株式会社 Laser scanning device
JP2009115697A (en) * 2007-11-08 2009-05-28 Suzuki Giken:Kk Optical fiber sensor
JP2010060637A (en) * 2008-09-01 2010-03-18 Ricoh Co Ltd Plastic optical element, optical scanning apparatus, and image forming apparatus
CN102207562A (en) * 2010-03-31 2011-10-05 兄弟工业株式会社 Long-length lens
JP2011215309A (en) * 2010-03-31 2011-10-27 Brother Industries Ltd Lens
US8665524B2 (en) 2010-03-31 2014-03-04 Brother Kogyo Kabushiki Kaisha Long-length lens
JP2014115367A (en) * 2012-12-07 2014-06-26 Brother Ind Ltd Scanning lens
JP2014167569A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Plastic optical element, optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
US8964313B2 (en) Plastic optical element and method of making the same
JPH0634882A (en) Zoom lens
US5086355A (en) Focal length changeable lens system
JPH02157703A (en) Long-size molded lens
JP2898197B2 (en) Optical element, molding method thereof, and laser scanning optical system
JPH0315001A (en) Coupling structure for plastic lens
JPS59211013A (en) Plastic objective lens system subjected to temperature compensation
WO2023160228A1 (en) Athermalization super-lens and design method therefor
EP3924771A1 (en) Biased total thickness variations in waveguide display substrates
US5550600A (en) Ophthalmic lens having a negative refractive power
JPS6285212A (en) Refraction type projection lens
EP3640689B1 (en) Toric lens, optical element, and image forming apparatus
JPH0511201A (en) Synthetic resin lens for scanning optical system
JPS6134644B2 (en)
JPH06186405A (en) Combined lens and its production
CN113687498A (en) Optical lens of encoder
JPH04214515A (en) Projecting lens for projector
JPS58158614A (en) Plastic lens structure
JP4168705B2 (en) Optical element and mold for molding the same
JPS6156313A (en) Refractive index distribution type lens
JPS63115120A (en) Temperature compensated objective system
JPH03211030A (en) Plastic lens
JPH08248212A (en) Concave surface mirror made of plastic
JPH0727114B2 (en) Objective lens system with temperature compensation
JPH0511157A (en) Plastic lens barrel