JPH02157021A - Ammonia gas producing apparatus from ammonia water - Google Patents

Ammonia gas producing apparatus from ammonia water

Info

Publication number
JPH02157021A
JPH02157021A JP63311019A JP31101988A JPH02157021A JP H02157021 A JPH02157021 A JP H02157021A JP 63311019 A JP63311019 A JP 63311019A JP 31101988 A JP31101988 A JP 31101988A JP H02157021 A JPH02157021 A JP H02157021A
Authority
JP
Japan
Prior art keywords
ammonia
gas
ammonia water
water
evaporation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311019A
Other languages
Japanese (ja)
Inventor
Shunji Emoto
柄本 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63311019A priority Critical patent/JPH02157021A/en
Publication of JPH02157021A publication Critical patent/JPH02157021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate NH3 gas by heating ammonia water. CONSTITUTION:Once stored ammonia water (a) in an ammonia water tank 11 by an ammonia water storage apparatus 10 is sent to an NH3 gas producing apparatus 20 by a pump 12. The flow rate of the ammonia water to meet the necessary amount of NH3 for a denitrification apparatus 40 is controlled by an adjusting valve 13. The ammonia water (a) sent to the NH3 gas producing apparatus 20 is heated so as to evaporate and separate saturated NH3. NH3 is evaporated and separated from the ammonia water perfectly and the ammonia water turns into harmless hot water. Meanwhile, supersaturated NH3 evaporated by heating is flow-transported by sending air from an air fan 31, and the resulting diluted NH3 (c) is injected to a flue 33 through a nozzle grid 32 set in the upper stream of a denitrification apparatus 40. By this method, ammonia gas is obtained from an ammonia water. Since NH3 is injected into the flue, even if sulfur oxide is present therein, corrosion of a tube does not occur and troubles of choking the tube with dust is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排煙脱硝装置に係り、粕に都市型の自家発電
設備で必要となるアンモニア(以下N I−1。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flue gas denitrification device, in which ammonia (hereinafter referred to as NI-1) necessary for urban private power generation equipment is added to lees.

と称す)ガス発生装置に関する。(referred to as ) gas generator.

〔従来の技術〕[Conventional technology]

アンモニア接触還元性排煙脱硝装置に採用されるNH3
ガス発生装置は、通常、液体アンモニア(以下液安と称
す)をガス化させて使用するため、その殆どが、容量5
仕様的な面から、高圧ガス取締法の適用対象となり、そ
の取り扱いが大幅に制約を受ける。このため、そのよう
な法的制約が少ないアンモニア水(以下安水と称す)を
利用し、これを煙道内に吹き込んで、NH3をガス化さ
せる方法が採用されるようになったきた。この方式を第
2図で説明する。即ち、安水aはタンク1に貯えられ、
(Jt給ポンプ2にて加圧され、戻し制御弁3で一部安
水を戻しながら、煙道5内への安水量をコントロールし
、安水噴霧ノズル4より霧状にスプレーし、煙1ffi
s内の排ガスによ−ってNll。
NH3 used in ammonia catalytic reduction flue gas denitrification equipment
Gas generators usually gasify liquid ammonia (hereinafter referred to as liquid ammonia), so most of them have a capacity of 5.
Due to its specifications, it is subject to the High Pressure Gas Control Law, and its handling is subject to significant restrictions. For this reason, a method has been adopted in which ammonia water (hereinafter referred to as ammonium water), which has fewer such legal restrictions, is used and blown into the flue to gasify NH3. This method will be explained with reference to FIG. That is, ammonium water a is stored in tank 1,
(The ammonium water is pressurized by the Jt supply pump 2, and while some of the ammonium water is returned by the return control valve 3, the amount of ammonium water into the flue 5 is controlled, and the ammonium water is sprayed in a mist form from the ammonium water spray nozzle 4, resulting in 1ffi of smoke.
Nll by exhaust gas in s.

も水分も一緒に蒸発さセる仕組めになっている。It is designed to evaporate water and water together.

40は脱硝装置である。40 is a denitrification device.

この場合、問題は排ガス中での安水の完全蒸発であるが
、これが非常に難しく、ドレンが煙道5内に溜まったり
、後流脱硝触媒層まで水滴が飛散し、触媒性能劣化を引
き起こしたりする。また、SOXを含む排ガスを処理す
る場合には、脱色後流の排熱ボイラ低温チューブバンク
の腐食や、煙道内腐食を促進させたりする。さらに、安
水噴霧ノズル後流の機器や煙道でのメンテナンスも大変
である。
In this case, the problem is the complete evaporation of ammonium water in the exhaust gas, but this is extremely difficult, and condensate may accumulate in the flue 5, or water droplets may scatter to the downstream denitration catalyst layer, causing catalyst performance deterioration. do. Furthermore, when exhaust gas containing SOX is treated, corrosion of the low-temperature tube bank of the waste heat boiler downstream of decolorization and corrosion within the flue are promoted. Furthermore, maintenance of the equipment downstream of the ammonium water spray nozzle and the flue is also difficult.

このため、より効果的な安水の噴霧を行うため、安水を
、オイルバーナ等のように、高圧蒸気でアトマイズする
方式も提案されているが、改善されたとは言い難い。こ
のようなことから、安水方式は実用化に至っておらず、
実績も非常に少ない。
For this reason, in order to more effectively spray ammonium water, a method of atomizing ammonium water using high-pressure steam, such as with an oil burner, has been proposed, but it cannot be said that this has been improved. For these reasons, the cheap water method has not been put into practical use.
There are also very few achievements.

しかしながら、最近、ディーゼルやガスターヒンを使っ
たコジェネレーションプラントの設置か急増し、特に、
都市型として、ビルの地下に設置するケースも増加して
きている。この場合は、やはり、高圧ガス取締法の適用
から外れる安水法で計画を要求される場合が多い。この
ため、安水を使って、従来の安水煙道内噴霧方式より信
頼性の高いNH3ガス発生方式の提案の要求か必須であ
る。
However, recently, the installation of cogeneration plants using diesel and gas turbines has increased rapidly, and in particular,
As an urban type, the number of cases where they are installed underground in buildings is increasing. In this case, plans are often required under the Safe Water Law, which is exempt from the High Pressure Gas Control Law. Therefore, it is essential to propose a method for generating NH3 gas using ammonium water, which is more reliable than the conventional ammonium water flue spraying method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、排ガス中へ安水を噴霧スプレーさせる
ことが出来ない。あるいは排カス流中で完全蒸発をさせ
ることが出来ないという問題かあった。
The above-mentioned conventional technology cannot spray ammonium water into exhaust gas. Alternatively, there was a problem that complete evaporation could not be achieved in the waste stream.

例えば、排ガス中の煤塵や、排ガス中のSO3と安水中
のN T(3とから生成する硫安化合物が、噴霧ノズル
先端に付着堆積し、安水のツtXを阻害した場合に起こ
る。また、排ガス中に安水の水分が蒸発し、排ガス中の
水分濃度を上昇させる結果、酸性硫安生成域が拡大し、
排熱回収ボイラの低温、チューブバンクの腐食域が広が
ると同時に、煤塵の付着堆積も促進される。
For example, this occurs when soot in the exhaust gas or ammonium sulfate compounds generated from SO3 in the exhaust gas and NT (3) in the aqueous solution adhere and accumulate at the tip of the spray nozzle, inhibiting the TStX of the aqueous solution. The moisture in the ammonium sulfate evaporates in the exhaust gas, increasing the moisture concentration in the exhaust gas, and as a result, the area where acidic ammonium sulfate is generated expands.
The low temperature of the waste heat recovery boiler expands the corrosion area of the tube bank, and at the same time promotes the adhesion and accumulation of soot and dust.

本発明の目的は、排煙脱硝装置の安水を作ったN H3
ガス発生装置において、安水からNH3ガス(一部水蒸
気含)を分離し、これをエア希釈して、煙道内に希釈N
 H3ガスを注入する方式を採用し、上記の従来技術の
欠点を完全になくすことにある。
The purpose of the present invention is to use NH3 produced as ammonium water for flue gas denitration equipment
In the gas generator, NH3 gas (containing some water vapor) is separated from the ammonium water, diluted with air, and diluted N gas is added into the flue.
The purpose is to completely eliminate the drawbacks of the prior art by adopting a method of injecting H3 gas.

〔課題を解決するための手段〕[Means to solve the problem]

安水からNH:+ガスを蒸発分離することが出来れば、
脱硝反応器上流煙道内に、安水を注入する必要はなく、
安水から分離したNH3(水蒸気台)をガス状で排ガス
中へ注入することができる。
If NH:+ gas can be evaporated and separated from ammonium water,
There is no need to inject ammonium water into the flue upstream of the denitrification reactor.
NH3 (steam table) separated from ammonium water can be injected into the exhaust gas in gaseous form.

このような安水からNH,ガスを造る手段として、蒸気
や電気を熱源とした安水の加熱器を内蔵したNH3発生
装置に、安水を入れ、安水温度を上昇してゆけば、過飽
和のN H3が蒸発する。この蒸発したガス状NH3を
空気を媒体として、NH3ガス発生装置外へ気流搬送し
、これを脱硝反応器上流煙道に注入する。こうすること
によって、前項で説明した従来技術の問題点は完全に解
決できる。
As a means of producing NH and gas from such ammonium water, ammonium water is poured into an NH3 generator equipped with an ammonium water heater that uses steam or electricity as a heat source, and if the ammonium water temperature is increased, supersaturation occurs. of NH3 evaporates. This evaporated gaseous NH3 is transported by air to the outside of the NH3 gas generator using air as a medium, and is injected into the flue upstream of the denitrification reactor. By doing so, the problems of the prior art explained in the previous section can be completely solved.

尚、上述の安水からのN Hzの蒸発分離は、安水中の
NH,溶解度が液温か高くなるにつれて下がり、100
℃ではゼロ(0)となるこ々を利用したものである。
In addition, the evaporative separation of N Hz from ammonium water mentioned above decreases as the solubility of NH in ammonium water increases as the liquid temperature increases.
This takes advantage of the fact that it is zero (0) at °C.

〔作用〕[Effect]

基本的には、安水を加熱することによって、NH3が容
易に蒸発する現象を利用する。第3図にNH3の水への
溶解度を示す(出典;化学便覧法礎編、改訂2版、丸首
、昭和50年6月発行)。
Basically, it utilizes the phenomenon that NH3 easily evaporates by heating ammonium water. Figure 3 shows the solubility of NH3 in water (Source: Chemistry Handbook Law Foundation Edition, revised 2nd edition, Marukubi, published June 1975).

これにより、安水(N H3水)温度が」二昇する程、
NH,の水への溶解度が下がり、] 00 ’Cでその
溶解度はゼロ(0)になる。
As a result, the temperature of ammonium water (NH3 water) rises by 2',
The solubility of NH, in water decreases, and its solubility becomes zero (0) at ]00'C.

即ち、安水を蒸気や電気等を熱源にし、直接的あるいは
間接的に加熱し、安水からNHlを蒸発分離し、空気を
媒体として気流搬送し、この希釈NH,ガスを直接、あ
るいは、さらに空気により希釈して、排ガス中に注入す
る。
That is, ammonium water is directly or indirectly heated using steam or electricity as a heat source, NH1 is evaporated and separated from the ammonium water, air is used as a medium to transport the diluted NH and gas directly or further. Dilute with air and inject into the exhaust gas.

方、安水から完全にN113を蒸発分離した水は、10
0℃近辺の高温水であるため、このエネルギーを常温で
供給する安水の昇温エネルギーとして使うと省エネの観
点からも有効である。
On the other hand, water from which N113 has been completely evaporated and separated from ammonium water has a concentration of 10
Since the water is at a high temperature of around 0°C, it is effective from the viewpoint of energy saving if this energy is used to raise the temperature of the ammonium water supplied at room temperature.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す。 FIG. 1 shows an embodiment of the present invention.

全体構成は、安水貯蔵装置10.NH3ガス発生装置2
0.NH3ガス注入装置30とからなる。
The overall configuration is an ammonium water storage device 10. NH3 gas generator 2
0. It consists of an NH3 gas injection device 30.

安水貯蔵装置10においては、安水タンク11に安水a
が一旦貯蔵され、安水aは安水送水ポンプ12より送水
される。N +−13ガス発生装置20への送水量は、
脱硝装置40に必要なNH,量に見合った安水量が調節
弁13により制御されて送られる。従って、余分な安水
aは抵抗弁14を経由して安水タンク11へ戻される。
In the ammonium water storage device 10, ammonium water a is placed in the ammonium water tank 11.
is temporarily stored, and the ammonium water a is sent by the ammonium water water pump 12. The amount of water fed to the N+-13 gas generator 20 is:
An amount of ammonium water commensurate with the amount of NH required for the denitrification device 40 is controlled by the control valve 13 and sent. Therefore, excess ammonium water a is returned to the ammonium water tank 11 via the resistance valve 14.

NH,ガス発生装置20へ送水された安水aは、ここで
加熱昇温されて飽和含有N H,を蒸発分離される。安
水aは完全にNH3分が蒸発分離除去されると無害な排
水となってNH3ガス発生装置20外へ放流される。
The ammonium water a sent to the NH gas generator 20 is heated and heated to evaporate and separate the saturated NH. When the NH3 component of the ammonium water a is completely removed by evaporation and separation, it becomes harmless waste water and is discharged to the outside of the NH3 gas generator 20.

この安水aから含有N I−1、を蒸発分離する過程を
以下説明する。NH,ガス発生装置20の内部は、NH
,ガス蒸発室21と排水路22とからなっている。NH
,ガス蒸発室21は、安水流入口側からせき23と防液
板24とが交互に配置されており、最終室には電気ヒー
タや蒸気加熱器等の熱源25を設け、ここで安水aは約
100℃まで昇温制御されている。この段階で安水中の
N11゜は総で蒸発し、安水は約100℃の高温排水と
なって、排水路22を通って流れて行くが、この際、高
温排水の上部はNH,ガス蒸発室21の底部−C1その
底板を伝熱板として、高温水と安水aとが交流で熱交換
し、高温水は熱回収されて温度を下げ、一方、安水は熱
回収して昇温しで行く。このようにして、安水は最終的
には約100℃となって含有N H3分を完全に蒸発除
去されて無害な温水となり、この温水は供給されてくる
安水に熱回収されて、放流される程度まで温度を下げる
ことができる。
The process of evaporating and separating the contained N I-1 from this ammonium water a will be described below. NH, the inside of the gas generator 20 is NH
, a gas evaporation chamber 21 and a drainage channel 22. N.H.
In the gas evaporation chamber 21, weirs 23 and liquid-proof plates 24 are arranged alternately from the ammonium water inlet side, and a heat source 25 such as an electric heater or a steam heater is provided in the final chamber, where the ammonium water a The temperature is controlled to rise to approximately 100°C. At this stage, all of the N11° in the ammonium chloride evaporates, and the ammonium water turns into high-temperature wastewater of approximately 100°C and flows through the drainage channel 22. At this time, the upper part of the high-temperature wastewater contains NH and gas evaporation. Bottom of chamber 21 - C1 Using the bottom plate as a heat transfer plate, high-temperature water and ammonium water a exchange heat through alternating current, the high-temperature water recovers heat and lowers its temperature, while the ammonium water recovers heat and raises its temperature. I'll go. In this way, the ammonium water eventually reaches a temperature of approximately 100°C, and the NH3 content is completely removed by evaporation, resulting in harmless hot water.The heat of this hot water is recovered by the supplied ammonium water, and the water is discharged. The temperature can be lowered to the extent that

次に、NH3注大装置30であるが、NHi希釈空気フ
ァン31からの空気すの一部、又は、全部をNH3ガス
発生装置20に送風し、NH3ガス発生装置20内で発
生したNH3ガスを気流搬送し、希釈NH,lガスCと
して、脱硝装置40の上流に設置されたNH3注入ノズ
ルグリッド32により煙道33内に注入する。
Next, the NH3 pouring device 30 blows some or all of the air from the NHi dilution air fan 31 to the NH3 gas generator 20 to collect the NH3 gas generated in the NH3 gas generator 20. The gas is conveyed by air current and injected as diluted NH,1 gas C into the flue 33 through the NH3 injection nozzle grid 32 installed upstream of the denitrification device 40.

尚、ダンパ34はNH3希釈空気ファン31からの空気
すの一部をNH3ガス発生装置20に流し、残りをバイ
パスさせる場合の調整用として設けたものである。
The damper 34 is provided for adjustment when a part of the air from the NH3 diluted air fan 31 is flowed to the NH3 gas generator 20 and the rest is bypassed.

以上、一実施例を示したが、この実施例では熱源25は
NH3ガス蒸発室21の最終室にのみある例を示したが
、各室に設けてもよく、また、NH,ガス蒸発室21の
下部に排水路22を設け、高温排水を流し、高温排水か
ら熱回収するようにしたが、排水路22をなくし、高温
排水で放出することもできる。さらに、NH3ガス蒸発
室21の室内に設けるせき23と防液板24とは安水a
の効率的な熱回収による効果的なNH3ガス蒸発を考慮
し取付けたものであるが、安水、jが十分均一に昇温さ
れ、含有N H3を完全に蒸発できれは何段階に分けて
もよく、ゼロ(0)でもよい。
One embodiment has been described above. In this embodiment, the heat source 25 is provided only in the last chamber of the NH3 gas evaporation chamber 21, but it may be provided in each chamber. A drainage channel 22 is provided at the bottom of the tank to allow high-temperature wastewater to flow through and recover heat from the high-temperature wastewater, but it is also possible to eliminate the drainage channel 22 and discharge heat as high-temperature wastewater. Furthermore, the weir 23 and the liquid-proof plate 24 provided inside the NH3 gas evaporation chamber 21 are
This was installed in consideration of effective NH3 gas evaporation through efficient heat recovery. It may be zero (0).

第4図、第5図はNH3発生装T1.20の他の実施例
を示す概略構成図である。
FIGS. 4 and 5 are schematic configuration diagrams showing other embodiments of the NH3 generator T1.20.

第4図に示す実施例では、NIL、ガス蒸発″+21を
複数の室には仕切らず、−室として構成し、傾斜したN
 H3ガス蒸発室21の上方から安水aが、安水噴霧ノ
ズル26により噴霧状態で送り込まれ、熱源25によっ
て加熱され、含有NI1.を蒸発させる。そして、NH
3ガス蒸発室21の下方から送り込まれる空気すにより
N Hz希釈ガスCとして上方のパイプから送り出す。
In the embodiment shown in FIG.
Ammonium water a is fed in a sprayed state from above the H3 gas evaporation chamber 21 by the ammonium water spray nozzle 26, heated by the heat source 25, and containing NI1. evaporate. And N.H.
3. Air is sent from below into the gas evaporation chamber 21 and sent out from the upper pipe as NHz dilution gas C.

27は排水オーバフロー管である。27 is a drainage overflow pipe.

第5図に示す実施例では、上端の開「]部をガスパイプ
28に臨ませて、蒸発したN1■、をこのカスパイプ2
8の左側から送られて来る空気すと混合させ、N H3
希釈ガスCとしてガスパイプ28の右側に送り出すうよ
うになっている。
In the embodiment shown in FIG.
Mix it with the air sent from the left side of No. 8, and make N H3
The diluent gas C is sent out to the right side of the gas pipe 28.

〔発明の効果〕〔Effect of the invention〕

本発明を採用することによる効果を以下に列挙する。 The effects of adopting the present invention are listed below.

+1.1従来の安水噴霧方式と同様、高圧ガス取締法の
適用を受りることなく、特に、都市型としてのコージェ
ネレーションプラントに好適な脱硝用N H3ガス発生
装置である。
+1.1 Similar to the conventional ammonium spray method, this is a denitrification NH3 gas generator that is not subject to the High Pressure Gas Control Law and is particularly suitable for urban cogeneration plants.

(2)従来の安水の煙道内直接噴霧方式と異なり、安水
から蒸発分離したNHffガスを煙道内に注入するため
、従来法で問題となる安水の不完全蒸発による煙道内へ
のドレン凝縮や、その結果生じる煙道内腐食、さらには
、致命的事故となる脱硝触媒層への安水水滴飛散による
触媒性能劣化等の問題は全く起こりようがない。このた
め、装置としては長期安定運転かできる高信頼性のもの
となる。
(2) Unlike the conventional method of directly spraying ammonium water into the flue, the NHff gas separated by evaporation from the ammonium water is injected into the flue, so there is no drainage into the flue due to incomplete evaporation of the ammonium water, which is a problem with conventional methods. Problems such as condensation, resulting corrosion in the flue, and deterioration of catalyst performance due to the scattering of ammonium water droplets onto the denitrification catalyst layer, which can lead to fatal accidents, are completely unlikely to occur. Therefore, the device is highly reliable and can operate stably for a long period of time.

(3)煙道内へはNHJガス(若干水分台)を注入する
ため、排ガス中にSOX  (イオウ酸化物)が含まれ
ているときは、従来法で生しる排ガス中への安水水分蒸
発による排ガス中の水分濃度上昇による脱硝後流排熱回
収ボイラ低温デユープバンクでの酸性硫安の生成領域が
縮小されることにより、チューブ腐食が軽減されるとと
もに、ダスト付着堆積による排熱回収効率の低下やチュ
ーブ間ダスト閉塞などの伝熱管障害が大幅に改善される
(3) Because NHJ gas (slightly high moisture content) is injected into the flue, if the flue gas contains SOX (sulfur oxide), ammonium water will evaporate into the flue gas instead of using conventional methods. By reducing the generation area of acidic ammonium sulfate in the low-temperature duplex bank of the exhaust heat recovery boiler downstream of denitrification due to the increase in moisture concentration in the exhaust gas, tube corrosion is reduced, and the reduction in exhaust heat recovery efficiency due to dust adhesion and accumulation is reduced. Heat transfer tube failures such as inter-tube dust blockage are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るアンモニアガス発生装
置を含むシステム全体の概念図、第2図は従来例に係る
アンモニアガス供給ソステトの概念図、第3図は水に対
するアンモニアの溶解度のデータを示す図、第4図、第
5し1は本発明の他の実施例に係るアンモニアガス発生
装置の概略図である。 21・・・アンモニアガス蒸発室、25・・・熱源、3
1・・・ファン、33・・・煙道、a・・・アンモニア
水、b・・・空気、C・・・希釈アンモニアガス。 第 図 第 図 第 図 第 図
Fig. 1 is a conceptual diagram of the entire system including an ammonia gas generator according to an embodiment of the present invention, Fig. 2 is a conceptual diagram of a conventional ammonia gas supply system, and Fig. 3 is a diagram of the solubility of ammonia in water. Figures 4 and 5 showing the data are schematic diagrams of an ammonia gas generator according to another embodiment of the present invention. 21... Ammonia gas evaporation chamber, 25... Heat source, 3
1... Fan, 33... Flue, a... Ammonia water, b... Air, C... Diluted ammonia gas. Figure Figure Figure Figure Figure

Claims (4)

【特許請求の範囲】[Claims] (1)アンモニア接触還元法排煙脱硝装置におけるアン
モニアガス発生装置において、アンモニア水を加熱する
手段と、加熱により蒸発する過飽和のアンモニアをガス
状で取り出し、排煙脱硝装置まで気流搬送する手段とを
備えたことを特徴とするアンモニア水からのアンモニア
ガス発生装置。
(1) In the ammonia gas generation device in the ammonia catalytic reduction flue gas denitrification device, a means for heating ammonia water and a means for extracting supersaturated ammonia that evaporates by heating in gaseous form and transporting it in airflow to the flue gas denitrification device are provided. An ammonia gas generator from ammonia water, characterized by comprising:
(2)請求項(1)に記載のアンモニア水からのアンモ
ニアガス発生装置において、供給されるアンモニア水が
オーバーフローしながら流れるように、せきと防液板と
で交互に仕切るとともに、最終室には熱源を有するアン
モニアガス蒸発室と、 このアンモニアガス蒸発室の下方に設けた排水路とを備
えたことを特徴とするアンモニア水からのアンモニアガ
ス発生装置。
(2) In the ammonia gas generating device from ammonia water according to claim (1), the final chamber is partitioned alternately with weirs and liquid-proof plates so that the supplied ammonia water flows while overflowing. An ammonia gas generating device from ammonia water, comprising: an ammonia gas evaporation chamber having a heat source; and a drainage channel provided below the ammonia gas evaporation chamber.
(3)請求項(1)に記載のアンモニア水からのアンモ
ニアガス発生装置において、アンモニア水が底面を流下
するように傾けたアンモニアガス蒸発室の底面に、電熱
ヒーターや蒸気加熱器等の熱源を配し、アンモニアガス
蒸発室の上部にアンモニア水噴霧ノズルからアンモニア
水をスプレーし、そのアンモニア水がアンモニアガス蒸
発室の底面を流下する間にアンモニア水を昇温、その液
中のアンモニアの大部分を蒸発させ、さらに、室内底部
に約100℃の液温となる液溜まりを作り、ここでアン
モニア水中の残りの含有アンモニアを完全に蒸発させて
、このガス化したアンモニアを空気により気流搬送しア
ンモニアガス蒸発室外へ取り出す構成にしたことを特徴
とするアンモニア水からのアンモニアガス発生装置。
(3) In the ammonia gas generation device from ammonia water according to claim (1), a heat source such as an electric heater or a steam heater is installed on the bottom of the ammonia gas evaporation chamber which is tilted so that the ammonia water flows down the bottom. Ammonia water is sprayed from an ammonia water spray nozzle onto the top of the ammonia gas evaporation chamber, and while the ammonia water flows down the bottom of the ammonia gas evaporation chamber, the temperature of the ammonia water is increased, and most of the ammonia in the liquid is heated. Furthermore, a liquid pool with a liquid temperature of approximately 100°C is created at the bottom of the room, where the remaining ammonia contained in the ammonia water is completely evaporated, and this gasified ammonia is transported by air with air to convert it into ammonia. An apparatus for generating ammonia gas from aqueous ammonia, characterized in that the ammonia gas is extracted to the outside of the gas evaporation chamber.
(4)請求項(1)に記載のアンモニア水からのアンモ
ニアガス発生装置において、竪型のアンモニアガス蒸発
室の周囲に電熱ヒーターや蒸気加熱器等の熱源を配し、
室内天井部に取り付けたアンモニア水噴霧ノズルよりア
ンモニア水をスプレーし、アンモニア水噴霧水滴の昇温
により大部分の過飽和アンモニアを蒸発させ、さらに底
部に約100℃の液温となる液溜まりを作り、ここでア
ンモニア水中の残りの含有アンモニアを完全に蒸発させ
、蒸発したアンモニアガスを蒸気加熱器の天井部より蒸
気加熱器外へ抜き出し、空気により、アンモニア希釈ガ
スとして気流搬送する構成にしたことを特徴とするアン
モニアからのアンモニアガス発生装置。
(4) In the ammonia gas generation device from ammonia water according to claim (1), a heat source such as an electric heater or a steam heater is arranged around the vertical ammonia gas evaporation chamber,
Spray ammonia water from an ammonia water spray nozzle attached to the ceiling of the room, evaporate most of the supersaturated ammonia by raising the temperature of the ammonia water spray droplets, and create a liquid pool at the bottom with a liquid temperature of about 100°C. Here, the remaining ammonia contained in the ammonia water is completely evaporated, and the evaporated ammonia gas is extracted from the ceiling of the steam heater to the outside of the steam heater, and is transported by air as ammonia dilution gas. Ammonia gas generator from ammonia.
JP63311019A 1988-12-10 1988-12-10 Ammonia gas producing apparatus from ammonia water Pending JPH02157021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311019A JPH02157021A (en) 1988-12-10 1988-12-10 Ammonia gas producing apparatus from ammonia water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311019A JPH02157021A (en) 1988-12-10 1988-12-10 Ammonia gas producing apparatus from ammonia water

Publications (1)

Publication Number Publication Date
JPH02157021A true JPH02157021A (en) 1990-06-15

Family

ID=18012140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311019A Pending JPH02157021A (en) 1988-12-10 1988-12-10 Ammonia gas producing apparatus from ammonia water

Country Status (1)

Country Link
JP (1) JPH02157021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617698A1 (en) * 1990-10-15 1994-10-05 Exxon Research And Engineering Company Aqueous ammonia injection scheme
WO2002062704A3 (en) * 2001-02-08 2003-02-13 Chemithon Corp Method for quantitative production of gaseous ammonia
JP2011226434A (en) * 2010-04-22 2011-11-10 Isuzu Motors Ltd System for supplying ammonia to scr device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617698A1 (en) * 1990-10-15 1994-10-05 Exxon Research And Engineering Company Aqueous ammonia injection scheme
EP0617698A4 (en) * 1990-10-15 1995-02-01 Exxon Research Engineering Co Aqueous ammonia injection scheme.
WO2002062704A3 (en) * 2001-02-08 2003-02-13 Chemithon Corp Method for quantitative production of gaseous ammonia
JP2011226434A (en) * 2010-04-22 2011-11-10 Isuzu Motors Ltd System for supplying ammonia to scr device

Similar Documents

Publication Publication Date Title
US4999167A (en) Low temperature Nox /Sox removal apparatus
CN107032428A (en) A kind of undersaturation flue gas condensing crystallizing desulfurization wastewater zero-discharge treatment system and method
CN109045976A (en) A kind of ammonia process of desulfurization flue gas disappears white waste heat depth recovery system and application
CN105668669B (en) A kind of power plant desulfurization wastewater treatment system and technique
WO1995007751A1 (en) Exhaust gas boiler
CN107986365A (en) A kind of fluoroplastics falling film evaporator that desulfurization wastewater concentration is carried out using fume afterheat
CN208025546U (en) It is a kind of to remove white thermal siphon heat exchanger for wet flue gas
CN206799197U (en) A kind of undersaturation flue gas condensing crystallizing desulfurization wastewater zero-discharge treatment system
CN107973475A (en) Desulfurization wastewater Zero discharging system and method based on waste heat reuse under running on the lower load
CN109945277A (en) A kind of energy conserving system being used for central heating using electric heat pump depth recycling remaining heat of flue gas from steam power plant
CN105536484A (en) Pollutant pretreating tower condensing based on flue gas
CN108786404A (en) A kind of system of the high efficiente callback gas fired-boiler fume afterheat based on bubble techniques
CN108469033A (en) A kind of dehumidifying decontamination heating of flue gas condensing disappears white heat exchanger
CN109939557A (en) The system and method for coloured plume are eliminated in collaboration
CN211650417U (en) Desulfurization slurry cooling flue gas waste heat supply integrated system
CN107120673A (en) Low temperature SCR denitration and flue gas take off white device
CN102512910A (en) Smoke heat exchange process for recycling evaporated water of gas desulfurization system
JPH02157021A (en) Ammonia gas producing apparatus from ammonia water
CN208620331U (en) A kind of boiler energy recovery system
CN209411826U (en) Waste water concentrating decrement treatment system
CN204042943U (en) Desulfurization system for thermal power plant
CN209034090U (en) A kind of ammonia process of desulfurization flue gas disappears white waste heat depth recovery system
CN107344052A (en) Gas cleaning and plume control method and device
JPS5990617A (en) Treatment of waste gas
CN206755219U (en) A kind of low temperature SCR denitration and flue gas take off white device