JPH02155500A - Control method of ac excited synchronous machine - Google Patents

Control method of ac excited synchronous machine

Info

Publication number
JPH02155500A
JPH02155500A JP63307875A JP30787588A JPH02155500A JP H02155500 A JPH02155500 A JP H02155500A JP 63307875 A JP63307875 A JP 63307875A JP 30787588 A JP30787588 A JP 30787588A JP H02155500 A JPH02155500 A JP H02155500A
Authority
JP
Japan
Prior art keywords
aesm
excited synchronous
voltage
synchronous machine
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63307875A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
浩 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63307875A priority Critical patent/JPH02155500A/en
Publication of JPH02155500A publication Critical patent/JPH02155500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To continue operation without defective commutation by detecting keeping within a specified value of the voltage and slip of an AC excited syn chronous machine(AESM) and conducting re-excitation. CONSTITUTION:When short-circuiting and grounding accidents 27 generated in one circuit 25 of a transmission line are detected by a system accident detec tor 14 and transmission line breakers 21, 22 are open ed, an AESM controller 19 receives a signal from the system accident detector 14 and a breaker 16 for a short circuit is turned ON, and an AESM 1 is operated continuously as an induction motor. When the accidents are removed, the transmission line breakers 21, 22 are turned ON by a re-closing circuit, the re-closing circuit is completed and terminal voltage and slip detected by a terminal-voltage detec tor 17 and a slip detector 18 are kept within specified values, the AESM control ler 19 opens the breaker 16 for the short circuit, and a rotor 2 as the secondary coil of the AESM 1 is excited by a transformer 5 for an excitation converter and a cycloconverter 6 again and operation is continued.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば揚水発電所において、ポンプ水車に直
結された交流励磁同期機の制御方法、特に、揚水運転時
のAFC調整幅を増大させた可変速揚水発電所の系統事
故後の再運転に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides a control method for an AC excited synchronous machine directly connected to a pump-turbine in, for example, a pumped storage power plant, and in particular, a control method for increasing the AFC adjustment width during pumped storage operation. This concerns the re-operation of a variable speed pumped storage power plant after a system accident.

〔従来の技術〕[Conventional technology]

最近の電力系統は原子力の比率の増大および火力のプー
リースタートストップ回数の増大に伴い、深夜帯のAF
−C調整容量が不足し、この対応として揚水発電所の入
力調整が必要になってきた。
Recently, electric power systems have increased the proportion of nuclear power and the number of pulley start-stops for thermal power plants has increased.
-C adjustment capacity is insufficient, and as a countermeasure, it has become necessary to adjust the input of pumped storage power plants.

第6図はポンプ水車に直結された従来の交流励磁同期機
の制御方法を示すブロック図であり、第6図において、
1は交流励磁同期機(以下、AESMと称す)の電機子
、2はAESMIの回転子(2次コイル)、3は回転子
2とシャフト4を介して直結された可逆式のポンプ水車
、5はAESMlの出力電圧を変成する励磁変換器用変
圧器、6は回転子と励磁変換器用変圧器5との間に接続
されたサイクロコンバータ、7は回転子2の回転数検出
器、8は可変速制御器、9はAESMlの出力電流を検
出する変流器、10はAESMIの出力電圧を検出する
計器用変圧器、11は変流器9の出力と計器用変圧器1
0の出力を入力とする電力変換器、12はAESMIの
出力路に設けた相反転断路器、13は相反転断路器12
の送電線側に設けた発電機しゃ断器、14は発電機しゃ
断器13の開閉を制御する系統事故検出器、15はAE
SMlの2次短絡抵抗、16は2次短絡抵抗15の短絡
用しゃ断器であり、前記系統事故検出器14で開閉制御
される。
FIG. 6 is a block diagram showing a conventional control method for an AC excited synchronous machine directly connected to a pump-turbine.
1 is the armature of an AC excited synchronous machine (hereinafter referred to as AESM), 2 is the rotor (secondary coil) of the AESMI, 3 is a reversible pump-turbine directly connected to the rotor 2 via the shaft 4, 5 6 is a cycloconverter connected between the rotor and the excitation converter transformer 5, 7 is a rotation speed detector of the rotor 2, and 8 is a variable speed 9 is a current transformer that detects the output current of AESMI, 10 is an instrument transformer that detects the output voltage of AESMI, and 11 is the output of current transformer 9 and instrument transformer 1.
12 is a phase inverting disconnector provided in the output path of AESMI, 13 is a phase inverting disconnector 12
14 is a system fault detector that controls the opening and closing of the generator breaker 13; 15 is an AE
The secondary short-circuit resistor 16 of SMI is a short-circuit breaker for the secondary short-circuit resistor 15, and its opening and closing are controlled by the system fault detector 14.

上記ポンプ水車3を可変速で運転するには、上記のAE
SMIを2次励磁する方式が通常採用されている。この
方式によれば、回転速度が変わっても、系統周波数と一
致するように2次励磁の周波数を調整すれば系統との並
列運転が可能である。
In order to operate the pump water turbine 3 at variable speed, the above AE
A method of secondary excitation of the SMI is usually adopted. According to this method, even if the rotational speed changes, parallel operation with the grid is possible by adjusting the frequency of secondary excitation to match the grid frequency.

次に、系統事故後のAESMIの制御動作を説明する。Next, the control operation of AESMI after a system fault will be explained.

系統事故検出器14は系統事故を検出すると、発電機し
ゃ断器13を開放するとともに短絡用しゃ断器16を投
入してAESMIを誘導電動機として運転する。そして
系統事故が復旧したことを系統事故検出器14で検出し
て短絡用しゃ断器16を開放するとともに発電機しゃ断
器13を投入し、励磁変換器用変圧器5.サイクロコン
バータ6で2次コイルである回転子2を再励磁して運転
を継続するか、または系統事故時は運転継続を断念して
発N、機しゃ断器13を開放するとともに短絡用しゃ断
器16を投入し、図示していないガイドベーンを閉じて
ポンプ水車3を停止するようにユニットトリップしてい
た。
When the system fault detector 14 detects a system fault, it opens the generator breaker 13 and closes the short-circuit breaker 16 to operate the AESMI as an induction motor. Then, the system fault detector 14 detects that the system fault has been restored, opens the short-circuit breaker 16, turns on the generator breaker 13, and connects the excitation converter transformer 5. Either re-energize the rotor 2, which is the secondary coil, in the cycloconverter 6 and continue operation, or in the event of a system failure, give up on continuing operation and turn on the N, open the machine breaker 13, and open the short-circuit breaker 16. The unit was tripped to close the guide vane (not shown) and stop the pump-turbine 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の交流励磁同期機の制御方法は以上のように構成さ
れているので、系統事故の復旧後に再励磁してもAES
Mの回転が低下しすぎてスベリが大きくなったり、出力
電圧が低下しすぎたりして、再励磁してもサイクロコン
バータが転流失敗して、機器損傷や系統擾乱を発生させ
るか、系統事故時は常に運転継続を断念せざるを得ない
などの問題点があった。
The conventional control method for AC-excited synchronous machines is configured as described above, so even if the machine is re-excited after recovery from a system fault, AES will not occur.
If the rotation of M decreases too much and the slippage becomes large, or the output voltage decreases too much, the cycloconverter will fail to commutate even if it is re-energized, resulting in equipment damage, system disturbance, or a system accident. There were problems such as having to give up on continuing operation at times.

この発明は上記のような問題点を解消するためになされ
たもので、系統事故後の復旧時にはAESMの運転状態
を監視し、運転継続可能か否かを判断し、AESMの状
態が運転継続可能であれば再励磁し、転流失敗が予想さ
れる場合は、再励磁を断念してユニットトリップするこ
とのできる交流励磁同期機の制御方法を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and when the system is restored after a system accident, the operating status of the AESM is monitored, it is determined whether or not the operation can continue, and the status of the AESM is determined so that the operation can continue. It is an object of the present invention to provide a control method for an AC-excited synchronous machine that can re-energize the machine if so, and give up re-excitation and trip the unit if a commutation failure is expected.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る交流励磁同期機の制御方法は、系統事故
復旧後のAESMの電圧およびスベリを検出し、その電
圧およびスベリがともに規定値以内であれば再励磁して
運転を継続し、規定値を外れていれば交流励磁同期機を
トリップするようにしたものである。
The control method for an AC-excited synchronous machine according to the present invention detects the voltage and slippage of the AESM after recovery from a system fault, and if both the voltage and slippage are within specified values, re-excites the machine and continues operation. If the voltage is off, the AC-excited synchronous machine is tripped.

〔作 用〕[For production]

この発明における交流励磁同期機の制御方法は、AES
Mの電圧およびスベリが規定値以内であることを検出し
て再励磁することにより、サイクロコンバータの運転限
界以内に入るため、転流失敗することな(運転継続を可
能とする。
The control method of the AC excited synchronous machine in this invention is based on the AES
By detecting that the voltage and slippage of M are within specified values and re-exciting, the cycloconverter is within its operating limits, so commutation failure does not occur (operation can continue).

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。前記
第6図と同一または相当部分には同一符号を付して重複
説明は省略する。17はAESMlの端子電圧検出器、
18はAESMIのスベリ検出器、19は系統事故時の
AESMII+御装置、20は発電機しゃ断器13の送
電線側に設けた主変圧器、21,22,23.24は送
電線しゃ断器、25.26は送電線である。
An embodiment of the present invention will be described below with reference to the drawings. The same or corresponding parts as in FIG. 6 are given the same reference numerals, and redundant explanation will be omitted. 17 is the terminal voltage detector of AES Ml,
18 is an AESMI slip detector, 19 is an AESMII+ control device in case of a system fault, 20 is a main transformer installed on the power transmission line side of the generator breaker 13, 21, 22, 23, 24 is a power transmission line breaker, 25 .26 is a power transmission line.

次に動作について説明する0例えば、送電線の一回線2
5で短絡・地絡事故27が発生したとする。この短絡・
地絡事故27を系統事故検出器14で検出して、送電線
しゃ断器21.22が開放されると、A23M制御装置
19は系統事故検出器14からの信号を受けて短絡用し
ゃ断器16を投入し、AESMLは誘導電動機として継
続運転する。
Next, we will explain the operation 0 For example, one line of a power transmission line 2
It is assumed that a short circuit/ground fault accident 27 occurs in 5. This short circuit
When the ground fault 27 is detected by the system fault detector 14 and the transmission line breakers 21 and 22 are opened, the A23M control device 19 receives the signal from the system fault detector 14 and opens the short circuit breaker 16. The AESML continues to operate as an induction motor.

事故が除去され、再閉路にて送電線しゃ断器21.22
が投入され、再閉路が成功すれば、その時のAESMl
の端子電圧とスベリを各々端子電圧検出器17とスベリ
検出器18で検出し、端子電圧とスベリが規定値以内で
あれば、A23M制御装置19は短絡用しゃ断器16を
開放して、再び励磁変換器用変圧器5とサイクロコンバ
ータ6でAESMIの2次コイルである回転子2を励磁
して運転を継続する。
The accident has been removed and the power line breaker is closed again at 21.22
is injected and if reclosing is successful, the current AESMl
The terminal voltage and slippage are detected by the terminal voltage detector 17 and the slippage detector 18, respectively, and if the terminal voltage and slippage are within the specified values, the A23M control device 19 opens the short circuit breaker 16 and re-energizes. The rotor 2, which is the secondary coil of the AESMI, is excited by the converter transformer 5 and the cycloconverter 6 to continue operation.

一方、端子電圧検出器17とスベリ検出器18で検出し
た電圧、スベリが規定値以上に外れていれば、A E 
S M tltl+御装置19は発電機しゃ断器13を
開放し、AESMI、ポンプ水車3をユニットトリップ
して停止させる。
On the other hand, if the voltage and slip detected by the terminal voltage detector 17 and slip detector 18 are outside the specified values, A E
The S M tltl+ control device 19 opens the generator breaker 13 and unit trips the AESMI and pump water turbine 3 to stop it.

次にこの動作原理を第2図乃至第5図について説明する
。第2図はサイクロコンバータ6の動作波形を示してお
り、第2図において、Uは転流型なり角、γは転流余裕
角、αは点弧角であり、回生運転モード(α〉90°)
における転流失敗限界により、サイクロコンバーク6の
運転限界が決定される。
Next, the principle of operation will be explained with reference to FIGS. 2 to 5. FIG. 2 shows the operating waveform of the cycloconverter 6. In FIG. 2, U is the commutation type angle, γ is the commutation margin angle, α is the firing angle, and the regenerative operation mode (α °)
The operating limit of the cycloconverter 6 is determined by the commutation failure limit at .

第3図は横軸が電源電圧降下の係数にシー1でP、 U
、値、縦軸はCo37で、パラメータのKs−1はであ
る。
In Figure 3, the horizontal axis is the coefficient of power supply voltage drop with sea 1 and P, U
, the value, the vertical axis is Co37, and the parameter Ks-1 is.

第4図は横軸が電源電圧降下の係数Kv−1でP、tl
、値、縦軸はサイリスタの転流直後の逆バイアス電圧値
Erで、パラメータのKs−1はAESMlのスベリ係
数である。
In Figure 4, the horizontal axis is the coefficient Kv-1 of the power supply voltage drop, P, tl
, value, and the vertical axis is the reverse bias voltage value Er immediately after commutation of the thyristor, and the parameter Ks-1 is the slip coefficient of AESM1.

第5図は横軸が電源電圧降下の係数にシー1でp、u、
値、縦軸は転流型なり角Uで、パラメータのKs−1!
i:AESMIのスベリ係数である。
In Figure 5, the horizontal axis represents the coefficient of power supply voltage drop, p, u,
The value, the vertical axis is the commutation type angle U, and the parameter Ks-1!
i: AESMI slip coefficient.

上記第3図乃至第5図において、転流余裕角限界値をG
O9Tearn +  B rlisit +  ut
imtt T!示tと、r manはサイリスクのター
ンオフ時間を考えて最少転流余裕角を決め、cosγ1
.1を決定する。
In Figures 3 to 5 above, the commutation margin angle limit value is G
O9Tearn + B rlistit + ut
imttT! t and r man determine the minimum commutation margin angle considering the turn-off time of the sirisk, and cosγ1
.. Determine 1.

Eγ目1Lはサイリスタのターンオフ特性より規定され
、規定電圧以上でないと、ターンオフ不可能なことより
ETllsiLを決める。
Eγth 1L is defined by the turn-off characteristic of the thyristor, and ETllsiL is determined based on the fact that it cannot be turned off unless the voltage is above the specified voltage.

u l 1aiLは例えば12相サイクロコンバータ構
成であると、サイクロコンバータの転流は距虹−30”
毎に行っているが、重なり角Uが30’以上に達すると
、転流現象が重なるため、サイクロコンバータの制御が
不安定になり好ましくない。
For example, if u l 1aiL is a 12-phase cycloconverter configuration, the commutation of the cycloconverter is 30"
However, if the overlap angle U reaches 30' or more, the commutation phenomena overlap, which makes the control of the cycloconverter unstable, which is not preferable.

位相角αは常に変化しているため、位相角αの変化を考
慮して5″余裕をもたせ、転流型なり角Uを25°以内
に制限する。従って、utt+e+t=25゜になる。
Since the phase angle α is constantly changing, a 5″ margin is provided in consideration of the change in the phase angle α, and the commutation type angle U is limited to within 25°. Therefore, utt+e+t=25°.

(u−180°−T−α) 上記第3図乃至第5図に示すとおり、運転限界はスベリ
係数Ks−1により変化する0図示例では励磁再開時の
スベリKs−1が0.8以上で、電源電圧降下の係数に
シー1が0.5以上であれば、C03Tsjn I  
E rz+a+t 、  utisitにもかからない
ため、励磁再開しても点弧失敗することなく、励磁が再
開可能であることを示している。
(u-180°-T-α) As shown in Figures 3 to 5 above, the operating limit changes depending on the slip coefficient Ks-1. In the illustrated example, the slip Ks-1 at the time of restarting excitation is 0.8 or more. Then, if C1 is 0.5 or more in the coefficient of power supply voltage drop, C03Tsjn I
Since neither E rz+a+t nor utisit is applied, this shows that excitation can be restarted without ignition failure even if excitation is restarted.

なお、上記実施例では、可変速揚水発電所の場合につい
て説明したが、交流励磁同期機を使用した発電機やフラ
イホイール付発電機の場合であってもよい、また、2次
励磁装置としてサイクロコンバータで説明したが、他の
変換器、例えばGTOコンバータであってもよ(、上記
実施例と同様の効果を奏する。
In the above embodiment, the case of a variable speed pumped storage power plant was explained, but it may also be a generator using an AC excited synchronous machine or a generator with a flywheel, or a cyclotron as a secondary excitation device. Although the converter has been described, other converters, such as a GTO converter, may also be used (the same effects as in the above embodiments can be achieved).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、系統事故復旧後、A
ESMの端子電圧やスベリを検出し、この両者が規定値
以内であれば再励磁して運転を継続し、規定値以外であ
れば再励磁を断念してAESMをトリップするようにし
たので、機器や系統に悪影響を与えず、安定化と信鯨性
を高める効果がある。
As described above, according to the present invention, after the system accident is restored, the A
The terminal voltage and slippage of the ESM are detected, and if both are within specified values, re-excitation is performed and operation continues, and if they are outside the specified values, re-excitation is abandoned and the AESM is tripped. It has the effect of increasing stability and reliability without having a negative impact on the water system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるAESMの制御方法
を説明するブロック図、第2図はサイクロコンバータの
動作波形図、第3図乃至第5図はサイクロコンバータの
転流失敗限界を示す特性図、第6図は従来のAESMの
制御方法を説明するブロック図である。 ■は交流励磁同期機、2は回転子。 なお、図中、同一符号は同一、または相当部分を示す。
Fig. 1 is a block diagram illustrating a control method of the AESM according to an embodiment of the present invention, Fig. 2 is an operating waveform diagram of the cycloconverter, and Figs. 3 to 5 are characteristics showing commutation failure limits of the cycloconverter. 6 are block diagrams illustrating a conventional AESM control method. ■ is an AC excited synchronous machine, and 2 is a rotor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 交流励磁同期機が接続された系統の事故時、前記交流励
磁同期機をその回転子を短絡して誘導電動機として運転
し、前記系統の事故復旧後、前記交流励磁同期機の出力
電圧およびスベリを検出し、この出力電圧およびスベリ
が規定値以内であれば前記交流励磁同期機の励磁を再開
して運転を継続し、規定値以外であれば前記交流励磁同
期機をトリップするようにしたことを特徴とする交流励
磁同期機の制御方法。
In the event of an accident in a system to which an AC-excited synchronous machine is connected, the AC-excited synchronous machine is operated as an induction motor by short-circuiting its rotor, and after the system is restored from the accident, the output voltage and slippage of the AC-excited synchronous machine are reduced. If the output voltage and slippage are within specified values, the excitation of the AC-excited synchronous machine is restarted and operation is continued, and if the output voltage and slippage are outside the specified values, the AC-excited synchronous machine is tripped. Characteristic control method for AC-excited synchronous machines.
JP63307875A 1988-12-07 1988-12-07 Control method of ac excited synchronous machine Pending JPH02155500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307875A JPH02155500A (en) 1988-12-07 1988-12-07 Control method of ac excited synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307875A JPH02155500A (en) 1988-12-07 1988-12-07 Control method of ac excited synchronous machine

Publications (1)

Publication Number Publication Date
JPH02155500A true JPH02155500A (en) 1990-06-14

Family

ID=17974215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307875A Pending JPH02155500A (en) 1988-12-07 1988-12-07 Control method of ac excited synchronous machine

Country Status (1)

Country Link
JP (1) JPH02155500A (en)

Similar Documents

Publication Publication Date Title
JPH0919052A (en) Protective device of converter
JPH01174223A (en) Power converter
JP3043707B2 (en) Pumped storage generator
US6285533B1 (en) Method of and apparatus for controlling the operation of variable speed gearing
JP2991580B2 (en) System connection operation method and system connection operation device of induction generator
JPH02155500A (en) Control method of ac excited synchronous machine
JP2695959B2 (en) Control device for winding induction machine
CN113659629A (en) Synchronous computerized power electronic grid-connected device and control method thereof
JP3462347B2 (en) Control device for variable speed generator motor
JP2856869B2 (en) Operation method of variable speed pumped storage power plant
Galanos et al. Combined control and protection system for improved performance of HVDC links in the presence of AC faults
JP3686273B2 (en) AC power system equipment
Tian et al. An Adaptive Direct-Current Control Strategy to Prevent the Successive Commutation Failures in LCC-based HVDC Links
JP3140512B2 (en) Variable speed generator motor system and method for detecting load shedding of variable speed generator motor
JP4341028B2 (en) Grid connection protection device for regular power generator
JPH07245872A (en) Variable speed generator motor
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JP4143269B2 (en) Variable speed system and overvoltage protection device protection method
JP2880167B2 (en) AC excitation generator motor
JPH03118799A (en) Secondary exciter for alternating current excited synchronous motor
JPH06335295A (en) Method and apparatus for controlling variable-speed generator-motor
JPH1032998A (en) Method for operating variable-speed flywheel power generating facility
JPH05328613A (en) High speed automatic synchronous switch-in method for private power generator
JPS6117237B2 (en)