JPH02155189A - Ptc plate heater - Google Patents

Ptc plate heater

Info

Publication number
JPH02155189A
JPH02155189A JP30973788A JP30973788A JPH02155189A JP H02155189 A JPH02155189 A JP H02155189A JP 30973788 A JP30973788 A JP 30973788A JP 30973788 A JP30973788 A JP 30973788A JP H02155189 A JPH02155189 A JP H02155189A
Authority
JP
Japan
Prior art keywords
heat
positive temperature
temperature coefficient
plate
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30973788A
Other languages
Japanese (ja)
Inventor
Masahito Toyama
遠山 雅仁
Kazutaka Karasawa
唐沢 計貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP30973788A priority Critical patent/JPH02155189A/en
Publication of JPH02155189A publication Critical patent/JPH02155189A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a PTC plate, in which only one side thereof is heated, suitable for such as a print press-heater by making heat conduction coefficient of an insulation layer located on one side of a heating device with a positive temperature coefficient smaller than that of an insulation layer located on the other side thereof. CONSTITUTION:A voltage is applied across electrode plates 15 and 16 constituting a pair to energize a heating device 13 with a positive temperature coefficient. The device 13 then generates heat. The heat is transferred to radiation plates 19 and 20 through the electrode plates 15 and 16 and insulation layers 17 and 18. Thus, an object to be heated such as clothes is heated by the heated radiation plates 19 and 20. In this case, the heat conduction coefficient of the insulation layer 17 located one side of the heating device 13 with a positive temperature coefficient is made large to transfer heat easily. While, that of the insulation layer 18 located on the other side is made small to transfer heat hard so as to shut off heat radiation there. Accordingly, heat is transferred almost in one direction and the one side mainly generates heat. Therefore, a PTC plate heater suitable for such as a print press heater is obtained.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、たとえばプリントプレスの熱源などとして用
いられるPTCプレートヒータに係り、とくに、正温度
係数発熱素子を挟着した電極板の絶縁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective of the invention) (Industrial application field) The present invention relates to a PTC plate heater used as a heat source for a print press, etc., and particularly relates to a PTC plate heater that is used as a heat source for a print press, and particularly relates to a PTC plate heater having a positive temperature coefficient heating element sandwiched between electrodes. Regarding the insulation structure of the board.

(従来の技術) 従来、複数個の正温度係数(PTc)発熱素子を一対の
電極板により挟着するとともに、これら電極板の外面を
絶縁層を介して放熱板により覆ってなるPTCプレート
ヒータが知られている。
(Prior Art) Conventionally, there has been a PTC plate heater in which a plurality of positive temperature coefficient (PTc) heating elements are sandwiched between a pair of electrode plates, and the outer surfaces of these electrode plates are covered with a heat sink via an insulating layer. Are known.

このPTCプレートヒータは、たとえば、水または油中
に投入されるマリンヒータあるいは調理器用ヒータなど
として用いられるものである。そして、従来のこの極の
PTCプレートヒータにおいては、正温度係数発熱素子
の一面側に位置する絶縁層も他面側に位置する絶縁層も
同一の絶縁材料からなるものとした構造が採られており
、両面が同等に発熱するようになっていた。しかし、両
面が同等に発熱するのでは、1つの面のみが被加熱物を
加熱するたとえばプリントプレス用ヒータなどとしては
、不都合であり、効率も悪い。
This PTC plate heater is used, for example, as a marine heater or a cooker heater that is placed in water or oil. In the conventional PTC plate heater of this type, a structure is adopted in which the insulating layer located on one side of the positive temperature coefficient heating element and the insulating layer located on the other side are made of the same insulating material. Therefore, both sides generated the same amount of heat. However, if both sides generate heat equally, it is inconvenient and inefficient for a heater for a print press, for example, where only one side heats an object to be heated.

また、従来のたとえばマリンヒータにおいては、絶縁材
料として、アルミニウム板にアルマイト加工を施しさら
にシリコン樹脂を塗布したものを用いた構造が採られて
いた。しかし、この絶縁材料は、信頼性および組立作業
での取扱いにおいて難点があった。たとえば、1.50
0 Vの絶縁耐電圧テストを行なうと、穴が開くなどの
破壊現象が生じていた。
Furthermore, conventional marine heaters, for example, have a structure in which an aluminum plate is anodized and coated with silicone resin as an insulating material. However, this insulating material suffers from reliability and handling difficulties during assembly operations. For example, 1.50
When a 0 V dielectric strength test was performed, breakdown phenomena such as holes were observed.

さらに、従来のPTCプレートヒータにおいては、複数
個の正温度係数発熱素子を−様に配設した構造が採られ
ていたため、外部へ熱が奪われやづい周辺部と中央部と
で温度が均一にならなかった。
Furthermore, because conventional PTC plate heaters have a structure in which multiple positive temperature coefficient heating elements are arranged in a negative pattern, the temperature is uniform between the peripheral area and the central area, where heat is easily lost to the outside. It didn't become.

(発明が解決しようとする課題) 上述のように、従来のPTCプレートヒータは、両面が
同等に発熱するため、1つの面のみが被加熱物を加熱す
ればよいプリントプレス用ヒータなどとしては不適切で
あり、効率も悪い問題があった。また、複数の正温度係
数発熱素子が−様に配設されていたため、発熱面の温度
分布が−様にならない問題もあった。
(Problems to be Solved by the Invention) As mentioned above, conventional PTC plate heaters generate heat equally on both sides, so they are not suitable as heaters for print presses, etc., where only one side needs to heat the object. There was a problem that it was both inappropriate and inefficient. Furthermore, since the plurality of positive temperature coefficient heating elements were arranged in a -shape, there was a problem that the temperature distribution on the heat generating surface did not become -shape.

本発明は、上述のような問題点を解決しようとづるもの
で、主に一方の面のみが発熱し、したがって、プシンド
ブレス用ヒータなどとして用いるのに適したPTCプレ
ートヒータを提供することを目的とするものである。ま
た、1つの発熱面における温度分布を−様なものとでき
るPTCプレートヒータを提供することを目的とするも
のである。
The present invention is intended to solve the above-mentioned problems, and aims to provide a PTC plate heater that mainly generates heat only on one side and is therefore suitable for use as a pressurized press heater, etc. It is something to do. Another object of the present invention is to provide a PTC plate heater that can provide a -like temperature distribution on one heat generating surface.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の請求項1のPTCプレートヒータは、正温度係
数発熱素子と、この正温度係数発熱素子を挟着した対を
なり電極板と、これら電極板の正温度係数発熱素子と反
対側の面にそれぞれ積層された絶縁層と、この絶縁層の
電極板と反対側の面に積層された放熱板とを備え、上記
前者の目的を達成するために、前記正温度係数発熱素子
の一面側に位置する絶縁層の熱伝導係数を大きくし、他
面側に位置する絶B層の熱伝導係数をより小さくしたも
のである。
(Means for Solving the Problems) A PTC plate heater according to claim 1 of the present invention comprises a positive temperature coefficient heating element, a pair of electrode plates sandwiching the positive temperature coefficient heating element, and a positive temperature coefficient heating element of the electrode plates. In order to achieve the former objective, the present invention comprises an insulating layer laminated on the surface opposite to the temperature coefficient heating element, and a heat sink laminated on the surface opposite to the electrode plate of the insulating layer. The thermal conductivity coefficient of the insulating layer located on one side of the positive temperature coefficient heating element is increased, and the thermal conductivity coefficient of the insulation layer located on the other side is made smaller.

また、請求項2のPTCプレートヒータは、複数個の正
温度係数発熱素子を、放熱板の中央部に対応する位置で
粗に配設し、周辺部に対応する位置でより密に配設した
ものである。
Further, in the PTC plate heater according to claim 2, the plurality of positive temperature coefficient heating elements are arranged sparsely at positions corresponding to the central part of the heat sink and more densely arranged at positions corresponding to the peripheral part. It is something.

(作用) 本発明の請求項1のPTCプレートヒータでは、対をな
ず電掻板間に電圧が印加され、正温度係数発熱素子が通
電されると、この正温度係数発熱素子が発熱し、その熱
が?ui板および絶縁層を介して放熱板に伝わり、発熱
したこの放熱板により衣服などの被加熱物が加熱される
。このとき、正温度係数発熱素子の一面側に位置する絶
縁層は、熱伝導係数が大きいので、熱が伝わりやすいが
、他面側に位置する絶amは、熱伝導係数がより小さい
ので、熱が伝わりにくく、ここで放熱が連語される。こ
うして、熱がほぼ一方向にのみ伝わり、主に一方の面の
みが発熱する。
(Function) In the PTC plate heater according to claim 1 of the present invention, when a voltage is applied between the unpaired electric scraping plates and the positive temperature coefficient heating element is energized, the positive temperature coefficient heating element generates heat, That fever? The heat is transmitted to the heat sink via the UI board and the insulating layer, and the heated object such as clothing is heated by the heat sink. At this time, the insulating layer located on one side of the positive temperature coefficient heating element has a large thermal conductivity coefficient, so heat is easily transferred, but the insulation layer located on the other side has a smaller thermal conductive coefficient, so heat is transferred easily. is difficult to convey, and heat radiation is a combination here. In this way, heat is transferred in approximately only one direction, and only one side generates heat.

また、請求項2のPTCプレートヒータでは、発熱面を
形成する放熱板の中央部に対応する位置よりも周辺部に
対応する位置で正温度係数発熱素子がより密に分布して
いるから、中央部よりも周辺部の方が発熱へ1自体は多
いが、中央部より6周辺部の方が熱損失がより大きく、
外部へより多くの熱が奪われるので、1つの発熱面にa
3ける温度分布は−様なものとなる。
In addition, in the PTC plate heater of claim 2, the positive temperature coefficient heating elements are distributed more densely at positions corresponding to the peripheral part of the heat sink forming the heat generating surface than at positions corresponding to the central part. The peripheral part generates more heat than the central part, but the heat loss is larger in the peripheral part than in the central part.
Since more heat is taken away to the outside, a
The temperature distribution in 3 becomes --like.

(実施例) 以下、本発明のPTCプレートヒータの一実施例の構成
を図面に旦づいて説明する。
(Example) Hereinafter, the configuration of an example of the PTC plate heater of the present invention will be described with reference to the drawings.

11はほぼ矩形平板状の素子仕切板で、この素子仕切板
11は、耐熱性に優れた絶縁材料である雲母板すなわち
マイカ板からなっている。そして、とくに第4図に示す
ように、この索子仕切板11には多数の円形の素子嵌合
孔12が間口形成されている。これら素子1■合孔12
は、素子仕切板11の中央部において、格子状に粗に配
列されているが、索子仕切板11の周辺部においては、
その各辺に沿って中央部より密に配列されている。そし
て、前記素子嵌合孔12のいくつかに、円形平板状の大
電力形の正温度係数(PTC)発熱素子13が嵌合され
ている。とくに、図示実施例においては、点々を付した
素子嵌合孔12に発熱素子13が嵌合されている。なお
、それ以外の発熱索子13が嵌合されていない図示空白
の素子嵌合孔12は、マイカ板14が嵌合されて閉塞さ
れている。
Reference numeral 11 denotes an element partition plate having a substantially rectangular flat plate shape, and this element partition plate 11 is made of a mica plate, which is an insulating material with excellent heat resistance. As particularly shown in FIG. 4, a large number of circular element fitting holes 12 are formed in the cord partition plate 11. These elements 1 ■ matching hole 12
are roughly arranged in a grid pattern in the center of the element partition plate 11, but in the periphery of the element partition plate 11,
They are arranged more densely along each side than in the center. In some of the element fitting holes 12, circular flat plate-shaped high power type positive temperature coefficient (PTC) heating elements 13 are fitted. In particular, in the illustrated embodiment, the heating element 13 is fitted into the element fitting hole 12 marked with dots. Note that the blank element fitting hole 12 in the drawing in which no other heating cord 13 is fitted is closed by the mica plate 14 fitted therein.

また、前記素子仕切板11は、この素子仕切板11とほ
ぼ同形の導電材料からなる一対の電極板15゜16によ
り挟着されており、これら電極板Is、 16は′前記
正温度係数発熱素子13の下面および上面にそれぞれ圧
接されている。さらに、前記各電極板15゜16の素子
仕切板11と反対側の面には、それぞれ絶縁層17.1
8を介して、はぼ矩形型根状の放熱板19゜20が重合
されている。
Further, the element partition plate 11 is sandwiched between a pair of electrode plates 15 and 16 made of a conductive material and having substantially the same shape as the element partition plate 11, and these electrode plates Is and 16 are connected to the positive temperature coefficient heating element. 13, and is pressed against the lower and upper surfaces of 13, respectively. Furthermore, an insulating layer 17.1 is provided on the surface of each of the electrode plates 15.16 opposite to the element partition plate 11.
A substantially rectangular root-shaped heat dissipating plate 19° 20 is superimposed through the radiator 8.

そして、下側の放熱板19は、8111程度の厚さの伝
熱性に優れた金属板たとえばアルミニウム板からなって
おり、上側の放熱板20は、たとえば3M程度の厚さの
アルミニウム板からなっている。
The lower heat sink 19 is made of a metal plate with excellent heat conductivity, such as an aluminum plate, with a thickness of about 8111 mm, and the upper heat sink 20 is made of an aluminum plate with a thickness of about 3M, for example. There is.

また、下側の絶縁層11は、電極板15側に位置する耐
熱性に優れた絶縁材料であるポリイミドフィルム21と
、放熱板19側に位置する耐熱性に優れた絶縁材料であ
るシリコンラバー22とからなっている。
The lower insulating layer 11 includes a polyimide film 21 which is an insulating material with excellent heat resistance located on the electrode plate 15 side, and a silicon rubber 22 which is an insulating material with excellent heat resistance located on the heat sink 19 side. It consists of

一方、上側の絶縁層18は、電極板16側に位置するポ
リイミドフィルム23と、放熱板20側に位置する耐熱
性に優れた絶縁材料であるマイカ板24とからなってい
る。シリコンラバー22は、熱伝導係数が大きく伝熱性
がよいのに対して、マイカ板24は、熱伝導係数がシリ
コンラバー22より小さく伝熱性が悪い。しかも、前記
シリコンラバー22がたとえば0.05 m程度の厚さ
で薄くなっているのに対し、前記マイカ板24はたとえ
ば1m程度の厚さで厚くなっている。
On the other hand, the upper insulating layer 18 is composed of a polyimide film 23 located on the electrode plate 16 side and a mica plate 24, which is an insulating material with excellent heat resistance, located on the heat sink 20 side. The silicone rubber 22 has a large thermal conductivity coefficient and good heat conductivity, whereas the mica plate 24 has a low thermal conductivity coefficient and poor heat conductivity. Moreover, while the silicon rubber 22 is thin, for example, about 0.05 m, the mica plate 24 is thick, for example, about 1 m.

また、前記画成熱板19.20の平面形状は、前記素子
仕切板11、電極板15.16および絶縁層17゜18
の平面形状よりも大きくなっており、前記画成熱板19
.20の周縁部間にはアルミニウムなどからなるスペー
ナ25が枠状に介在されている。なお、スペーサ25は
、放熱板1’9.20と一体にしてもよい。
The planar shape of the defining heating plate 19.20 is such that the element partition plate 11, the electrode plate 15.16 and the insulating layer 17.18
is larger than the planar shape of the defined heating plate 19.
.. A frame-shaped spacer 25 made of aluminum or the like is interposed between the peripheral edges of the spacer 20 . Note that the spacer 25 may be integrated with the heat sink 1'9.20.

そして、図示していないが、前記画成熱板19.20の
周縁部がスペーサ25を介してビスにより固着されて、
前記素子仕切板11、’si板15.16、ポリイミド
フィルム21.23、シリコンラバー22、マイカ板2
4および放熱板19.20が積層された状態が保持され
ている。なお、こうして構成されたPTCプレートヒー
タの大きさは、たとえば、II 296 rtvs 。
Although not shown, the peripheral edges of the defining hot plates 19 and 20 are fixed with screws via spacers 25,
The element partition plate 11, 'si plate 15.16, polyimide film 21.23, silicone rubber 22, mica plate 2
4 and the heat sinks 19 and 20 are kept in a stacked state. The size of the PTC plate heater configured in this way is, for example, II 296 rtvs.

横418m、厚さ16.7M程度である。It is approximately 418m wide and 16.7m thick.

さらに、前記上側の放熱板20には上方へ突出させて複
数のボルト27がナツト28により固着されている。そ
して、これらポルl〜27によって、PTCプレートヒ
ータがプリントプレスなどの機具本体に取イ」けられる
ようになっている。また、前記各電極板15.16にそ
れぞれ電気的に接続された電線29が、前記上側の放熱
板20から上方へ引出されている。
Furthermore, a plurality of bolts 27 are fixed to the upper heat sink 20 by nuts 28 so as to protrude upward. These ports 1 to 27 allow the PTC plate heater to be installed in the main body of a printing press or the like. Further, electric wires 29 electrically connected to each of the electrode plates 15 and 16 are drawn upward from the upper heat sink 20.

なお、正温度係数発熱素子13の電源回路においては、
家庭用の100v交流電源を使用できるように、突入電
流を25A以下に押えである。
In addition, in the power supply circuit of the positive temperature coefficient heating element 13,
The inrush current is kept below 25A so that a household 100V AC power supply can be used.

つぎに、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

上記PTCプレートヒータは、たとえば、ティーシ1F
ツなどの衣服類に絵や文字などを印刷するプリントプレ
スに用いられるものである。
The above PTC plate heater is, for example,
It is used in print presses to print pictures, text, etc. on clothing such as shoes.

そうして、一対の電極板Is、 16闇に電線29を介
して電圧が印加され、正温度係数発熱素子13が通電さ
れると、これら正温度係数発熱素子13が発熱し、その
熱が電極板15.16および絶縁層17.18を介して
放熱板19.20に伝達される。そして、とくに下側の
放熱板19からの放熱により、この放熱板19の下面の
発熱面に接触された衣服などの被加熱物が加熱される。
Then, when a voltage is applied to the pair of electrode plates Is, 16 through the electric wire 29 and the positive temperature coefficient heating elements 13 are energized, these positive temperature coefficient heating elements 13 generate heat, and the heat is transferred to the electrodes. It is transmitted to the heat sink 19.20 via the plate 15.16 and the insulating layer 17.18. In particular, the heat radiated from the lower heat sink 19 heats objects to be heated, such as clothes, which are in contact with the heat generating surface on the lower surface of the heat sink 19.

このとき、発熱素子13の下側に位置する絶縁層11は
、主に熱伝導係数が大きくかつ薄いシリコンラバー22
からなっているので、下側の放熱板19へ熱が伝わりや
すいが、上側に位置する絶縁層18は、主に熱伝導係数
がより小さくかつ厚いマイカ板24からなっているので
、上側の放熱板20へは熱が伝わりにくく、むしろここ
で放熱が遮断される。
At this time, the insulating layer 11 located below the heating element 13 is mainly made of a thin silicone rubber 22 with a large thermal conductivity coefficient.
Since the insulating layer 18 located on the upper side is mainly made of a thick mica plate 24 with a smaller thermal conductivity coefficient, heat is easily transferred to the lower heat dissipation plate 19. Heat is not easily transmitted to the plate 20, and rather heat radiation is blocked here.

したがって、熱がほぼ下側の放熱板19の方へのみ伝達
され、この放熱板19が形成する一方の発熱面のみが発
熱する。
Therefore, heat is transmitted almost only toward the lower heat radiating plate 19, and only one heat generating surface formed by the heat radiating plate 19 generates heat.

こうして、熱伝導に方向性をもたせ、必要な一方の面の
みが発熱するようにしたので、とくに1つの面のみが被
加熱物を加熱すればよいプリントプレス用ヒータなどと
して、適切なものとなり、効率も白土する。また、上側
の放熱板20はあまり熱くならないので、この放熱板2
0側が取付けられる機具本体などに悪影響を及ぼさない
In this way, heat conduction is directional, and only one surface is required to generate heat, making it suitable for use as a heater for print presses, etc., in which only one surface needs to heat the object. Efficiency is also high. Also, since the upper heat sink 20 does not get very hot, this heat sink 20
It does not have an adverse effect on the equipment body etc. to which the 0 side is attached.

しかしながら、上記PTCプレートヒータは、マリンヒ
ータなどとしても用いることができる。
However, the above PTC plate heater can also be used as a marine heater.

また、素子仕切板11において、周辺部に多くの正温度
係数発熱素子13を集め、逆に中央部の発熱素子13を
少なくすれば、中央部よりも周辺部の方が発熱量自体は
多くなるが、放熱板19などの中央部よりも周辺部の方
がより熱損失が大きいので、中央部よりも周辺部で適度
により密に発熱素子13を配設することにより、放熱板
19における面発熱を均一なものにでき、加熱むらをな
くせる。たとえば、放熱板19が形成する1つの発熱面
における温度分布を±2.3℃以下の範囲内のものにす
ることができる。こうして、従来のシーズ線ヒータを用
いた場合の発熱面の温度分布よりも、温度分布の偏差を
60〜70%改善できる。
In addition, in the element partition plate 11, if a large number of positive temperature coefficient heating elements 13 are gathered in the peripheral part and conversely the number of heating elements 13 in the central part is reduced, the amount of heat generated in the peripheral part will be greater than in the central part. However, heat loss is larger at the periphery of the heat sink 19 than at the center, so by arranging the heat generating elements 13 moderately more densely at the periphery than at the center, surface heat generation in the heat sink 19 is achieved. It can be made uniform and eliminate uneven heating. For example, the temperature distribution on one heat generating surface formed by the heat sink 19 can be set within a range of ±2.3° C. or less. In this way, the deviation in temperature distribution can be improved by 60 to 70% compared to the temperature distribution on the heat generating surface when a conventional sheathed wire heater is used.

また、正温度係数発熱素子13の形状上、電極板15.
16が面接触的に圧接される構造を採れるとともに、発
熱素子13の最高発熱温度が定まっているため、シーズ
線ヒータのようにバイメタルスイッチのオン・オフおよ
び発熱温度の過度の高温化に伴う構造への悪影響たとえ
ば歪みや反りなどが少ない。
Furthermore, due to the shape of the positive temperature coefficient heating element 13, the electrode plate 15.
16 is pressure-welded in a surface contact manner, and the maximum heat generation temperature of the heat generating element 13 is fixed, it is possible to prevent the bimetallic switch from turning on and off like a sheathed wire heater, and to prevent the heat generation temperature from becoming excessively high. There are fewer negative effects on the material, such as distortion and warping.

さらに、絶縁材料にシリコン系のラバー22を用いたの
で、たとえば絶縁耐電圧テストなどに関して、信頼性お
よび作業性が高まる。
Furthermore, since the silicon-based rubber 22 is used as the insulating material, reliability and workability are improved in, for example, dielectric withstand voltage tests.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、つぎのような効果が得られる。 According to the present invention, the following effects can be obtained.

請求項1のPTCプレートヒータでは、電極板により挟
着された正温度係数発熱素子の一面側に位置する絶縁層
の熱伝導係数よりも他面側に位置する絶縁層の熱伝導係
数をより小ざくしたので、正温度係数発熱素子からほぼ
一方向に熱が伝わり、主に一方の面のみが発熱すること
により、1つの面のみが被加熱物を加熱すればよいプリ
ントプレス用ヒータなどとして用いるのに適切なPTC
プレートヒータとすることができる。
In the PTC plate heater according to claim 1, the thermal conductivity coefficient of the insulating layer located on the other side of the positive temperature coefficient heating element sandwiched between the electrode plates is smaller than that of the insulating layer located on the other side. Because of its compact size, heat is transmitted from the positive temperature coefficient heating element in almost one direction, and because only one surface generates heat, it is used as a heater for print presses, etc., where only one surface needs to heat the object. Appropriate PTC for
It can be a plate heater.

また、請求項2のPTCプレートヒータでは、放熱板の
中央部に対応する位置よりも周辺部に対応する位置でよ
り密に正温度係数発熱系子を配設したので、中央部より
も周辺部でより多(の熱が外部へ奪われても、放熱板が
形成する1つの発熱面における温度分布を−様なものと
することができ、加熱むらをなくすことができる。
Further, in the PTC plate heater of claim 2, since the positive temperature coefficient heating elements are arranged more densely at positions corresponding to the peripheral part of the heat sink than at positions corresponding to the central part, Even if more heat is removed to the outside, the temperature distribution on one heat generating surface formed by the heat sink can be made to be -like, and uneven heating can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のPTCプレートヒータの一実施例を示
す分解斜視図、第2図は同上組立状態の斜視図、第3図
は同上一部の断面図、第4図は同上正温度係数発熱素子
の配置を示す平面図である。 13・・正ml係数発熱素子、15.16・・電極板、
17.18・・絶縁層、19.20・・放熱板。
Fig. 1 is an exploded perspective view showing one embodiment of the PTC plate heater of the present invention, Fig. 2 is a perspective view of the same as above in an assembled state, Fig. 3 is a sectional view of a part of the same as above, and Fig. 4 is a positive temperature coefficient of same as above. FIG. 3 is a plan view showing the arrangement of heating elements. 13... Positive ml coefficient heating element, 15.16... Electrode plate,
17.18...Insulating layer, 19.20... Heat sink.

Claims (2)

【特許請求の範囲】[Claims] (1)正温度係数発熱素子と、この正温度係数発熱素子
を挟着した対をなす電極板と、これら電極板の正温度係
数発熱素子と反対側の面にそれぞれ積層された絶縁層と
、この絶縁層の電極板と反対側の面に積層された放熱板
とを備え、 前記正温度係数発熱素子の一面側に位置する絶縁層の熱
伝導係数よりも他面側に位置する絶縁層の熱伝導係数を
より小さくしたことを特徴とするPTCプレートヒータ
(1) a positive temperature coefficient heating element, a pair of electrode plates sandwiching the positive temperature coefficient heating element, and an insulating layer laminated on each of the surfaces of these electrode plates opposite to the positive temperature coefficient heating element; The insulating layer has an electrode plate and a heat sink laminated on the opposite side, and the insulating layer located on the other side has a thermal conductivity coefficient that is higher than the thermal conductivity of the insulating layer located on one side of the positive temperature coefficient heating element. A PTC plate heater characterized by a smaller thermal conductivity coefficient.
(2)正温度係数発熱素子を複数個備え、放熱板の中央
部に対応する位置よりも周辺部に対応する位置でより密
に前記正温度係数発熱素子を配設したことを特徴とする
請求項1記載のPTCプレートヒータ。
(2) A claim characterized in that a plurality of positive temperature coefficient heating elements are provided, and the positive temperature coefficient heating elements are arranged more densely at positions corresponding to the peripheral part of the heat sink than at positions corresponding to the central part. Item 1. PTC plate heater.
JP30973788A 1988-12-07 1988-12-07 Ptc plate heater Pending JPH02155189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30973788A JPH02155189A (en) 1988-12-07 1988-12-07 Ptc plate heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30973788A JPH02155189A (en) 1988-12-07 1988-12-07 Ptc plate heater

Publications (1)

Publication Number Publication Date
JPH02155189A true JPH02155189A (en) 1990-06-14

Family

ID=17996694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30973788A Pending JPH02155189A (en) 1988-12-07 1988-12-07 Ptc plate heater

Country Status (1)

Country Link
JP (1) JPH02155189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer
JPH05237054A (en) * 1992-02-28 1993-09-17 Matsushita Electric Ind Co Ltd Tableware washer
JPH065181U (en) * 1992-06-19 1994-01-21 株式会社村田製作所 Heating element
KR20020092270A (en) * 2002-10-08 2002-12-11 윤창배 compact electric heater assembly
JP2013239401A (en) * 2012-05-17 2013-11-28 Tdk Corp Micro-heater element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181725A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Ceramic heater for heating semiconductor wafer
JPH05237054A (en) * 1992-02-28 1993-09-17 Matsushita Electric Ind Co Ltd Tableware washer
JPH065181U (en) * 1992-06-19 1994-01-21 株式会社村田製作所 Heating element
KR20020092270A (en) * 2002-10-08 2002-12-11 윤창배 compact electric heater assembly
JP2013239401A (en) * 2012-05-17 2013-11-28 Tdk Corp Micro-heater element

Similar Documents

Publication Publication Date Title
US6307188B1 (en) Heater with PTC element an buss system
JPH0855673A (en) Positive temperature coefficient thermister heat generating device
US20110220638A1 (en) Finned ceramic heater
US5028763A (en) High heat dissipation PTC heater structure
TWM447058U (en) Flexibly electric heater sheet
JPH07153555A (en) Positive characteristic thermistor heater and positive characteristic thermistor heater device using it
JPH02155189A (en) Ptc plate heater
KR100450116B1 (en) PTC Heater
KR20000035181A (en) Dual heater with ptc and fixed resistance elements
JPH07201454A (en) Positive characteristic thermistor heating unit
JPH09293581A (en) Positive thermistor heating element
JP2702612B2 (en) Variable output positive temperature coefficient thermistor heater
JPS5910712Y2 (en) Heating element device using positive temperature coefficient thermistor
JP2518847Y2 (en) Fin heater
JP2820804B2 (en) PTC heater for flat surface
JPS5839042A (en) Semiconductor heater
JPS5810318Y2 (en) menjiyouhatsnetsuthai
JPS6029196Y2 (en) Heating element device using positive temperature coefficient thermistor
JPH02155187A (en) Positive temperature coefficient thermistor heating element
JPH02306566A (en) Heater device
JPH0777882A (en) Heating element
JPS6143821B2 (en)
JPH07176368A (en) Positive characteristic thermistor heating element
JPH02155188A (en) Positive temperature coefficient thermistor heating element
JPS5880287A (en) Heater