JPH02154986A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPH02154986A
JPH02154986A JP30804188A JP30804188A JPH02154986A JP H02154986 A JPH02154986 A JP H02154986A JP 30804188 A JP30804188 A JP 30804188A JP 30804188 A JP30804188 A JP 30804188A JP H02154986 A JPH02154986 A JP H02154986A
Authority
JP
Japan
Prior art keywords
fins
flat
flat tube
pitch
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30804188A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Hiroaki Kase
広明 加瀬
Takashi Nakamura
隆 中邨
Akira Aoki
亮 青木
Osamu Aoyanagi
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP30804188A priority Critical patent/JPH02154986A/en
Publication of JPH02154986A publication Critical patent/JPH02154986A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit the restriction of ventilating resistance of airflow as well as the improvement of heat exchanging capacity by a method wherein fins are provided between flat tubes so that both bent ends of the fins are brought into contact closely with the flat tubes arranged in a plurality of stages parallel to the direction of the long sides thereof while the thickness of the flat tubes in the direction of the short sides thereof and a pitch in the direction of the steps of the flat tubes are specified. CONSTITUTION:A flat tube, constituted of long sides 10a, short sides 10b and dividing plates 10c, dividing the inside of the tubes, and formed so as to be hollow shape through extrusion molding, is arranged in a plurality of stages with a pitch Pd so that the long sides 10a are arranged in parallel while fins 7 are provided between the flat tubes 10 so that bent parts 8 at both ends of fins 7 are contacted closely with the flat tubes 10. The thickness (t) in the direction of the short side 10b of the flat tube 10 is specified within 1-3mm while a pitch Pd between the steps is specified within 8-12mm. According to this method, the density of the flat tube 10 and the flat plate fins 7 may be increased and heat exchanging capacity may be improved remarkably while the increase of the ventilating resistance of airflow, which is generated by the increase of the density, may be restrained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機器や冷凍機器、自動車機器等に使用され
、冷媒と空気等の流体間で熱の授受を行なうフィン付熱
交換器に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a finned heat exchanger that is used in air conditioning equipment, refrigeration equipment, automobile equipment, etc., and exchanges heat between fluids such as refrigerant and air. .

従来の技術 近年、フィン付熱交換器は機器設計の面からコンパクト
化が要求されており、フィン形状及び管内面形状の改善
による高効率化が取り組まれている。
BACKGROUND OF THE INVENTION In recent years, finned heat exchangers have been required to be more compact in terms of equipment design, and efforts have been made to improve efficiency by improving the fin shape and tube inner surface shape.

以下、図面を参照しながら一ト述した従来のフィン付熱
交換器について説明を行う。
Hereinafter, the conventional finned heat exchanger mentioned above will be explained with reference to the drawings.

第8図と第9図は従来のフィン付熱交換器の形状を示し
、第10図は従来のフィン付熱交換器を構成するフィン
形状、第11図は円管形状を示す。
8 and 9 show the shape of a conventional finned heat exchanger, FIG. 10 shows a fin shape constituting a conventional finned heat exchanger, and FIG. 11 shows a circular tube shape.

第8図から第11図において、1は一定間隔で平行に並
べられた複数の平板フィンで、一定の段方向ピッチPi
で配列された円穴2と気tMへ方向に分割されたルーパ
3が設けられている。4は前記平板フィンの円穴2に挿
入密着された円管で、両端のベンド5により円管4相互
が接続され管内冷媒R流路を構成すると共に、管内には
複数の螺旋溝6が設けられている。また従来、性能及び
加工性の面から円管4の外径Doは7〜10mm、円管
4の段方向ピッチPdは21〜25mmの範囲が主に用
いられていた。
8 to 11, reference numeral 1 denotes a plurality of flat plate fins arranged in parallel at regular intervals, with a constant pitch in the step direction Pi.
A looper 3 is provided which is divided in the direction of the circular holes 2 arranged in the direction tM. Reference numeral 4 denotes a circular tube that is inserted into the circular hole 2 of the flat fin and is tightly fitted.The circular tubes 4 are connected to each other by bends 5 at both ends to form a refrigerant R flow path in the tube, and a plurality of spiral grooves 6 are provided in the tube. It is being Conventionally, in terms of performance and workability, the outer diameter Do of the circular tube 4 has been mainly used in the range of 7 to 10 mm, and the pitch Pd in the step direction of the circular tube 4 has been mainly used in the range of 21 to 25 mm.

以−Lのように構成されたフィン付熱交換器について、
以下第12図と第13図を用いてその動作を説明する。
Regarding the finned heat exchanger configured as shown below,
The operation will be explained below using FIG. 12 and FIG. 13.

平板フィン1間を流れる気流Aと円管4内を流れる冷媒
Rとの間で平板フィン1及び円管4を介して熱交換が行
なわれる。その際、平板フィン1の表面にはルーバ3が
分割して設けられているため、平板フィン1の表面に生
じる気流Aの温度境界層の発達が抑えられ、気流Aと平
板フィン1との熱伝達率の向上が図られている。また、
円管4内では螺旋溝6によって冷媒Rが乱流促進される
ため、円管4と冷媒Rとの熱伝達率の向上が図られてい
る。
Heat exchange is performed between the airflow A flowing between the flat plate fins 1 and the refrigerant R flowing in the circular tube 4 via the flat plate fins 1 and the circular tube 4. At this time, since the louver 3 is provided separately on the surface of the flat fin 1, the development of a temperature boundary layer of the airflow A generated on the surface of the flat fin 1 is suppressed, and the heat between the airflow A and the flat fin 1 is suppressed. Efforts are being made to improve the transmission rate. Also,
In the circular tube 4, the spiral groove 6 promotes turbulent flow of the refrigerant R, so that the heat transfer coefficient between the circular tube 4 and the refrigerant R is improved.

発明が解決しようとする課題 しかしながら上記のような構成では、円管4の外径Do
が大きいために円管4を横切る気流Aの通風抵抗が大き
く、円管4の段方向ピッチPdを大きくすることによる
気流Aの通風抵抗の低下と、段方向ピッチPdを小さく
することによるフィン効率の向上及び実通過風速の向上
が相反する作用のため、通風抵抗を考慮すると従来以上
の性能向りが望めないという課題を有していた。
Problems to be Solved by the Invention However, in the above configuration, the outer diameter Do of the circular tube 4
is large, so the ventilation resistance of the airflow A crossing the circular tube 4 is large, and the ventilation resistance of the airflow A is reduced by increasing the step direction pitch Pd of the circular tube 4, and the fin efficiency is reduced by decreasing the step direction pitch Pd. Since the improvement of the airflow and the improvement of the actual passing wind speed have contradictory effects, there has been a problem in that it is impossible to expect better performance than the conventional one when ventilation resistance is taken into consideration.

本発明は上記課題に鑑み、気流の通、風抵抗を従来と同
等に抑えながら大幅に熱交換能力を向−トするフィン付
熱交換器を提供するものである。
In view of the above-mentioned problems, the present invention provides a finned heat exchanger that significantly increases heat exchange capability while suppressing air flow and wind resistance to the same level as conventional ones.

課題を解決するための手段 を記課題を解決するために本発明のフィン付熱交換器は
、波形状に屈曲成形され一定間隔で平行に並べられたフ
ィンと、長辺と短辺に囲まれ中空状に押し出し成形され
た偏平管とから成り、前記偏平管が長辺方向相互を平行
にして複数段構成され、その相互間に前記フィンが屈曲
部両端を接して密着され、かつ偏平管の短辺方向厚さL
を1〜3mmの範囲にし、偏平管の段方向ピッチPdを
8〜12mmの範囲に限定するという構成を備えたもの
である。
Means for Solving the Problems In order to solve the problems, the finned heat exchanger of the present invention has fins that are bent into a wave shape and arranged in parallel at regular intervals, and that are surrounded by long sides and short sides. It consists of a flat tube extruded into a hollow shape, and the flat tubes are configured in multiple stages with their long sides parallel to each other, and the fins are closely attached between the two with both ends of the bent portions in contact with each other. Short side thickness L
is in the range of 1 to 3 mm, and the pitch Pd of the flat tubes in the step direction is limited to the range of 8 to 12 mm.

作用 本発明は上記した構成によって、偏平管とフィンの高密
度化が図れ、伝熱面積の増大と熱伝達率の向上及びフィ
ン効率の向上により大幅な熱交換能力の向上ができ、か
つ偏平管とフィンの高密度化によって生じる気流の通風
抵抗の増大を薄型の偏平管の採用によって抑えることが
できる。
Effect of the present invention With the above-described configuration, the density of the flat tube and fins can be increased, and the heat exchange capacity can be greatly improved by increasing the heat transfer area, improving the heat transfer coefficient, and improving the fin efficiency. The increase in airflow resistance caused by the high density of the fins can be suppressed by using thin flat tubes.

実施例 以下本発明の実施例のフィン付熱交換器について図面を
参照しながら説明する。
EXAMPLE Hereinafter, a finned heat exchanger according to an example of the present invention will be described with reference to the drawings.

第1図と第2図は本発明の実施例におけるフィン付熱交
換器の形状を示すもので、第3図はフィンの形状、第4
図は偏平管の形状を示す。第1図から第4図において、
7は波形状に屈曲成形され一定間隔で平行に並べられた
フィンで、屈曲部8と気流入方向に分割されたルーバ9
とを備えている。10は長辺10aと短辺10b及び管
内を分割する分割板10cとから構成され、中空状に押
し出し成形された偏平管で、前記偏平管10は長辺10
a方向相互を平行にして段ピツチPdで複数段構成され
、その相互間に前記フィン7が両端の屈曲部8を接して
密着されている。11は偏平管10の長手方向両端に接
続したヘッダで、偏平管10と共に冷媒凡の管内流路を
構成している。
Figures 1 and 2 show the shape of a finned heat exchanger in an embodiment of the present invention, and Figure 3 shows the shape of the fins, and Figure 4 shows the shape of the fins.
The figure shows the shape of a flat tube. In Figures 1 to 4,
Reference numeral 7 denotes fins bent into a wave shape and arranged in parallel at regular intervals, with a bent part 8 and a louver 9 divided in the air inflow direction.
It is equipped with Reference numeral 10 denotes a hollow extrusion-molded flat tube that is composed of a long side 10a, a short side 10b, and a dividing plate 10c that divides the inside of the tube.
The fins 7 are formed in a plurality of stages with the step pitch Pd parallel to each other in the a direction, and the fins 7 are closely attached between the stages with the bent portions 8 at both ends in contact with each other. Headers 11 are connected to both ends of the flat tube 10 in the longitudinal direction, and together with the flat tube 10 constitute an internal flow path for the refrigerant.

更に偏平管10の短辺10b方向厚さtは1〜3m I
T+の範囲に、段ピツチPdは8〜12 m mの範囲
に規定されている。
Furthermore, the thickness t of the flat tube 10 in the direction of the short side 10b is 1 to 3 m I
In the range of T+, the step pitch Pd is specified to be in the range of 8 to 12 mm.

以上のように構成されたフィン付熱交換器ついて、以下
第5図と第6図を用いてその動作について説明する。
The operation of the finned heat exchanger constructed as above will be described below with reference to FIGS. 5 and 6.

フィン7間を流れる気流Aとへラダ11を経て偏平管1
0内を流れる冷媒Rとの間でフィン7及び偏平管10′
!!:介して熱交換が行なわれる。その際、フィン7の
表面にはルーバ9が設けられているため、フィン7の表
面に生じる気流Aの温度境界層の発達が抑えられ、気流
Aとフィン7との熱伝達率の向上が図られている。また
、偏平管10の管内は分割板10cによって微小流路化
され、偏平管10と冷媒Rとの熱伝達率の向上が図られ
ている。
Airflow A flowing between the fins 7 and the flat tube 1 via the ladder 11
The fins 7 and the flat tube 10'
! ! : Heat exchange is carried out through. At this time, since the louvers 9 are provided on the surface of the fins 7, the development of a temperature boundary layer of the airflow A generated on the surface of the fins 7 is suppressed, and the heat transfer coefficient between the airflow A and the fins 7 is improved. It is being Moreover, the inside of the flat tube 10 is made into microchannels by the dividing plate 10c, and the heat transfer coefficient between the flat tube 10 and the refrigerant R is improved.

また薄型の偏平管10の採用により気流への通風抵抗を
下げることができ、従来例と同等通風抵抗基準では偏平
管10とフィン7の高密度化が可能となり、伝熱面積の
増大と熱伝達率の向上及びフィン効率の向上により大幅
な熱交換能力の向上ができる。
In addition, by adopting the thin flat tube 10, the ventilation resistance to the airflow can be lowered, and with the same ventilation resistance standard as the conventional example, it is possible to increase the density of the flat tube 10 and the fins 7, increasing the heat transfer area and improving heat transfer. The heat exchange capacity can be significantly improved by improving the heat exchange rate and fin efficiency.

また、第7図に本発明の実施例におけるフィン付熱交換
器の偏平管10の段ピツチPdと温度効率及び通風抵抗
との関係について解析した結果を示している。この結果
によれば、偏平管10の短径10b方向厚さtが1〜3
mmで段ピツチPdが8〜12mmのときに気流Aの通
風抵抗を増大させずに温度効率の最大範囲を得ることが
できる。
Further, FIG. 7 shows the results of an analysis of the relationship between the stage pitch Pd of the flat tubes 10 of the finned heat exchanger according to the embodiment of the present invention, the temperature efficiency, and the ventilation resistance. According to this result, the thickness t in the short axis 10b direction of the flat tube 10 is 1 to 3
When the step pitch Pd is 8 to 12 mm in mm, the maximum range of temperature efficiency can be obtained without increasing the ventilation resistance of the air flow A.

以上のように本実施例によれば、波形状に屈曲成形され
一定間隔で平行に並べられたフィン7と、長辺10aと
短辺10bに囲まれ中空状に押し出し成形された偏平管
10とから成り、前記偏平管10は長辺10a方向相互
を平行にして複数段構成され、その相互間に前記フィン
7が両端の屈曲部8を接して密着され、かつ偏平管10
の短辺1ob方向1¥ざtを1〜3mmの範囲にし、偏
平管の段方向ピッチPdを8〜12mrnの範囲に限定
することにより、偏平管10とフィン7の高密度化が図
れ、伝熱面積の増大と熱伝達率の向上及びフィン効率の
向上により大幅な熱交換能力の向上とそのピーク点を得
ることができ、かつ偏平管10とフィン7の高密度化に
よって生じる気流Aの通風抵抗の増大を薄型の偏平管1
0の採用によって抑えることができ、従来例と同等通風
抵抗レベルに抑えることができる。また、この効果をフ
ィン付熱交換器の小型化に適用した場合には従来のフィ
ン付熱交換器(円管外径7 m m−段ピッチ21mr
n)に比べて容積を約2分の1化できる。
As described above, according to this embodiment, the fins 7 are bent into a wave shape and arranged in parallel at regular intervals, and the flat tube 10 is extruded into a hollow shape surrounded by the long side 10a and the short side 10b. The flat tube 10 is composed of a plurality of stages with the long sides 10a parallel to each other, and the fins 7 are closely attached between the stages with the bent portions 8 at both ends in contact with each other, and the flat tube 10
By setting the short side 1ob direction 1\t in the range of 1 to 3 mm and limiting the pitch Pd of the flat tube in the step direction to the range of 8 to 12 mrn, the density of the flat tube 10 and the fins 7 can be increased, and the transmission By increasing the heat area, improving the heat transfer coefficient, and improving the fin efficiency, it is possible to significantly improve the heat exchange ability and obtain its peak point, and the ventilation of the airflow A generated by the high density of the flat tube 10 and the fins 7. Thin flat tube 1 to increase resistance
By adopting 0, the ventilation resistance can be suppressed to the same level as the conventional example. In addition, when this effect is applied to the miniaturization of finned heat exchangers, it is possible to reduce the size of conventional finned heat exchangers (circular tube outer diameter 7 mm, stage pitch 21 mr).
The volume can be reduced to about half compared to (n).

発明の効果 以上のように本発明は、波形状に屈曲成形され一定間隔
で平行に並べられたフィンと、長辺と短辺に囲まれ中空
状に押し出し成形された偏平管とから成り、前記偏平管
は長辺方向相互を平行にして複数段構成され、その相互
間に前記フィンが両端の屈曲部を接して密着され、かつ
偏平管の短辺方向厚さ【を1〜3mmの範囲にし、偏平
管の段方向ピッチPdを8〜12mmの範囲に限定する
ことにより、偏平管と平板フィンの高密度化が図れ、伝
熱面積の増大と熱伝達率の向上及びフィン効率の向上に
より大幅な熱交換能力の向上とそのピーク点を得ること
ができ、かつ偏平管と平板フィンの高密度化によって生
じる気流の通風抵抗の増大を薄型の偏平管の採用によっ
て抑えることができ、従来例と同等通風抵抗レベルに抑
えることができる。また、この効果をフィン付熱交換器
の小型化に適用した場合には従来のフィン付熱交換器に
比べて容積を約2分の1化できる。
Effects of the Invention As described above, the present invention consists of fins bent into a wave shape and arranged in parallel at regular intervals, and a flat tube surrounded by a long side and a short side and extruded into a hollow shape. The flat tube has a plurality of stages with the long sides parallel to each other, the fins are closely attached between the stages with the bent portions of both ends in contact, and the thickness of the flat tube in the short side direction is in the range of 1 to 3 mm. By limiting the step pitch Pd of the flat tubes to a range of 8 to 12 mm, the density of the flat tubes and flat fins can be increased, and the heat transfer area, heat transfer coefficient, and fin efficiency are greatly improved. It is possible to improve the heat exchange capacity and its peak point, and by using thin flat tubes, it is possible to suppress the increase in airflow resistance caused by the high density of flat tubes and flat plate fins. It is possible to suppress the ventilation resistance to the same level. Furthermore, when this effect is applied to downsizing a finned heat exchanger, the volume can be reduced to about half that of a conventional finned heat exchanger.

【図面の簡単な説明】 第1図は本発明の実施例におけるフィン付熱交換器の形
状を示す斜視図、第2図は第1図の要部斜視図、第3図
は第1図のフィンの形状を示す平面図、第4図は第1図
の偏平管の形状を示す断面図、第5図は第1図の使用状
態における気流の流動状態を示す断面図、第6図は第1
図の冷媒回路を示す斜視図、第7図は第1図の偏平管の
段ピツチと温度効率及び通風抵抗との関係を示すグラフ
、第8図は従来のフィン付熱交換器の形状を示す斜視図
、第9図は第8図の要部斜視図、第10図は第8図の平
板フィンの形状を示す平面図、第11図は第8図の円管
の形状を示す断面図、第12図は第8図の使用状態にお
ける気流の流動状態を示す断面図、第13図は第8図の
使用状態における冷媒の流動状態を示す断面図である。 7・・・フィン、8・・・屈曲部、1o・・・偏平管。 代理人の氏名 弁理士 粟野重孝 他1名第 図 第 図 −−−フィン 第 図 第 図 ノo−ainsr−v 0C q−m−ルー、ぐ 第 図 10−−一偏干管 j9ご−yfP〆(mに) 富 図 第10図
[Brief Description of the Drawings] Fig. 1 is a perspective view showing the shape of a finned heat exchanger in an embodiment of the present invention, Fig. 2 is a perspective view of the main part of Fig. 1, and Fig. 3 is a perspective view of the main part of Fig. 1. FIG. 4 is a plan view showing the shape of the fin, FIG. 4 is a sectional view showing the shape of the flat tube in FIG. 1, FIG. 1
Fig. 7 is a graph showing the relationship between the step pitch of the flat tubes shown in Fig. 1, temperature efficiency, and ventilation resistance; Fig. 8 shows the shape of a conventional finned heat exchanger. 9 is a perspective view of the main part of FIG. 8, FIG. 10 is a plan view showing the shape of the flat fin in FIG. 8, FIG. 11 is a sectional view showing the shape of the circular tube in FIG. 8, FIG. 12 is a cross-sectional view showing the flow state of airflow in the use state shown in FIG. 8, and FIG. 13 is a cross-sectional view showing the flow state of the refrigerant in the use state shown in FIG. 7... Fin, 8... Bent part, 1o... Flat tube. Name of agent: Patent attorney Shigetaka Awano and 1 other person --- Fin diagram diagram o-ainsr-v 0C q-m-ru, gu diagram 10--one-sided pipe j9go-yfP 〆 (to m) Tomizu Figure 10

Claims (1)

【特許請求の範囲】[Claims]  波形状に屈曲成形され一定間隔で平行に並べられたフ
ィンと、長辺と短辺に囲まれ中空状に押し出し成形され
た偏平管とから成り、前記偏平管は長辺方向相互を平行
にして複数段構成され、その相互間に前記フィンが両端
の屈曲部を接して密着され、かつ偏平管の短辺方向厚さ
tを1〜3mmの範囲にし、偏平管の段方向ピッチPd
を8〜12mmの範囲にしたことを特徴とするフィン付
熱交換器
It consists of fins bent into a wave shape and arranged in parallel at regular intervals, and a flat tube surrounded by long and short sides and extruded into a hollow shape, the flat tubes having their long sides parallel to each other. The fins are in close contact with each other with the bent portions of both ends in contact with each other, and the thickness t of the flat tube in the short side direction is in the range of 1 to 3 mm, and the pitch of the flat tube in the step direction Pd.
A heat exchanger with fins, characterized in that the diameter is in the range of 8 to 12 mm.
JP30804188A 1988-12-06 1988-12-06 Finned heat exchanger Pending JPH02154986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30804188A JPH02154986A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30804188A JPH02154986A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPH02154986A true JPH02154986A (en) 1990-06-14

Family

ID=17976173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30804188A Pending JPH02154986A (en) 1988-12-06 1988-12-06 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPH02154986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654764A (en) * 1993-07-23 1997-08-05 Samsung Electronics Co., Ltd. Data separating circuit
FR2764647A1 (en) * 1997-06-17 1998-12-18 Valeo Thermique Moteur Sa ECONOMICAL CONSTRUCTION BOOST AIR COOLER
JP2017172956A (en) * 2016-03-25 2017-09-28 ユニゾン・インダストリーズ,エルエルシー Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654764A (en) * 1993-07-23 1997-08-05 Samsung Electronics Co., Ltd. Data separating circuit
FR2764647A1 (en) * 1997-06-17 1998-12-18 Valeo Thermique Moteur Sa ECONOMICAL CONSTRUCTION BOOST AIR COOLER
JP2017172956A (en) * 2016-03-25 2017-09-28 ユニゾン・インダストリーズ,エルエルシー Heat exchanger
US11215405B2 (en) 2016-03-25 2022-01-04 Unison Industries, Llc Heat exchanger with non-orthogonal perforations

Similar Documents

Publication Publication Date Title
US5329988A (en) Heat exchanger
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
JPH06221787A (en) Heat exchanger
JP2000018867A (en) Tube material for heat exchanger and heat exchanger
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2000154987A (en) Air heat exchanger
JPH02154987A (en) Finned heat exchanger
JPH02154986A (en) Finned heat exchanger
JPH10176892A (en) Noded plate fin type heat exchanger
US7290597B2 (en) Heat exchanger
JPH02133797A (en) Heat exchanger with fin
JPH02166394A (en) Heat exchanger with fin
JPS62112997A (en) Heat exchanger
JP2003083690A (en) Corrugated fin heat-exchanger
US7028766B2 (en) Heat exchanger tubing with connecting member and fins and methods of heat exchange
KR20140013752A (en) Heat exchanger and method for manufacturing thereof
JPS59104094A (en) Heat exchanger
JPS59221597A (en) Heat exchanger
JPH0624710Y2 (en) Heat exchanger
JPS6152589A (en) Air-to-air heat exchanger
CN209877159U (en) Radiation convection type heat exchanger and air conditioner with same
JPH0620054Y2 (en) Heat exchanger
JPH02166393A (en) Heat exchanger with fin
JPS63279094A (en) Heat exchanger
SU1666913A1 (en) Heat exchange surface