JPH02153886A - Ceramics coated with calcium phosphate and production thereof - Google Patents

Ceramics coated with calcium phosphate and production thereof

Info

Publication number
JPH02153886A
JPH02153886A JP63261590A JP26159088A JPH02153886A JP H02153886 A JPH02153886 A JP H02153886A JP 63261590 A JP63261590 A JP 63261590A JP 26159088 A JP26159088 A JP 26159088A JP H02153886 A JPH02153886 A JP H02153886A
Authority
JP
Japan
Prior art keywords
calcium phosphate
bonding layer
coating layer
fired
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63261590A
Other languages
Japanese (ja)
Other versions
JP2623315B2 (en
Inventor
Motozo Kawamura
川村 資三
Motohiro Toriyama
鳥山 素弘
Yukari Ito
伊藤 ゆかり
Yasushi Matsuo
康史 松尾
Kazuo Kondo
和夫 近藤
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Niterra Co Ltd
Original Assignee
Agency of Industrial Science and Technology
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, NGK Spark Plug Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63261590A priority Critical patent/JP2623315B2/en
Publication of JPH02153886A publication Critical patent/JPH02153886A/en
Application granted granted Critical
Publication of JP2623315B2 publication Critical patent/JP2623315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the bond strength between a high-strength ceramic substrate and a calcium phosphate coating layer on the surface of the substrate by forming a calcined bonding layer composed of magnesium phosphate at the interface between the above layers. CONSTITUTION:A bonding layer composed of magnesium phosphate slurry is applied to the surface of a sintered ceramic substrate and the surface of the bonding layer is covered with a coating layer of a calcium phosphate compound. The coated product is calcined at 1,000-1,350 deg.C to obtain the objective ceramics. Since the ceramic product contains the above calcined bonding layer at the interface between the substrate and the calcined coating layer and the substrate is firmly bonded to the calcined coating layer by the bonding layer, a bonding force resistant to peeling by scratching with a metal needle can be attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生体親和性を有するセラミックス。[Detailed description of the invention] [Industrial application field] The present invention relates to ceramics having biocompatibility.

特に人工骨2人工歯根等の医用セラミックス及びその製
造方法に関する。
In particular, the present invention relates to medical ceramics such as artificial bones 2 and artificial tooth roots, and methods for manufacturing the same.

[従来の技術及び発明が解決しようとする課題]アルミ
ナ焼結体、ジルコニア焼結体などのセラミックスは1機
械的強度特性に優れているうえに、生体に対して毒性が
ないので1人工歯根や人工骨などの生体用セラミックス
として利用がすすみつつある。しかし、これらの材料は
生体組織に対して不活性であるために、新生骨との結合
能がなく、維持安定性を欠いている。
[Prior art and problems to be solved by the invention] Ceramics such as alumina sintered bodies and zirconia sintered bodies have excellent mechanical strength characteristics and are non-toxic to living organisms, so they can be used as artificial tooth roots and other materials. It is increasingly being used as biomedical ceramics such as artificial bones. However, since these materials are inert to living tissue, they do not have the ability to bond with new bone and lack maintenance stability.

一方、水酸アパタイトやリン酸三カルシウムなどのリン
酸カルシウム化合物は、骨、歯などの生体無機質の主成
分であるので、生体に対する無毒性、骨との結合性、新
生骨への置換性など優れた生体適合性を有する。しかし
、リン酸カルシウム化合物からは高強度焼結体は得られ
ておらず、実用に耐えられない。このためアルミナ焼結
体、ジルコニア焼結体などの高強度セラミックスを基材
とし、その表面にリン酸カルシウムをコーティングした
複合材が求められている。
On the other hand, calcium phosphate compounds such as hydroxyapatite and tricalcium phosphate are the main components of biological minerals such as bones and teeth, so they have excellent properties such as non-toxicity to living organisms, ability to bond with bones, and ability to replace new bone. Biocompatible. However, high-strength sintered bodies have not been obtained from calcium phosphate compounds and cannot be put to practical use. For this reason, there is a need for a composite material in which a base material is a high-strength ceramic such as an alumina sintered body or a zirconia sintered body, and the surface thereof is coated with calcium phosphate.

高強度セラミックス基材にリン酸カルシウムをコーティ
ングする方法としては、溶射法及びスパッタリング法が
ある。溶射法はコーテイング材粉末を高温の火炎中に入
れ高速で基材に吹付ける方法である。しかし、β−リン
酸三カルシウムを溶射すると高温型のα相への転移を起
こし、水酸アパタイトを溶射すると分解して別の結晶相
を生じ、所望のリン酸カルシウム化合物をコーティング
することができない。スパッタリング法は、高真空下で
行なう必要があるので生産性が低くコスト高を招く。
Methods for coating a high-strength ceramic substrate with calcium phosphate include thermal spraying and sputtering. Thermal spraying is a method in which coating material powder is placed in a high-temperature flame and sprayed onto the base material at high speed. However, when β-tricalcium phosphate is thermally sprayed, it undergoes a transition to a high-temperature α phase, and when hydroxyapatite is thermally sprayed, it decomposes to produce another crystalline phase, making it impossible to coat the desired calcium phosphate compound. Since the sputtering method needs to be carried out under a high vacuum, productivity is low and costs are high.

また、特開昭53−118411号公報には次のような
陶材及びその製法が開示されている。
Further, Japanese Patent Application Laid-open No. 118411/1983 discloses the following porcelain material and its manufacturing method.

rAf  O、SiO、MgO,TiO2゜F e  
O、K  O、N a 20 、Ca O、B 203
、ZnO及びZ「02からなる群より選ばれる少くとも
1種を含んで構成されたセラミックスの表面にアパタイ
トをコーティングしてなる陶材。
rAf O, SiO, MgO, TiO2゜F e
O, K O, N a 20 , Ca O, B 203
, ZnO, and Z'02, the surface of which is coated with apatite.

Aji  O、SiO、MgO,TiO2゜Fe  O
、K  O,Na  O,CaO,B203、ZnO及
びZ r 02からなる群より選ばれる少くとも1種を
含んで構成されたセラミックスの表面にアパタイトの粉
末を付与し2次いでこれを焼成することを特徴とするア
パタイトコーティング陶材の製法。」 しかし、この陶材のアパタイトは指でこすると容易に前
記セラミックスの表面からはがれてしまつO 本発明はこれら従来の技術の問題点を解決したリン酸カ
ルシウム被覆セラミックス及びその製造方法を提供する
ことを目的とする。
AjiO, SiO, MgO, TiO2゜FeO
, K O, Na O, CaO, B203, ZnO, and Zr02. Characteristic manufacturing method of apatite coated porcelain. However, the apatite of this porcelain easily peels off from the surface of the ceramic when rubbed with fingers.The present invention aims to provide a calcium phosphate coated ceramic and a method for producing the same that solves the problems of the conventional techniques. purpose.

[課題を解決するための手段] 本発明によれば1次のリン酸カルシウム被覆セラミック
ス及びその製造方法により上記目的を達成できる。
[Means for Solving the Problems] According to the present invention, the above objects can be achieved by a primary calcium phosphate-coated ceramic and a method for producing the same.

高強度セラミックス基体と、リン酸カルシウム系化合物
から成る焼成被覆層との界面に、リン酸マグネシウムか
ら成る焼成接合層を有することを特徴とするリン酸カル
シウム被覆セラミックス。
A calcium phosphate-coated ceramic characterized by having a fired bonding layer made of magnesium phosphate at the interface between a high-strength ceramic base and a fired coating layer made of a calcium phosphate-based compound.

セラミックス焼結基体の表面に、リン酸マグネシウムス
ラリー接合層を設け、該スラリー接合層の表面にリン酸
カルシウム系化合物スラリー被覆層を設け、 1000
〜1350℃で焼成することを特徴とするリン酸カルシ
ウム被覆セラミックス製造方法。
A magnesium phosphate slurry bonding layer is provided on the surface of the ceramic sintered substrate, and a calcium phosphate compound slurry coating layer is provided on the surface of the slurry bonding layer, 1000
A method for producing calcium phosphate-coated ceramics, characterized by firing at a temperature of ~1350°C.

好ましくは、焼成接合層は、8重量%以下(より好まし
くは1〜8重量%)の酸化チタン及び残部リン酸マグネ
シウムから成る。
Preferably, the fired bonding layer comprises 8% by weight or less (more preferably 1-8% by weight) of titanium oxide and the balance magnesium phosphate.

[好適な実施態様及び作用] 本発明のリン酸カルシウム被覆セラミックスにおける前
記焼成接合層は、前記基体と前記焼成被覆層との界面に
存在し、前記基体と前記焼成被覆層とを強力に接合する
。例えば金属針で引っかいても剥離しない程度の接合力
を有する。
[Preferred Embodiments and Effects] The fired bonding layer in the calcium phosphate-coated ceramic of the present invention exists at the interface between the base and the fired coating layer, and strongly bonds the base and the fired coating layer. For example, it has a bonding strength that does not peel off even when scratched with a metal needle.

前記焼成接合層の厚さは、前記焼成被覆層を前記基体に
強力に接合できる範囲とし、 10−以上(好ましくは
50〜200μm)にできる。例えば前記焼成被覆層の
厚さが100〜300−の場合、前記焼成接合層の厚さ
を50〜200μmにできる。
The thickness of the fired bonding layer is within a range that allows the fired coating layer to be strongly bonded to the substrate, and can be 10- or more (preferably 50 to 200 μm). For example, when the thickness of the fired coating layer is 100 to 300 μm, the thickness of the fired bonding layer can be 50 to 200 μm.

前記焼成接合層は、リン酸マグネシウムの他に酸化チタ
ン、酸化ジルコニウム等も含有でき、リン酸マグネシウ
ムを90重量%以上含有していれば良い。前記焼成接合
層が1〜8重量%の酸化チタンを含有する場合、前記焼
成接合層は前記基体と前記焼成被覆層とをより強力に接
合することができる。酸化チタンが1重量%未満の場合
には前記焼成接合層の接合力に十分な変化がみられない
ことが多く、酸化チタンが10重蛍%を越える場合には
リン酸マグネシウムの接着効果が低下し前記焼成接合層
の接合力は低下する。
The fired bonding layer may contain titanium oxide, zirconium oxide, etc. in addition to magnesium phosphate, and it is sufficient if it contains 90% by weight or more of magnesium phosphate. When the fired bonding layer contains 1 to 8% by weight of titanium oxide, the fired bonding layer can bond the base and the fired coating layer more strongly. When the titanium oxide content is less than 1% by weight, there is often no sufficient change in the bonding strength of the fired bonding layer, and when the titanium oxide content exceeds 10% by weight, the adhesive effect of magnesium phosphate decreases. However, the bonding force of the fired bonding layer decreases.

前記焼成被覆層の厚さは1本発明のセラミックスの用途
に応じて適宜窓めることができる。
The thickness of the fired coating layer can be adjusted as appropriate depending on the use of the ceramic of the present invention.

前記焼成被覆層のリン酸カルシウム系化合物としては、
生体に対し毒性がなく、骨との結合性及び新生骨への置
換性等が優れたものを用いることができ2例えばアパタ
イト(特に水酸アパタイト)、β−リン酸三カルシウム
又はこれらの混合物の焼結体を挙げることができる。な
お、水酸アバタイトは一般式Ca   (PO4)、(
OH) 21O で表わされる。
As the calcium phosphate compound of the fired coating layer,
Materials that are non-toxic to living organisms and have excellent bonding properties with bones and replacement properties with new bone can be used. For example, apatite (especially hydroxyapatite), β-tricalcium phosphate, or a mixture thereof. Examples include sintered bodies. In addition, hydroxyl abatite has the general formula Ca (PO4), (
OH) 21O.

高強度セラミックス基体としては、十分な機械的強度1
例えば人工歯根1人工骨等に用いることのできる程度の
強度を有するもの9例えば2部分安定化ジルコニア、ア
ルミナ、炭化珪素、窒化珪素又はこれらの複合材を挙げ
ることができる。
Sufficient mechanical strength1 for a high-strength ceramic substrate
For example, the artificial tooth root 1 has a strength sufficient to be used for an artificial bone, etc. 9 For example, two-part stabilized zirconia, alumina, silicon carbide, silicon nitride, or a composite material thereof can be mentioned.

本発明のリン酸カルシウム被覆セラミックス製造方法に
おいて用いられるセラミックス焼結基体の強度は、焼成
後に十分な機械的強度が得られる程の強度で足りる。
The strength of the ceramic sintered substrate used in the method for producing calcium phosphate-coated ceramics of the present invention is sufficient to provide sufficient mechanical strength after firing.

該基体の表面にリン酸マグネシウムスラリー接合層を設
ける手段としては1例えばスプレー法。
One method for providing the magnesium phosphate slurry bonding layer on the surface of the substrate is, for example, a spray method.

ディッピング法等の公知の方法を挙げることができる。Known methods such as dipping can be used.

該スラリー接合層のリン酸マグネシウムの粒径は9例え
ば1〜30μmにできる。該スラリー接合層にはカルボ
キシメチルセルロース等のバインダを含有させることが
できる。焼成後の接合力をより強力にするため、スラリ
ー接合層には1〜8重量%の酸化チタン粉末を含有させ
ることができる。酸化チタン粉末の径は0.1−10μ
m(好ましくは5μm以下)にできる。該スラリー接合
層は、好ましくは無機固形分換算で30〜70vt%で
設ける。
The particle size of the magnesium phosphate in the slurry bonding layer can be 9, for example, 1 to 30 μm. The slurry bonding layer may contain a binder such as carboxymethylcellulose. In order to make the bonding force stronger after firing, the slurry bonding layer can contain 1 to 8% by weight of titanium oxide powder. The diameter of titanium oxide powder is 0.1-10μ
m (preferably 5 μm or less). The slurry bonding layer is preferably provided at 30 to 70 vt% in terms of inorganic solid content.

該リン酸マグネシウムスラリー接合層の表面にリン酸カ
ルシウム系化合物スラリー被覆層を設ける手段としては
2例えばスプレー法、ディッピング法等の公知の方法を
挙げることができる。該スラリー被覆層のリン酸カルシ
ウム系化合物の粒径は1例えば0.1−100μmこで
きる。該スラリー被覆層にはバインダを含有させること
ができる。該スラリー被覆層の厚さは、焼成後に所望の
厚みになる厚さで設ける。
Examples of means for providing the calcium phosphate compound slurry coating layer on the surface of the magnesium phosphate slurry bonding layer include known methods such as spraying and dipping. The particle size of the calcium phosphate compound in the slurry coating layer can be, for example, 0.1 to 100 μm. The slurry coating layer can contain a binder. The thickness of the slurry coating layer is set to a desired thickness after firing.

本発明の製造方法における焼成は、 1000〜135
0℃で行なう。焼成温度が1000℃未満の場合にはリ
ン酸マグネシウムの接着効果が十分でなく、被覆層が剥
離しやすい。1350℃を越える場合には被覆層のリン
酸カルシウム系化合物(例えばHAP)が分解を起こし
てしまう。
Firing in the manufacturing method of the present invention is 1000 to 135
Perform at 0°C. If the firing temperature is less than 1000° C., the adhesion effect of magnesium phosphate will not be sufficient and the coating layer will easily peel off. If the temperature exceeds 1350° C., the calcium phosphate compound (for example, HAP) in the coating layer will decompose.

[実施例] 実施例1 第1リン酸マグネシウム粉末(林純薬工業製。[Example] Example 1 Monomagnesium phosphate powder (manufactured by Hayashi Pure Chemical Industries).

800℃仮焼粉末)と水を重量比7.0:30でボール
ミルにて10hr混合し、少量のカルボキシメチルセル
ロースを添加して適度の粘性を示す水性スラリーを調整
した。この水性スラリーを高純度アルミナ焼結基体(A
I220398%以上、対理論値相対密度99%)の表
面にスプレー法により平均200μlの厚さで吹付けて
スラリー接合層を設けた。乾燥後該スラリー接合層の表
面に、平均粒径1〜1〇−のβ−リン酸三カルシウムの
水性スラリーをスプレー法により平均200μmの厚さ
で吹付けてスラリー被覆層を設け、 1100℃×1時
間で焼成し本発明のリン酸カルシウム被覆セラミックス
を得た。
800° C. calcined powder) and water were mixed at a weight ratio of 7.0:30 in a ball mill for 10 hours, and a small amount of carboxymethylcellulose was added to prepare an aqueous slurry exhibiting appropriate viscosity. This aqueous slurry was applied to a high-purity alumina sintered substrate (A
A slurry bonding layer was provided on the surface of I220 (398% or more, relative density relative to theoretical value 99%) by spraying at an average thickness of 200 μl. After drying, a slurry coating layer was provided by spraying an aqueous slurry of β-tricalcium phosphate having an average particle size of 1 to 10 to an average thickness of 200 μm on the surface of the slurry bonding layer, and heating at 1100° C. The ceramics coated with calcium phosphate of the present invention were obtained by firing for 1 hour.

この被覆セラミックス表面の被覆層は、X線回折で調べ
た結果、β−リン酸三カルシウムであることが確認され
た。焼成後の焼成接合層及び焼成被覆層の平均厚さは、
夫々 100μm及び180μlであった。
The coating layer on the surface of this coated ceramic was examined by X-ray diffraction and was confirmed to be β-tricalcium phosphate. The average thickness of the fired bonding layer and fired coating layer after firing is:
The volumes were 100 μm and 180 μl, respectively.

実施例2 前記実施例1において、β−リン酸三カルシウムのかわ
りに水酸アパタイトを用い、 1300℃で焼成した以
外は前記実施例1と同様の製造方法により本発明のリン
酸カルシウム被覆セラミックスを得た。
Example 2 A calcium phosphate-coated ceramic of the present invention was obtained by the same manufacturing method as in Example 1 except that hydroxyapatite was used instead of β-tricalcium phosphate and fired at 1300°C. .

該被覆セラミックス表面の被覆層は、X線回折で調べた
結果、水酸アパタイトであることが確認された。
The coating layer on the surface of the coated ceramic was examined by X-ray diffraction and was confirmed to be hydroxyapatite.

実施例3 前記実施例1において、高純度アルミナ焼結基体のかわ
りにイツトリア部分安定化ジルコニアの焼結基体(72
033モル、相対密度99%、抗折力100kgf/ 
mm 2)を用いた以外は前記実施例1と同様の製造方
法により本発明のリン酸カルシウム被覆セラミックスを
得た。
Example 3 In Example 1, a sintered substrate of yttria partially stabilized zirconia (72
033 mol, relative density 99%, transverse rupture strength 100 kgf/
The calcium phosphate-coated ceramic of the present invention was obtained by the same manufacturing method as in Example 1, except that 2 mm 2) was used.

該被覆セラミックス表面の被覆層は、X線回折で調べた
結果、β−リン酸三カルシウムであることが確認された
The coating layer on the surface of the coated ceramic was examined by X-ray diffraction and was confirmed to be β-tricalcium phosphate.

実施例4 前記実施例1において、β−リン酸三カルシウムのかわ
りに水酸アパタイトを用い、高純度アルミナ焼結基体の
かわりに実施例3と同じイツトリア部分安定化ジルコニ
アを用い、 taoo℃で焼成した以外は前記実施例1
と同様の製造方法により本発明のリン酸カルシウム被覆
セラミックスを得た。
Example 4 In the above Example 1, hydroxyapatite was used instead of β-tricalcium phosphate, the same Ittria partially stabilized zirconia as in Example 3 was used instead of the high purity alumina sintered base, and the material was fired at taoo°C. Example 1 except that
The calcium phosphate-coated ceramic of the present invention was obtained by the same manufacturing method.

該被覆セラミックス表面の被覆層は、X線回折で調べた
結果、水酸アパタイトであることが確認された。
The coating layer on the surface of the coated ceramic was examined by X-ray diffraction and was confirmed to be hydroxyapatite.

実施例5 セラミックス焼結基体として炭化珪素又は窒化珪素の焼
結体を用いて本発明の製造方法により製造した場合も1
本発明のリン酸カルシウム被覆セラミックスを製造でき
た。
Example 5 In the case of manufacturing by the manufacturing method of the present invention using a sintered body of silicon carbide or silicon nitride as a ceramic sintered substrate, 1
Calcium phosphate coated ceramics of the present invention could be produced.

実施例6 リン酸カルシウム系化合物スラリー被覆層としてβ−リ
ン酸三カルシウムと水酸アパタイトの混合物又は複合物
を用いて本発明の製造方法により製造した場合も、それ
らが相転移したり別の結晶相を生じることなく本発明の
リン酸カルシウム被覆セラミックスを製造できた。
Example 6 Even when a mixture or composite of β-tricalcium phosphate and hydroxyapatite is used as a calcium phosphate compound slurry coating layer and produced by the production method of the present invention, the slurry may undergo phase transition or form another crystalline phase. The calcium phosphate-coated ceramics of the present invention could be manufactured without any occurrence.

実施例1〜6で得られた本発明のリン酸カルシウム被覆
セラミックスの焼成被覆層を金属針で引っかいても焼成
被覆層は剥離しなかった。
Even when the fired coating layers of the calcium phosphate-coated ceramics of the present invention obtained in Examples 1 to 6 were scratched with a metal needle, the fired coating layers did not peel off.

[発明の効果] 本発明のリン酸カルシウム被覆セラミックスは、リン酸
マグネシウムから成る焼成接合層により、リン酸カルシ
ウム系化合物から成る焼成被覆層が高強度セラミックス
基体に強力に接合されており2例えば人工骨2人工歯根
等の生体親和性を必要とする医用セラミックスとして良
好に使用できる。
[Effects of the Invention] The calcium phosphate-coated ceramic of the present invention has a fired coating layer made of a calcium phosphate compound strongly bonded to a high-strength ceramic base by a fired bonding layer made of magnesium phosphate. It can be well used as medical ceramics that require biocompatibility such as.

本発明のリン酸カルシウム被覆セラミックス製造方法は
、所望のリン酸カルシウム系化合物から成る焼成被覆層
を有するものを高生産性・低コストで製造できる。
The method for producing ceramics coated with calcium phosphate of the present invention can produce ceramics having a fired coating layer made of a desired calcium phosphate compound with high productivity and at low cost.

出願人   工業技術院長 飯塚十三 (外1名)Applicant: Juzo Iizuka, Director of the Agency of Industrial Science and Technology (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)高強度セラミックス基体と、リン酸カルシウム系
化合物から成る焼成被覆層との界面に、リン酸マグネシ
ウムから成る焼成接合層を有することを特徴とするリン
酸カルシウム被覆セラミックス。
(1) A calcium phosphate-coated ceramic characterized by having a fired bonding layer made of magnesium phosphate at the interface between a high-strength ceramic substrate and a fired coating layer made of a calcium phosphate-based compound.
(2)セラミックス焼結基体の表面に、リン酸マグネシ
ウムスラリー接合層を設け、該スラリー接合層の表面に
リン酸カルシウム系化合物スラリー被覆層を設け、10
00〜1350℃で焼成することを特徴とするリン酸カ
ルシウム被覆セラミックス製造方法。
(2) providing a magnesium phosphate slurry bonding layer on the surface of the ceramic sintered substrate, providing a calcium phosphate compound slurry coating layer on the surface of the slurry bonding layer;
A method for producing ceramics coated with calcium phosphate, characterized by firing at a temperature of 00 to 1350°C.
JP63261590A 1988-10-19 1988-10-19 Calcium phosphate coated ceramics and method for producing the same Expired - Lifetime JP2623315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261590A JP2623315B2 (en) 1988-10-19 1988-10-19 Calcium phosphate coated ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261590A JP2623315B2 (en) 1988-10-19 1988-10-19 Calcium phosphate coated ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02153886A true JPH02153886A (en) 1990-06-13
JP2623315B2 JP2623315B2 (en) 1997-06-25

Family

ID=17364033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261590A Expired - Lifetime JP2623315B2 (en) 1988-10-19 1988-10-19 Calcium phosphate coated ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP2623315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144984A (en) * 1990-10-03 1992-05-19 Agency Of Ind Science & Technol Apatite-coated composite material and production thereof
US6350462B1 (en) 1990-12-26 2002-02-26 Olympus Optical Co., Ltd. Hollow porous ceramic carrier for embedding in patient for sustained medicament release and method of preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144984A (en) * 1990-10-03 1992-05-19 Agency Of Ind Science & Technol Apatite-coated composite material and production thereof
US6350462B1 (en) 1990-12-26 2002-02-26 Olympus Optical Co., Ltd. Hollow porous ceramic carrier for embedding in patient for sustained medicament release and method of preparation thereof

Also Published As

Publication number Publication date
JP2623315B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
EP0678300B1 (en) Bone substitute material and process for producing the same
US5128146A (en) Apatite coated article and process for producing the same
US5071434A (en) Biologically active surface ceramic and process for producing the same
US8703294B2 (en) Bioactive graded zirconia-based structures
US5344456A (en) Materials for living hard tissue replacements
JP5087768B2 (en) Biocompatible high-strength ceramic composite material and manufacturing method thereof
JPH067425A (en) Manufacture of biological compatibility complex
JPH062154B2 (en) Powder for coating calcium phosphate-based substance, coating method and composite bioceramics
Ding et al. Structure and immersion behavior of plasma-sprayed apatite-matrix coatings
US5077079A (en) Method for formation of calcium phosphate compound coating on surface of ceramic article
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
Safaee et al. Fabrication of bioactive glass coating on pure titanium by sol-dip method: Dental applications
JPS5945384B2 (en) Manufacturing method for high-strength biological components
JPH02153886A (en) Ceramics coated with calcium phosphate and production thereof
JPS62297284A (en) Manufacture of ceramic composite material
Gross et al. Calcium phosphate bioceramics research in Latvia
JPH0244275B2 (en)
JPH03137079A (en) Ceramics body coated with calcium phosphate and production thereof
JPS59112908A (en) Preparation of member having high strength for organism
JPH0139787B2 (en)
JPS63201076A (en) Calcium phosphate coating process
WO2017176090A1 (en) Zirconia implant comprising bioactive glass and method for manufacturing same
JPH04126157A (en) Inorganic biomaterial
JPH0660069B2 (en) Apatite coating composite material and manufacturing method thereof
JPH10179716A (en) Vital prosthetic member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12