JPH02153859A - Electroconductive ceramic sintered material - Google Patents

Electroconductive ceramic sintered material

Info

Publication number
JPH02153859A
JPH02153859A JP63306316A JP30631688A JPH02153859A JP H02153859 A JPH02153859 A JP H02153859A JP 63306316 A JP63306316 A JP 63306316A JP 30631688 A JP30631688 A JP 30631688A JP H02153859 A JPH02153859 A JP H02153859A
Authority
JP
Japan
Prior art keywords
cuo
raw material
al2o3
sintered body
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63306316A
Other languages
Japanese (ja)
Inventor
Takamasa Isobe
隆昌 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP63306316A priority Critical patent/JPH02153859A/en
Publication of JPH02153859A publication Critical patent/JPH02153859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain an electroconductive sintered material having electrical conductivity, excellent wear resistance, strength and heat resistance by blending a main raw material comprising Al2O3 having >=a specific purity with a given mol % of CuO as an additive and sintering the blend in atmosphere. CONSTITUTION:A main raw material comprising Al2O3 having >=80% purity is blended with 0.01-5mol% CuO as an additive and sintered in atmosphere at preferably 1,400-1,600 deg.C. In the operation, both Al2O3 and CuO are high-purity powder having <=1.5mum average particle diameter. At the stage of blending the raw material powder, when the raw material powder is mixed with <=20wt.% Mg compound such as MgO or MgCl2 as a sintering auxiliary, granule growth of Al2O3 is suppressed so that a sintered material having high strength can be obtained. The ceramic sintered material obtained by the above-mentioned method is useful for electroconductive material, point, heater and antistatic part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気伝導性を有し、かつ耐摩耗性、強度および
耐熱性に浸れ、導電材料、接点、ヒータ、静電気防止部
品として有用な導電性セラミックス焼結体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a conductive material that is electrically conductive and has excellent wear resistance, strength, and heat resistance, and is useful as a conductive material, a contact, a heater, and an antistatic component. The present invention relates to ceramic sintered bodies.

[従来の技術] セラミックスの最もポピユラーな用途は、絶縁体として
の機能を生かしたもので、その抵抗率は代表的なA I
203で10日Ω・cII程度であって特に高温での絶
縁性に優れる。一方において高温用の発熱体材料として
、黒鉛、炭化珪素、ランタンクロマイトなどがセラミッ
クス系発熱体として使用されている。
[Conventional technology] The most popular use of ceramics is to take advantage of its function as an insulator, and its resistivity is typical of AI.
203 has a resistance of about 10 Ω·cII, and has excellent insulation properties especially at high temperatures. On the other hand, as heating element materials for high temperatures, graphite, silicon carbide, lanthanum chromite, and the like are used as ceramic heating elements.

しかしながら、これらセラミックス系発熱体はいずれも
材料強度が低く、断面積を大きくする必要があり、その
ため速熱性に欠けかつ耐摩耗性に劣るという欠点があっ
た。そこで、ファインセラミックスに導電性を付与し、
従来のセラミックス系発熱体よりも高い強度を有し、発
熱体以外の分野にも応用される材料の開発がなされてき
た。
However, all of these ceramic heating elements have low material strength, require a large cross-sectional area, and therefore lack rapid heating properties and have poor wear resistance. Therefore, by imparting conductivity to fine ceramics,
Materials have been developed that have higher strength than conventional ceramic heating elements and can be applied to fields other than heating elements.

すなわち、固有抵抗が101〜1016Ω・eaの絶縁
物質であるAl2O3に導電性を付与する方法として、
T iC、NbC、TaC、WC、MozC1Cr20
s等の金属炭化物を18〜40体積%添加する方法が知
られている(機能材料、1987年2月号、16頁以下
)、さらに、ZrO2,5izN<あるいはA1□O1
等の導電性に劣る材料に放電加工性を付与するため、こ
れらセラミックスと炭化珪素、ホウ化ジルコニウム、ホ
ウ化チタン、窒化チタンおよび窒化珪素との複合焼結体
が知られている(セラミックス、21[8コア19−2
5(1986))。
That is, as a method of imparting conductivity to Al2O3, which is an insulating material with a specific resistance of 101 to 1016 Ω·ea,
T iC, NbC, TaC, WC, MozC1Cr20
A method is known in which 18 to 40% by volume of metal carbides such as s are added (Functional Materials, February 1987 issue, p. 16 et seq.);
Composite sintered bodies of these ceramics with silicon carbide, zirconium boride, titanium boride, titanium nitride, and silicon nitride are known in order to impart electrical discharge machinability to materials with poor conductivity such as ceramics, etc. (Ceramics, 21 [8 cores 19-2
5 (1986)).

[発明が解決しようとする課題] しかしながら、前者の方法においては、ち密で高強度の
材料を得るためにはホットプレス法(以下HP法という
)またはホットアイソスタチックプレス法(以下HIP
法という)により製造する必要があり、生産性が悪くか
つ製造コストが高くな。
[Problems to be Solved by the Invention] However, in the former method, in order to obtain a dense and high-strength material, hot pressing method (hereinafter referred to as HP method) or hot isostatic pressing method (hereinafter referred to as HIP method) is required.
It is necessary to manufacture the product by a method called ``method'', which results in poor productivity and high manufacturing cost.

るという欠点がある。また、後者の方法においては、得
られる焼結体の比抵抗はI X 10−’〜4×10−
5Ω・amという値であり優れているが、これらに複合
する非酸化物の原料は高価であり、しかもHP法または
HIP法によりArまたはN2雰囲気で焼結を行わなけ
ればならないので、製造コストが高くなるという欠点を
有している。
It has the disadvantage of being In addition, in the latter method, the specific resistance of the sintered body obtained is I x 10-' to 4 x 10-
The value is 5Ω・am, which is excellent, but the non-oxide raw materials to be combined with these are expensive, and sintering must be performed in an Ar or N2 atmosphere using the HP method or HIP method, so the manufacturing cost is high. It has the disadvantage of being expensive.

本発明は導電性セラミックス焼結体の前記のごとき問題
点に鑑みてなされたものであって、電気伝導性を有しか
つ耐摩耗性、強度および耐熱性に優れ、大気中で常圧焼
結することができる導電性セラミックス焼結体を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems of conductive ceramic sintered bodies, which have electrical conductivity, excellent wear resistance, strength, and heat resistance, and which can be sintered under normal pressure in the atmosphere. The purpose of the present invention is to provide a conductive ceramic sintered body that can

[課題を解決するための手段] 本発明の導電性セラミックス焼結体は、純度80%以上
のA1□0.を主原料とし、これに添加物としてCuO
をモル%で0.01〜50%の範囲で添加し、大気中で
焼結したことを要旨とする。
[Means for Solving the Problems] The conductive ceramic sintered body of the present invention has an A1□0. is the main raw material, and CuO is added as an additive to this.
is added in a range of 0.01 to 50% by mole and sintered in the atmosphere.

主原料であるAhOsには不純物としてアルカリ金属酸
化物以外の酸化物、特にはアルカリ土類酸化物、シリカ
、ジルコニア、チタニア等を含有させることができる。
AhOs, which is the main raw material, can contain oxides other than alkali metal oxides, particularly alkaline earth oxides, silica, zirconia, titania, etc., as impurities.

これら不純物の含有泣は20%以下であることが必要で
ある。これら不純物が20%を越えるとIJ的強度およ
び耐摩耗性が劣化するからである。
The content of these impurities must be 20% or less. This is because if these impurities exceed 20%, IJ strength and wear resistance deteriorate.

主原料であるA1□O5および導電性付与成分として配
合するCuOは、いずれも粉末の平均粒子径が1,5μ
m以下の高純度粉末を使用する。CuO粒子径が1.5
μ−を越えると、A I 20 s粒界に存在するCu
O粒子数が少なくなる結果、比抵抗が増大する。また、
原料の粉末混合段階では、焼結助剤としてMgO、Mg
C12またはMg化合物を20 %重量以下を配合する
ことがある。原料粉末は十分に粉砕混合を行った後造粒
し焼結用原料とする。
A1□O5, which is the main raw material, and CuO, which is blended as a conductivity imparting component, both have an average powder particle size of 1.5 μm.
Use high purity powder of less than m. CuO particle size is 1.5
When μ- is exceeded, Cu present at the A I 20 s grain boundary
As the number of O particles decreases, the specific resistance increases. Also,
At the raw material powder mixing stage, MgO and Mg are used as sintering aids.
C12 or Mg compounds may be added in an amount of 20% or less by weight. The raw material powder is sufficiently pulverized and mixed, and then granulated to provide a raw material for sintering.

導電性成分として添加するCuOの量をモル%で0,0
1〜50%としたのは、CuOの添加量が0.01%以
下の場合は、微妙な結晶粒径の差異により比抵抗が大き
く変動し、安定した固有抵抗を有する焼結体が得られな
いからであり、またCuOの添加量が50%を越えると
、焼結性および。
The amount of CuO added as a conductive component is 0.0 in mol%.
The reason for setting it at 1 to 50% is that if the amount of CuO added is 0.01% or less, the resistivity will fluctuate greatly due to subtle differences in crystal grain size, and a sintered body with stable resistivity will not be obtained. Moreover, if the amount of CuO added exceeds 50%, the sinterability will deteriorate.

耐酸化性が劣化するからである。This is because oxidation resistance deteriorates.

焼結体を得るための焼結温度は1400〜1650℃の
範囲であることが好ましい、焼結温度が1400°C未
満であるときは、焼結が十分に起こらないからであり、
焼結温度が1600℃を越えると、焼結体の結晶粒が成
長し比抵抗が増大するからである。
The sintering temperature for obtaining the sintered body is preferably in the range of 1400 to 1650°C, because if the sintering temperature is less than 1400°C, sufficient sintering will not occur.
This is because if the sintering temperature exceeds 1600° C., the crystal grains of the sintered body grow and the resistivity increases.

[作用] 本発明の導電性セラミックス焼結体は、A I20、を
主原料とするため、従来のセラミックス系発熱体よりも
強度、耐摩耗性および耐熱性にすぐれる。また、導電性
成分と化てCuOを添加したので、比抵抗を充分に小さ
くすることができ、さらに添加するCuOの量を調節す
ることにより、広い範囲で比抵抗値を変化させることが
できる。本発明の導電性セラミックス焼結体は、大気中
で常圧焼結することによって得られるので、製造コスト
が安価である。
[Function] Since the conductive ceramic sintered body of the present invention uses AI20 as the main raw material, it has superior strength, wear resistance, and heat resistance than conventional ceramic heating elements. Furthermore, since CuO is added as a conductive component, the resistivity can be made sufficiently small, and further, by adjusting the amount of CuO added, the resistivity value can be varied over a wide range. Since the conductive ceramic sintered body of the present invention is obtained by normal pressure sintering in the atmosphere, the manufacturing cost is low.

焼結助剤としてM、化合物を添加すると、AOlの粒成
長を抑制し、その結果強度の高い焼結体を得ることがで
きる。なお、不純物としてSiO□が添加されると、よ
り低い温度で緻密化させることができ、Zr023添加
すると強度を上げることができる。
When M or a compound is added as a sintering aid, grain growth of AOl can be suppressed, and as a result, a sintered body with high strength can be obtained. Note that when SiO□ is added as an impurity, it can be densified at a lower temperature, and when Zr023 is added, the strength can be increased.

[実施例] 本発明の具体的な実施例について以下に説明し、本発明
の効果を明らかにする。
[Example] Specific examples of the present invention will be described below to clarify the effects of the present invention.

主原料となるA1□0.(純度99.5%)に導電性成
分Cub(純度99.9%〉を第1表に示す比すで混合
した。混合は混合粉100gに対して水50gと分散剤
としてアクリル酸オリゴマーを05cc添加し、アルミ
ナ玉石を使用し、ボンドミル中で24時間混きした。
The main raw material is A1□0. (purity 99.5%) and the conductive component Cub (purity 99.9%) were mixed in the ratio shown in Table 1.The mixing was as follows: 100g of mixed powder, 50g of water, and 05cc of acrylic acid oligomer as a dispersant. and mixed in a bond mill for 24 hours using alumina cobblestone.

得られた混合物の泥漿を乾燥させ、次いで篩分は法によ
り顆粒化した。これを金型で予備成形した後、1500
 kg/ am2でCIP処理を行い成形品とした。こ
の成形品1t5oo℃で1時間焼成し焼結体を得た。得
られた焼結体の吸水率および比抵抗を測定し、結果を第
1表に示した。また、CuO添加添加量モル比抵抗(Ω
・c謡)の関係を示す図を第1図に示した。
The slurry of the resulting mixture was dried and the sieved fraction was then granulated by a method. After preforming this with a mold, 1500
A molded product was obtained by CIP treatment at kg/am2. This molded product was fired at 1t5oo°C for 1 hour to obtain a sintered body. The water absorption rate and specific resistance of the obtained sintered body were measured, and the results are shown in Table 1. In addition, the amount of CuO added molar specific resistance (Ω
・A diagram showing the relationship between the following is shown in Figure 1.

(以  下  余  白  ) 第1表および第1図から明らかなように、CuOを添加
しなかった比較例は比抵抗が10目Ω・cTaであった
のに対し、本発明例である試料N。
(Left below) As is clear from Table 1 and Figure 1, the comparative example in which CuO was not added had a specific resistance of 10 Ω·cTa, whereas the inventive sample N .

1〜5は、焼結体の吸水率が0%であって完全に#11
密化しており、比抵抗が10″Ω 0111台にまで低
下し、優れた導電性を示すことが確認された。
1 to 5, the water absorption rate of the sintered body is 0% and it is completely #11.
It was confirmed that the material was dense and the specific resistance was reduced to 10''Ω0111, showing excellent conductivity.

また、CuOの添加量が5〜20モル%と変化するのに
対応し、比抵抗が109〜104と変化し、CuOの添
加量により比抵抗が調節できることが明らかとなった。
Furthermore, as the amount of CuO added changes from 5 to 20 mol %, the specific resistance changes from 109 to 104, making it clear that the specific resistance can be adjusted by changing the amount of CuO added.

また、本発明例の焼結体について、ダイヤモンド砥石で
研削したところ、CuOを全く含まない比較例の焼結体
と同様に研削しにくいことが確認され、優れた耐1?れ
性を示ずことが明らかとなった。なお、耐摩耗性を示す
1つの尺度であるビッカース硬度が1400 kg/ 
mm2であり、耐摩耗性に潰れていることが確認された
。さらに、本発明例の焼結体について3点曲げ強度を測
定したところ、いずれも35kg/lll112に近い
値を示し、高強度であることが確認された。
Furthermore, when the sintered body of the present invention example was ground with a diamond grindstone, it was confirmed that it was difficult to grind, similar to the sintered body of the comparative example that did not contain any CuO, and showed excellent resistance to 1? It was found that there was no susceptibility to The Vickers hardness, which is a measure of wear resistance, is 1400 kg/
mm2, and it was confirmed that it was crushed due to wear resistance. Furthermore, when the three-point bending strength of the sintered bodies of the examples of the present invention was measured, they all showed values close to 35 kg/lll112, confirming that they had high strength.

なお、本実施例においてはCIP処理による成形法を示
したが、プレス法に限らず、シート成形法、鋳込み成形
法、射出成形法も可能である。また、ペースト化するこ
とにより印刷、焼付けの手法も可能である。
In addition, although the molding method by CIP treatment was shown in this Example, it is not limited to a press method, and sheet molding method, cast molding method, and injection molding method are also possible. Furthermore, printing and baking methods are also possible by making it into a paste.

[発明の効果コ 本発明の導電性セラミックス焼結体は、以上説明したよ
うに、純度80%以上のA I 20 sを主原料とし
、これに添加物としてCuOをモル%で001〜50%
の範囲で添加し、大気中で焼結したことを特徴とするも
のであって、A I 203を主原料とすることにより
、従来の導電性セラミックスよりも強度、耐摩耗性およ
び耐食性に優れ、導電性成分としてCuOを添加したの
で、比抵抗を充分に小さくすることができる。さらに添
加するCUOの量を調節することにより、広い範囲で比
抵抗値を変化させることができる。また、本発明の導電
性セラミックス焼結体は、大気中で常圧焼結によって得
られるので、従来のものより製造コストが安い0本発明
の導電性セラミックス焼結体は、比抵抗の小さいものは
導電N料、電気接点、ヒータとして有用であり、比抵抗
の大きいものは静電気防止用の部品、タイル、壁材とし
て有用なものである。
[Effects of the Invention] As explained above, the conductive ceramic sintered body of the present invention uses A I 20 s with a purity of 80% or more as the main raw material, and CuO as an additive in the range of 0.01 to 50% by mole.
It is characterized by being added within the range of Since CuO is added as a conductive component, the specific resistance can be made sufficiently small. Further, by adjusting the amount of CUO added, the specific resistance value can be changed over a wide range. In addition, since the conductive ceramic sintered body of the present invention is obtained by pressureless sintering in the atmosphere, the manufacturing cost is lower than that of conventional ones.The conductive ceramic sintered body of the present invention has a low specific resistance. are useful as conductive N materials, electrical contacts, and heaters, and those with high specific resistance are useful as antistatic parts, tiles, and wall materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCu○添加添加量モル比抵抗(Ω・Cl0)の
関係を示す図である。 第112
FIG. 1 is a diagram showing the relationship between the molar specific resistance (Ω·Cl0) of Cu○ addition amount. 112th

Claims (3)

【特許請求の範囲】[Claims] (1)純度80%以上のAl_2O_3を主原料とし、
これに添加物としてCuOをモル%で0.01〜50%
の範囲で添加し、大気中で焼結したことを特徴とする導
電性セラミックス焼結体。
(1) Main raw material is Al_2O_3 with a purity of 80% or more,
Add CuO as an additive to this in a mol% range of 0.01 to 50%.
A conductive ceramic sintered body characterized by being sintered in the atmosphere with the addition of
(2)焼結助剤としてMgO、MgCl_2またはMg
化合物を20%重量以下を含有する特許請求の範囲第1
項に記載の導電性セラミックス焼結体。
(2) MgO, MgCl_2 or Mg as a sintering aid
Claim 1 containing 20% or less of the compound by weight
The conductive ceramic sintered body described in .
(3)焼結温度が1400〜1650℃である特許請求
の範囲第1項または第2項に記載の導電性セラミックス
焼結体。
(3) The conductive ceramic sintered body according to claim 1 or 2, wherein the sintering temperature is 1400 to 1650°C.
JP63306316A 1988-12-03 1988-12-03 Electroconductive ceramic sintered material Pending JPH02153859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306316A JPH02153859A (en) 1988-12-03 1988-12-03 Electroconductive ceramic sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306316A JPH02153859A (en) 1988-12-03 1988-12-03 Electroconductive ceramic sintered material

Publications (1)

Publication Number Publication Date
JPH02153859A true JPH02153859A (en) 1990-06-13

Family

ID=17955639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306316A Pending JPH02153859A (en) 1988-12-03 1988-12-03 Electroconductive ceramic sintered material

Country Status (1)

Country Link
JP (1) JPH02153859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374704B1 (en) * 2000-04-07 2003-03-04 한국기계연구원 A Process for Manufacturing Nano Copper- Alumina Complex Powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374704B1 (en) * 2000-04-07 2003-03-04 한국기계연구원 A Process for Manufacturing Nano Copper- Alumina Complex Powder

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
EP0170864B1 (en) Zrb2 composite sintered material
EP0170889B1 (en) Zrb2 composite sintered material
JPH05345662A (en) Production of forsterite ceramic
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPH02153859A (en) Electroconductive ceramic sintered material
JP2000128625A (en) Aluminous ceramic sintered compact and its production
JPS6337069B2 (en)
JP3111741B2 (en) High strength porcelain and its manufacturing method
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP3898346B2 (en) Conductive ceramic materials
JPS60215575A (en) Manufacture of silicon nitride sintered body
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2949936B2 (en) Method for producing silicon nitride sintered body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP2959402B2 (en) High strength porcelain
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPS6272554A (en) Manufacture of fine polycrystal al2o3 sintered body
JPS61132511A (en) Production of tib2 powder
JPH05279115A (en) Dense sintered compact of chromium oxide and its production
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JPS6337068B2 (en)
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body