JPH02153070A - Monitor for vapor deposition speed of light emission system by electron bombardment - Google Patents

Monitor for vapor deposition speed of light emission system by electron bombardment

Info

Publication number
JPH02153070A
JPH02153070A JP30556888A JP30556888A JPH02153070A JP H02153070 A JPH02153070 A JP H02153070A JP 30556888 A JP30556888 A JP 30556888A JP 30556888 A JP30556888 A JP 30556888A JP H02153070 A JPH02153070 A JP H02153070A
Authority
JP
Japan
Prior art keywords
vapor deposition
light emission
oxygen
intensity
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30556888A
Other languages
Japanese (ja)
Inventor
Hisashi Yamamoto
久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP30556888A priority Critical patent/JPH02153070A/en
Publication of JPH02153070A publication Critical patent/JPH02153070A/en
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To lower the intensity of emitted light of oxygen at the wavelength at which many metals have a peak and to minimize errors with a vacuum deposition device, etc., by subjecting metal vapors to bombardment, excitation and light emission with a prescribed voltage and monitoring vapor deposition speeds. CONSTITUTION:This monitor for vapor deposition speeds of the light emission type by electron bombardment is provided in the device or the like which evaporates raw materials in a vacuum and deposits the same by evaporation on a substrate. The raw materials incoming by the above-mentioned evaporation are irradiated with electrons by which the materials are excited to emit light. The light emission method by electron bombardment which measures the intensity of the emitted light is utilized. The energy of the electrons to be irradiated (electron acceleration voltage) for excitation of the atoms of the above- mentioned materials 4 is set at 80 to 150V. The intensity of the emitted light of oxygen at 400 to 500nm wavelength is lowered in this way and the errors in the measurement of the emitted light signal of the evaporated metal existing in the same wavelength region are minimized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空蒸着やスパッタリングなどに於て成膜速
度や膜厚などを制御する目的で用いられる蒸着速度モニ
ターのうち電子衝撃発光分光方式の蒸着速度モニターに
間する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electron impact emission spectroscopy method among vapor deposition rate monitors used for the purpose of controlling film formation rate and film thickness in vacuum vapor deposition, sputtering, etc. Monitor the deposition rate.

(従来の技術) 従来のこの種の蒸着速度モニターには、米国特許4,0
36,167号に述べられているようなセンサーが用い
られている。即ち第1図に示すように、このセンサーは
内部にフィラメント2を備えたセンサーヘッド1と、真
空外に置かれたビームスプリッタ−6、光学フィルター
7、フォトマルチプライヤ−8から構成されており、セ
ンサーヘッドlの底部に開けられた穴4oから通り抜け
て来る蒸発物質の蒸気流4に、フィラメント2から放出
されて約200eVのエネルギーに加速された電子ビー
ム3を衝突させることによって蒸発物質の原子を励起さ
せ、その原子の発する励起光5を真空外部に導き、ビー
ムスプリッタ−6によっていくつかの光に分け、各々の
原子の固有波長の光学フィルター7を通した後にフォト
マルチプライヤ−8で電気信号に変えることにより、各
々の物質毎の蒸発速度信号を得るものである。このセン
サーの特徴は、複数の物質の混合蒸気においても、各々
の物質原子の発光スペクトルが重ならなければ、各々の
物質毎の光学フィルターを用意することでその各々の蒸
発速度が同時に検出できることである。この為に同時多
元蒸着における蒸発速度の制御用のセンサーとして盛ん
に利用されている。
(Prior Art) A conventional vapor deposition rate monitor of this type is disclosed in U.S. Pat.
A sensor such as that described in No. 36,167 is used. That is, as shown in FIG. 1, this sensor consists of a sensor head 1 with a filament 2 inside, a beam splitter 6 placed outside a vacuum, an optical filter 7, and a photomultiplier 8. Atoms of the evaporated material are removed by colliding an electron beam 3 emitted from the filament 2 and accelerated to an energy of approximately 200 eV into the vapor flow 4 of the evaporated material passing through a hole 4o made at the bottom of the sensor head l. The excitation light 5 emitted by the atom is guided outside the vacuum, divided into several beams by a beam splitter 6, passed through an optical filter 7 with a wavelength specific to each atom, and then converted into an electrical signal by a photomultiplier 8. By changing to , the evaporation rate signal for each substance is obtained. The feature of this sensor is that even in a mixed vapor of multiple substances, if the emission spectra of the atoms of each substance do not overlap, the evaporation rate of each substance can be detected simultaneously by providing an optical filter for each substance. be. For this reason, it is widely used as a sensor for controlling the evaporation rate in simultaneous multi-component deposition.

(発明が解決しようとする問題点) しかしながら上記の従来のセンサーにおいても、スペク
トルの重なる物質が混在する場合においては、各々の物
質の蒸発速度を個別に測定せんとするときは大きな誤差
を含む危険があり且つ測定が困難でもあった。特に酸化
物超電導薄膜の蒸着においては蒸着が酸素雰囲気中で行
われるため、酸素の励起光が蒸発金属からの励起光に混
ざって観測されることになるが、酸素の発光スペクトル
は第2図に示すように広い波長範囲に渡って広がってい
るために、その一部が、例えば第5図に示すイッ゛トリ
ウム(以下、Y)の発光スペクトル(主ピークが408
nmの位置にある)と重なって、Yの蒸発速度の測定に
おいて誤差を生じる原因となる。酸化物超電導体の主原
料である希土類元素には、例えば第7図、第8図に示す
ようなジスプロシウムやイッテルビウムのように400
−500nmの波長範囲に発光スペクトルのピークを持
つものが多いために、前記したような酸素のこれら波長
範囲の発光成分は、酸化物超電導薄膜蒸着の多くの元素
の測定において邪魔になるものであると言える。
(Problem to be solved by the invention) However, even with the conventional sensor described above, when substances with overlapping spectra are mixed, there is a risk of large errors when trying to measure the evaporation rate of each substance individually. It was also difficult to measure. Particularly in the deposition of oxide superconducting thin films, since the deposition is performed in an oxygen atmosphere, the excitation light of oxygen is observed mixed with the excitation light from the evaporated metal, but the emission spectrum of oxygen is shown in Figure 2. As shown in FIG.
), which causes errors in measuring the evaporation rate of Y. Rare earth elements that are the main raw materials for oxide superconductors include, for example, 400% of the rare earth elements such as dysprosium and ytterbium as shown in Figures 7 and 8.
Since most of the emission spectra have a peak in the wavelength range of -500 nm, the emission components of oxygen in these wavelength ranges as described above become an obstacle in the measurement of many elements in oxide superconducting thin film deposition. I can say that.

(発明の目的) 本発明の目的は、上記の問題を解決し、400−500
 n mの波長範囲における酸素の発光強度を低下させ
て、同じ波長領域にある蒸発金属の発光信号の測定の誤
差を最小限にする手段を提供することである。
(Object of the invention) The object of the invention is to solve the above problems and to
It is an object of the present invention to provide a means for reducing the emission intensity of oxygen in the wavelength range of nm to minimize errors in measuring the emission signal of vaporized metal in the same wavelength range.

(問題点を解決するための手段) 上記の目的を達成するために、本発明では金属蒸気を衝
撃し励起する電子のエネルギーを、8゜−150eVの
範囲に限定するように電子の加速電圧を調整する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the electron accelerating voltage is adjusted so that the energy of electrons that bombard and excite metal vapor is limited to a range of 8° to 150 eV. adjust.

(作用) 電子エネルギーをこの様に限定することにより、被測定
金属の発光強度を低下させることなく、酸素のみの40
0−500nmの波長領域の発光強度を低く抑えて、測
定誤差を少なくすることができる。
(Function) By limiting the electron energy in this way, the emission intensity of the metal to be measured can be
The emission intensity in the wavelength range of 0 to 500 nm can be suppressed to a low level, and measurement errors can be reduced.

(実施例) 第3図は本発明の一実施例による堕素の発光スペクトル
を示す。本実施例では電子のエネルギーを100eVに
設定している。
(Example) FIG. 3 shows the emission spectrum of a fallen element according to an example of the present invention. In this example, the electron energy is set to 100 eV.

第2図に示す従来の電子エネルギーによる発光スペクト
ルと比較して400−50On、mの波長範囲の発光強
度が低下していることが判る。
It can be seen that the emission intensity in the wavelength range of 400-50 m is lower than the conventional emission spectrum due to electron energy shown in FIG.

更に詳細に8O−200eVの範囲で電子エネルギーを
変えて酸素の発光強度の変化を調べてみると、第4図に
示したように560 nmで代表される多くの発光は1
00eV付近で最大になるが、410nmで代表される
4’O00−500nの範囲の発光強度は100 e 
V付近で最小となることが判った。
When we examine in more detail the changes in the emission intensity of oxygen by changing the electron energy in the range of 8O-200eV, we find that as shown in Figure 4, most of the emission represented by 560 nm is 1
The emission intensity reaches its maximum near 00 eV, but the emission intensity in the range of 4'O00-500n, which is represented by 410 nm, is 100 eV.
It was found that it becomes minimum near V.

この様に電子のエネルギーを従来よりも低い値に限定す
ることにより、400−500nmの波長範囲における
酸素の発光強度を、従来の約2゜OeVのエネルギーに
おける発光強度と比較して約1/3にすることができ、
目的とする他の被測定元素の測定誤差を小さくすること
ができる。
By limiting the electron energy to a value lower than conventional values, the emission intensity of oxygen in the wavelength range of 400-500 nm is reduced to about 1/3 compared to the conventional emission intensity at an energy of about 2° OeV. can be,
Measurement errors for other target elements to be measured can be reduced.

更に筆者らの研究によって、電子エネルギーが100e
Vのときは、第6図に示すようにYの408nmのピー
クは200eVの時と比較して逆に発光強度が増加する
現象が観測された。
Furthermore, the authors' research has shown that the electron energy is 100e.
In the case of V, a phenomenon was observed in which the emission intensity of the 408 nm peak of Y increased conversely compared to the case of 200 eV, as shown in FIG.

従って電子エネルギーをi oov近辺に設定してセン
サーを動作させることにより、Yなどの希土類金属の発
光強度を増大させると共に、ノイズとなる酸素の400
−500nmの波長領域の発光強度を低く抑えることが
でき、希土類金属の酸素中での蒸着における速度モニタ
ーの精度を格段に向上させることができる。
Therefore, by operating the sensor with the electron energy set near i oov, the emission intensity of rare earth metals such as Y is increased, and the 400% of oxygen that causes noise is increased.
The emission intensity in the -500 nm wavelength region can be suppressed to a low level, and the accuracy of speed monitoring during vapor deposition of rare earth metals in oxygen can be significantly improved.

(発明の効果) 以上説明したように、測定する金属蒸気を励起する電子
のエネルギーを80−1’、00eVに限定することに
より、Yなどの希土類金属など、多くの金属がピークを
有する400−500nmの波長の範囲における酸素の
発光強度を低下させ、金属蒸気の測定における誤差を最
小限にすることができる。
(Effects of the Invention) As explained above, by limiting the energy of electrons that excite the metal vapor to be measured to 80-1', 00 eV, many metals such as rare earth metals such as Y have a peak of 40-1'. The emission intensity of oxygen in the wavelength range of 500 nm can be reduced to minimize errors in metal vapor measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電子衝撃発光方式の蒸着速度モニターセンサ
ーの測定原理を示す図である。 第2図は、センサーを従来の電子エネルギーで動作させ
たときの酸素の発光スペクトルを示す。 第3図は、センサーを100eVの電子エネルギーで動
作させたときの酸素の発光スペクトルを示す。 第4図は、酸素の発光スペクトルのうち、410111
1と510nmのピーク強度の、励起電子のエネルギー
依存性を示したものである。 第5図は、センサーを従来の電子エネルギーで動作させ
たときのイツトリウムの発光スペクトルを示す。 第6図は、センサーを100eVの電子エネルギーで動
作させたときのイツトリウムの発光スペクトルを示す。 第7図は、ジスプロシウムの発光スペクトルを示す。 第8図は、イッテルビウムの発光スペクトルを示す。 1・・・センサーヘッド、2・・・フィラメント、3・
・・電子ビーム、   4・・・蒸発物質蒸気流、5・
・・励起光、   6・・・ビームスプリッタ−7・・
・光学フィルター 8・・・フォトマルチプライヤ− 11−410nmビーク、 12・・・560nmピーク、 13・400−500nm間のピーク、14・・・40
8nmビーク、 40・・・センサーヘッドの底部に開けられた穴。 特許出願人 日電アネルバ株式会社 代理人  弁理士  村上 健次
FIG. 1 is a diagram showing the measurement principle of an electron impact luminescence type vapor deposition rate monitoring sensor. FIG. 2 shows the emission spectrum of oxygen when the sensor is operated with conventional electronic energy. FIG. 3 shows the emission spectrum of oxygen when the sensor is operated at an electron energy of 100 eV. Figure 4 shows 410111 of the emission spectrum of oxygen.
This figure shows the energy dependence of excited electrons on the peak intensities at 1 and 510 nm. FIG. 5 shows the emission spectrum of yttrium when the sensor is operated with conventional electronic energy. FIG. 6 shows the emission spectrum of yttrium when the sensor is operated at an electron energy of 100 eV. FIG. 7 shows the emission spectrum of dysprosium. FIG. 8 shows the emission spectrum of ytterbium. 1...Sensor head, 2...Filament, 3.
...Electron beam, 4. Evaporated material vapor flow, 5.
...Excitation light, 6...Beam splitter-7...
- Optical filter 8... Photo multiplier - 11-410nm peak, 12...560nm peak, 13. Peak between 400-500nm, 14...40
8nm beak, 40...hole drilled at the bottom of the sensor head. Patent applicant: Nichiden Anelva Co., Ltd. Patent attorney: Kenji Murakami

Claims (1)

【特許請求の範囲】[Claims] (1)真空中で原材料物質を蒸発させこれを半導体基板
などに蒸着する装置、もしくはスパッタする装置に於て
、蒸発し飛来する原材料物質に電子を照射することによ
り該原材料物質を励起し、その発光強度を測定するいわ
ゆる電子衝撃発光法を利用する蒸着速度モニターに於て
、該原材料物質原子を励起するために照射する電子のエ
ネルギー即ち電子加速電圧を、80V〜150Vの間に
設定したことを特徴とする電子衝撃発光方式蒸着速度モ
ニター。
(1) In a device that evaporates a raw material in a vacuum and deposits it onto a semiconductor substrate, or in a sputtering device, the evaporated and flying raw material is irradiated with electrons to excite the raw material. In a deposition rate monitor that uses the so-called electron impact luminescence method to measure luminescence intensity, the energy of electrons irradiated to excite atoms of the raw material, that is, the electron acceleration voltage, is set between 80V and 150V. Features an electron impact luminescence method vapor deposition rate monitor.
JP30556888A 1988-12-02 1988-12-02 Monitor for vapor deposition speed of light emission system by electron bombardment Expired - Lifetime JPH02153070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30556888A JPH02153070A (en) 1988-12-02 1988-12-02 Monitor for vapor deposition speed of light emission system by electron bombardment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30556888A JPH02153070A (en) 1988-12-02 1988-12-02 Monitor for vapor deposition speed of light emission system by electron bombardment

Publications (1)

Publication Number Publication Date
JPH02153070A true JPH02153070A (en) 1990-06-12

Family

ID=17946712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30556888A Expired - Lifetime JPH02153070A (en) 1988-12-02 1988-12-02 Monitor for vapor deposition speed of light emission system by electron bombardment

Country Status (1)

Country Link
JP (1) JPH02153070A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139394A (en) * 1984-07-30 1986-02-25 トクデン株式会社 3-phase annular laminated core leg type rotary roller
JPS62188941A (en) * 1986-02-14 1987-08-18 Anelva Corp Sensor for monitoring vacuum evaporation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139394A (en) * 1984-07-30 1986-02-25 トクデン株式会社 3-phase annular laminated core leg type rotary roller
JPS62188941A (en) * 1986-02-14 1987-08-18 Anelva Corp Sensor for monitoring vacuum evaporation

Similar Documents

Publication Publication Date Title
Martin et al. Characteristics of titanium arc evaporation processes
Saenger Time‐resolved optical emission during laser ablation of Cu, CuO, and high‐T c superconductors: Bi1. 7Sr1. 3Ca2Cu3O x and Y1Ba1. 7Cu2. 7O y
Dunning et al. Secondary electron ejection from metal surfaces by metastable atoms. I. Measurement of secondary emission coefficients using a crossed beam method
Probst et al. Unoccupied molecular orbital states of tris (8-hydroxy quinoline) aluminum: Observation and dynamics
US20180080885A1 (en) Cathodoluminescence-activated nanoscale imaging
JPH02153070A (en) Monitor for vapor deposition speed of light emission system by electron bombardment
US5148025A (en) In situ composition analysis during growth vapor deposition
JP3165615B2 (en) Surface elemental analysis method and device
US7719681B2 (en) Apparatus and method for measuring vapor flux density
Salmenoja et al. The use of optical emission spectroscopy for process control in triode ion plating with ZrN
JPS6216593A (en) Photoelectron element and optical amplifier
JP3525674B2 (en) Apparatus and method for measuring work function or ionization potential
JPH0712763A (en) Surface analysis method and surface analysis device
JP2002020865A (en) Sputtering system, sputtering backup unit, and method for controlling sputtering
JPS61253444A (en) Excited emission intensity measuring apparatus
Hiroshima et al. Formation of a frozen nitrogen target and characterization for the application of pulsed laser deposition
Braundmeier Jr et al. Observed radiation from surface plasmons in aluminum
JPH06330318A (en) Method for producing gas barrier film and device therefor
JPH03199370A (en) Pulsed-beam vapor deposition device
JPS63193038A (en) Method and apparatus for analyzing solid element
JP3346309B2 (en) Manufacturing method of gas barrier film
JPS636738A (en) Laser excitation mass spectrometer
Ohtsuka et al. Emission Microscope Observation of Metal–Insulator–Metal Emitters
SU1733981A1 (en) Ion excitation-based spectral analysis method
Tebyani et al. Critical role of electronic states above the vacuum level in photoelectron and secondary electron emission in few-monolayer pentacene films

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 16