JPH02151023A - Device for manufacturing semiconductor crystal - Google Patents

Device for manufacturing semiconductor crystal

Info

Publication number
JPH02151023A
JPH02151023A JP30527988A JP30527988A JPH02151023A JP H02151023 A JPH02151023 A JP H02151023A JP 30527988 A JP30527988 A JP 30527988A JP 30527988 A JP30527988 A JP 30527988A JP H02151023 A JPH02151023 A JP H02151023A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
cooling
gaas
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30527988A
Other languages
Japanese (ja)
Inventor
Toshio Tanaka
利夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30527988A priority Critical patent/JPH02151023A/en
Publication of JPH02151023A publication Critical patent/JPH02151023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control an epitaxially growing velocity by cooling a GaAs substrate by a forcibly cooling mechanism with cooling gas. CONSTITUTION:A GaAs substrate 1 is set in a susceptor 2, the susceptor 2 is heated to 650 deg.C, and TMG trymethyl gallium and AsH3 arsine are introduced into a reaction tube while flow rate controlling by a mass flow controller constantly. When a GaAs epitaxial layer of a predetermined thickness is grown, hydrogen gas is introduced from a cooling gas inlet tube 7. Since the epitaxial growth reaction is thermally decomposing reaction, when the temperature of the substrate 1 is lowered, the growing velocity is decelerated together. Since a substrate cooling mechanism is increased in this manner, the degree of freedoms of controlling the film thickness of the epitaxial growth is increased, it can be grown widely from a thin epitaxial layer having several atom layers of order to a thick epitaxial layer stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体結晶の製造装置に関し、特に化合物半
導体の気相成長装置に使用するサセプタの構造に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor crystal manufacturing apparatus, and more particularly to the structure of a susceptor used in a compound semiconductor vapor phase growth apparatus.

〔従来の技術〕[Conventional technology]

化合物半導体、特に■−v族化合物半導体の結晶成長方
法として気相成長法は良く知られており、中でもMOC
VD法は特に最近注目されている結晶成長方法である。
The vapor phase growth method is well known as a crystal growth method for compound semiconductors, especially ■-V group compound semiconductors, and among them, MOC
The VD method is a crystal growth method that has been attracting particular attention recently.

第3図は従来のMOCVD装置の実際に結晶成長してい
る部分の概略的構造を示した側面図である。以下、Ga
As基板上にGaAs及びAlGaAs層を成長メさせ
る装置を例に説明する。図中1はGaAs基板、2はG
aAs基板1を支え、かつ高周波加熱される材質、例え
ばカーボンの様なものを使ったサセプタであり、3は石
英反応管、4は石英反応管3の外部からサセプタ2を加
熱するための高周波コイル、5は成長に使用する原材料
ガス、例えばトリメチルガリウム(TMA)、トリメチ
ルアルミニウム(TMA) 、アルシン(AsH3)等
であり、さらに6はサセプタ2を支えるためのサセプタ
ホルダである。
FIG. 3 is a side view showing a schematic structure of a portion of a conventional MOCVD apparatus where crystal growth is actually performed. Below, Ga
An example of an apparatus for growing GaAs and AlGaAs layers on an As substrate will be explained. In the figure, 1 is a GaAs substrate, 2 is a G
A susceptor is made of a material such as carbon that supports the aAs substrate 1 and is heated by high frequency. 3 is a quartz reaction tube, and 4 is a high frequency coil for heating the susceptor 2 from the outside of the quartz reaction tube 3. , 5 are raw material gases used for growth, such as trimethyl gallium (TMA), trimethyl aluminum (TMA), arsine (AsH3), etc., and 6 is a susceptor holder for supporting the susceptor 2.

次に上記従来のMOCVD装置で実際にGaAs基板上
にGaAs及びAlGaAs層をエピタキシャル成長さ
せる方法について述べる。
Next, a method of actually epitaxially growing GaAs and AlGaAs layers on a GaAs substrate using the above conventional MOCVD apparatus will be described.

GaAs基板1をサセプタ2上に乗せ、石英反応管3の
外部から高周波誘導加熱により温度を上げる。サセプタ
2の温度、すなわちGaAs基板1の温度が、成長温度
である800℃まで上がれば、石英反応管3内にマスフ
ローコントローラ(図示せず)で流量・コントロールさ
れたTMG及びAsH3ガス5を導入する。導入された
TMG及びAsH3は熱により分解し、 Ga (CH3)3 +AsH3+GaAs↓+3CH
4↑ なる反応でGaAs結晶が、G a A s基板1上に
エピタキシャル成長する。続いて、導入ガスを切り替え
TMAを導入する事により、同様に熱分解反応により、
A I G a A s結晶がエピタキシャル成長する
。こうして、順次ガスの切替え及び流量制御を行なうこ
とにより、GaAs−AlGaAs層の多層エピタキシ
ャル成長層を得る事が出来る。
A GaAs substrate 1 is placed on a susceptor 2, and its temperature is raised from the outside of the quartz reaction tube 3 by high-frequency induction heating. When the temperature of the susceptor 2, that is, the temperature of the GaAs substrate 1 rises to 800° C., which is the growth temperature, TMG and AsH3 gas 5 whose flow rate is controlled by a mass flow controller (not shown) are introduced into the quartz reaction tube 3. . The introduced TMG and AsH3 are decomposed by heat, resulting in Ga (CH3)3 +AsH3+GaAs↓+3CH
A GaAs crystal is epitaxially grown on the GaAs substrate 1 by the reaction 4↑. Next, by switching the introduced gas and introducing TMA, a similar thermal decomposition reaction was carried out.
A I Ga As crystal is epitaxially grown. In this manner, by sequentially switching the gas and controlling the flow rate, a multilayer epitaxial growth layer of GaAs-AlGaAs layers can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体結晶の製造装置は以上の様に、結晶成長が
熱分解反応であるため、成長速度を制御する場合、温度
及び流量を変える事のみにより行っていた。しかしなが
ら温度も、流量もその制御機構からして、応答速度が遅
い為、数原子層を多層構造にエピタキシャル成長する、
いわゆる超格子の成長や、逆に特に厚いエピタキシャル
層を得る場合、あるいは濃度制御範囲の広いエピタキシ
ャル層を得る場合には、温度と流量のコントロールだけ
では制御し切れないなどの問題があった。
As described above, in conventional semiconductor crystal manufacturing equipment, since crystal growth is a thermal decomposition reaction, the growth rate is controlled only by changing the temperature and flow rate. However, due to the control mechanism for temperature and flow rate, the response speed is slow, so epitaxial growth of several atomic layers into a multilayer structure is required.
When growing a so-called superlattice, or conversely, when obtaining a particularly thick epitaxial layer, or when obtaining an epitaxial layer with a wide concentration control range, there are problems such as not being able to control the temperature and flow rate alone.

この発明は上記のような問題点を解消するためになされ
たもので、数原子層オーダの薄いエピタキシャル層から
厚いエピタキシャル層までの膜厚制御ができ、しかもエ
ピタキシャル層の成長方向に急峻な組成変化をつけたり
、連続的な変化を再現性良く制御したりすることが出来
る半導体結晶の製造装置を得る事を目的としている。
This invention was made to solve the above-mentioned problems, and it is possible to control the film thickness from a thin epitaxial layer on the order of several atomic layers to a thick epitaxial layer, and moreover, it is possible to control the thickness of the epitaxial layer from a thin epitaxial layer on the order of several atomic layers to a thick epitaxial layer. The purpose of the present invention is to obtain an apparatus for manufacturing semiconductor crystals that can control continuous changes with good reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体結晶の製造装置は、基板を設置す
るサセプタ内部に、外部からガスを導入し強制冷却を行
なうことのできる機構を設けたものである。
A semiconductor crystal manufacturing apparatus according to the present invention is provided with a mechanism that can introduce gas from the outside and perform forced cooling inside a susceptor in which a substrate is placed.

〔作用〕[Effect]

この発明においては、上記強制冷却機構により、GaA
s基板を直接、あるいは間接的に冷却用ガスにより冷却
する事により、AsH3やTMG等の半導体用材料ガス
の流量や、外部からのRF加熱温度を変える事なくエピ
タキシャル成長速度をコントロールすることができる。
In this invention, the forced cooling mechanism allows GaA
By directly or indirectly cooling the s-substrate with a cooling gas, the epitaxial growth rate can be controlled without changing the flow rate of semiconductor material gas such as AsH3 or TMG or the external RF heating temperature.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はGaAs基板、2はサセプタ、6
はサセプタ2に形成した空洞であり、7は上記空洞θ内
の冷却用ガス導入管、8は上記導入ガスの出口である。
In FIG. 1, 1 is a GaAs substrate, 2 is a susceptor, and 6
is a cavity formed in the susceptor 2, 7 is a cooling gas introduction pipe in the cavity θ, and 8 is an outlet for the introduced gas.

次に動作について説明する。Next, the operation will be explained.

本実施例による半導体結晶の製造装置でエピタキシャル
成長を行なうには、まずGaAs基板1をサセプタ2に
設定する。このサセプタ2を反応管(図示せず)の中へ
設定し外部からのRF加熱(図示せず)によりサセプタ
2を650℃に加熱スル。TMG及びAsH3をマスフ
ローコントローラにより一定に流量コントロールしなが
ら反応管内へ導入する。所定の膜厚のGaAsエピタキ
シャル層が成長すれば、冷却用ガス導入管7より水素ガ
スを導入する。GaAs基板1は導入された水素ガスに
より、急速に冷却される。エピタキシャル成長反応は上
述の様にTMGとAsH3の熱分解反応である為、G 
a A s基板1の温度が低下すると、それに伴って成
長速度も低下する。この状態でTMAを導入すればAl
GaAs層が、やはり遅い成長速度で成長する。こうし
て、他の設定条件は変えずに材料ガスのON、OFFの
みで非常に薄い数原子層オーダの多層膜、いわゆる超格
子層を容易に形成できる。続いて、冷却用ガスを切れば
、G a A s基板の温度が上昇し、それに伴って成
長速度も速くなる。
To perform epitaxial growth using the semiconductor crystal manufacturing apparatus according to this embodiment, first, a GaAs substrate 1 is set as a susceptor 2. This susceptor 2 was set in a reaction tube (not shown), and the susceptor 2 was heated to 650° C. by external RF heating (not shown). TMG and AsH3 are introduced into the reaction tube while controlling the flow rate at a constant level using a mass flow controller. When the GaAs epitaxial layer has grown to a predetermined thickness, hydrogen gas is introduced from the cooling gas introduction pipe 7. The GaAs substrate 1 is rapidly cooled by the introduced hydrogen gas. As mentioned above, the epitaxial growth reaction is a thermal decomposition reaction between TMG and AsH3, so G
When the temperature of the a As substrate 1 decreases, the growth rate also decreases accordingly. If TMA is introduced in this state, Al
The GaAs layer also grows at a slow growth rate. In this way, a very thin multilayer film on the order of several atomic layers, a so-called superlattice layer, can be easily formed by simply turning on and off the material gas without changing other setting conditions. Subsequently, when the cooling gas is turned off, the temperature of the GaAs substrate increases, and the growth rate increases accordingly.

このよ゛うな本実施例では、成長層の膜厚制御パラメー
タが、これまではRF加熱と、材料ガス流量の2項目で
あったが、基板冷却機構が増えたため、エピタキシャル
成長の膜厚制御の自由度が増え、数原子層のオーダの薄
いエピタキシャル層から厚いエピタキシャル層まで幅広
く、シかも安定に成長させることができる。
In this example, the film thickness control parameters for the growth layer were previously two items: RF heating and material gas flow rate, but since the substrate cooling mechanism has been increased, there is greater freedom in controlling the film thickness during epitaxial growth. The growth rate increases, and a wide range of layers from thin epitaxial layers on the order of a few atomic layers to thick epitaxial layers can be grown stably.

なお、上記実施例ではGaAs基板を直接冷却用ガスで
冷却する構造について述べたが、第2図の本発明の第2
の実施例に示す様に、冷却容器9を設け、冷却用ガスを
クローズF系とし、間接的に冷却する様にしても良い。
In the above embodiment, a structure was described in which the GaAs substrate was directly cooled with cooling gas, but the second embodiment of the present invention shown in FIG.
As shown in the embodiment, a cooling container 9 may be provided, and the cooling gas may be a closed F system, so that indirect cooling may be performed.

この時、冷却用ガスは水素にかぎらず、何を使用しても
良い。
At this time, the cooling gas is not limited to hydrogen, and any gas may be used.

このように、サセプタ内に冷却容器を設けた場合には、
GaAs基板に冷却用ガスが直接接触することがなく、
冷媒を自由に選ぶ事が出来る。冷却効果をさらに上げる
事が出来、しかも冷却容器により基板の面内温度分布が
少なくなり、均一なエピタキシャル層が得られるという
効果もある。
In this way, when a cooling container is provided inside the susceptor,
Cooling gas does not come into direct contact with the GaAs substrate,
You can freely choose the refrigerant. The cooling effect can be further improved, and the cooling container also has the effect of reducing the in-plane temperature distribution of the substrate, resulting in a uniform epitaxial layer.

また上記実施例ではGaAs−AlGaAs系の竪型M
OCVD装置に使用する場合について述べたが、本発明
はそれのみに限られるものではなく、他の■−V族化合
物やII−VI族化合物半導体とその混晶についても同
様に適用でき、また熱分解反応による気相成長法を使用
する装置であれば何にでも適応出来る事は明らかである
In addition, in the above embodiment, a GaAs-AlGaAs-based vertical M
Although the case of use in an OCVD device has been described, the present invention is not limited to this, and can be similarly applied to other ■-V group compounds, II-VI group compound semiconductors, and mixed crystals thereof. It is clear that the present invention can be applied to any device that uses a vapor phase growth method using a decomposition reaction.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、基板を設置するサセプ
タ内に外部からのガスを導入し強制冷却する機構を設け
たので、成長層の膜厚制御パラメータとしてRF加熱と
材料ガス流量の2つに基板の冷却温度を加えることがで
き、膜厚制御の自由度が増え、数原子層のオーダの薄い
エビ層から厚いエビ層まで幅広く、安定に成長出来る効
果がある。
As described above, according to the present invention, a mechanism for forced cooling by introducing gas from the outside into the susceptor in which the substrate is installed is provided, so that two parameters for controlling the thickness of the growth layer are RF heating and material gas flow rate. The cooling temperature of the substrate can be added to the temperature, which increases the degree of freedom in film thickness control, and has the effect of stably growing a wide range of layers, from thin shrimp layers on the order of a few atomic layers to thick shrimp layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体結晶の製造装置
のサセプタを示す断面図、第2図は本発明の他の実施例
を示す断面図、第3図は従来のサセプタ構造を示す概略
断面図である。 1はGaAs基板、2はサセプタ、3は石英反応管、4
は高周波コイル、5は原材料ガス、6はサセプタホルダ
、6は空洞、7はガス導入管、8はガス出口である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a susceptor of a semiconductor crystal manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing another embodiment of the present invention, and FIG. 3 is a schematic diagram showing a conventional susceptor structure. FIG. 1 is a GaAs substrate, 2 is a susceptor, 3 is a quartz reaction tube, 4
5 is a high frequency coil, 5 is a raw material gas, 6 is a susceptor holder, 6 is a cavity, 7 is a gas introduction pipe, and 8 is a gas outlet. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)サセプタ上に設置した半導体基板を外部から加熱
し、該基板上に半導体材料ガスを導入して、熱分解反応
によりエピタキシャル成長を行なわせる半導体結晶の製
造装置において、 半導体基板を載置するサセプタ部は内部に空洞を有し、 該空洞に外部からガスを導入する機構を有することを特
徴とする半導体結晶の製造装置。
(1) A susceptor on which a semiconductor substrate is placed in a semiconductor crystal manufacturing apparatus that heats a semiconductor substrate placed on the susceptor from the outside, introduces a semiconductor material gas onto the substrate, and performs epitaxial growth through a thermal decomposition reaction. 1. An apparatus for manufacturing a semiconductor crystal, characterized in that the part has a cavity therein, and has a mechanism for introducing gas into the cavity from the outside.
JP30527988A 1988-12-01 1988-12-01 Device for manufacturing semiconductor crystal Pending JPH02151023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30527988A JPH02151023A (en) 1988-12-01 1988-12-01 Device for manufacturing semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30527988A JPH02151023A (en) 1988-12-01 1988-12-01 Device for manufacturing semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH02151023A true JPH02151023A (en) 1990-06-11

Family

ID=17943186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30527988A Pending JPH02151023A (en) 1988-12-01 1988-12-01 Device for manufacturing semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH02151023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368014B2 (en) 2001-08-09 2008-05-06 Micron Technology, Inc. Variable temperature deposition methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368014B2 (en) 2001-08-09 2008-05-06 Micron Technology, Inc. Variable temperature deposition methods

Similar Documents

Publication Publication Date Title
JPS6255688B2 (en)
JPH02151023A (en) Device for manufacturing semiconductor crystal
JP3772621B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPS6134932A (en) Vapor growing process
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPS62182196A (en) Vapor growth apparatus
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS62167293A (en) Vapor phase crystal growing device
JPH0779090B2 (en) Semiconductor crystal manufacturing equipment
JPS6153197A (en) Crystal growth device
JPH0559080B2 (en)
JPS63198322A (en) Semiconductor crystal growing apparatus
JPH02212399A (en) Vapor growth method and device
JPH04116819A (en) Vapor phase growtgh device for compound semiconductor
JPS61114521A (en) Method of crystal growth of semiconductor
JPH0376219A (en) Vapor crystal growth device
JPS6389492A (en) Semiconductor crystal growth device
JPS6373615A (en) Vapor growth device
JPH11214314A (en) Method and apparatus for vapor-phase epitaxial growth
JPH0613330A (en) Vapor phase epitaxy apparatus
JPH02213124A (en) Semiconductor-crystal growth apparatus
JPS63226916A (en) Vapor growth system
JPS63159296A (en) Vapor phase epitaxy
JPS62119919A (en) Device for crystal growth of compound semiconductor