JPH0215052Y2 - - Google Patents

Info

Publication number
JPH0215052Y2
JPH0215052Y2 JP1985062847U JP6284785U JPH0215052Y2 JP H0215052 Y2 JPH0215052 Y2 JP H0215052Y2 JP 1985062847 U JP1985062847 U JP 1985062847U JP 6284785 U JP6284785 U JP 6284785U JP H0215052 Y2 JPH0215052 Y2 JP H0215052Y2
Authority
JP
Japan
Prior art keywords
bearing
bearing surface
fibers
woven fabric
threads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985062847U
Other languages
Japanese (ja)
Other versions
JPS61179415U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985062847U priority Critical patent/JPH0215052Y2/ja
Publication of JPS61179415U publication Critical patent/JPS61179415U/ja
Application granted granted Critical
Publication of JPH0215052Y2 publication Critical patent/JPH0215052Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 この考案は、すべり軸受用摺動部材に関し、と
くにマイナスの軸受すき間で使用されるすべり軸
受における回転トルクの変化率を小さくしたもの
である。 〔従来の技術〕 一般にすべり軸受は、低トルクのほか、耐摩耗
性、低摩擦係数、耐久性などの特性が要求される
場合が多く、通常はプラスの軸受すき間をもつ嵌
合いにして使用されるが、一方ではこれと反対に
軸受すき間をマイナスの嵌合いにして高トルクで
使用される場合がある。このような使用条件の軸
受としては、低速回転用のラジアル軸受のほか、
揺動用の球面ブツシユ軸受があり、これらの軸受
には、従来ふつ素樹脂繊維の糸およびポリエチレ
ンテレフタレート繊維の糸で織成された織布にフ
エノール樹脂を含浸させた複合体を素材とする摺
動部材が使用されている。 〔考案が解決しようとする問題点〕 上記のようなマイナスの軸受すき間で使用され
るすべり軸受は、高トルクを接続する特性が要求
されるが、従来の摺動部材を用いたすべり軸受に
おいては、軸受面の早期摩耗や圧縮塑性変形によ
る軸受のマイナスすき間の減少、あるいはこれら
の原因による軸受面の摩擦係数の減少等によつ
て、初期回転トルクが短時間で低下するため、高
トルクを長期間に亘つて接続することが困難であ
るという問題がある。 この考案は、上記の問題を解決するためになさ
れたものであり、軸受面側の含浸層と反軸受面側
の含浸層の構成材料を異ならせることにより、回
転トルクの変化率を小さくしたすべり軸受用摺動
部材を提供することを目的とする。 〔問題点を解決するための手段〕 この考案のすべり軸受用摺動部材は、織布に異
種材料により複数層の含浸層を含浸させ、軸受面
側の表面を形成する含浸層は耐摩耗性にすぐれた
材料を用い、反軸受面側の含浸層のうち少なくと
も1層は、弾力性にすぐれた材料を用いて形成す
る。 〔作用〕 この考案の摺動部材は、反軸受面側に形成され
た少なくとも1層の弾力性にすぐれこ含浸層によ
つて弾性限界が向上し、高面圧下でもマイナスの
軸受すき間が保持され、軸受面が摩耗しても軸受
すき間の減少が少なくなる。 また、軸受面側の含浸層が摩耗したときは、摩
耗に伴つて反軸受面側の弾力性にすぐれた含浸層
が、軸受面側の表面層で漸次大きな割合を占めて
くることになり、軸受面側の含浸層よりも摩擦係
数の大きい反軸受面側の含浸層が、軸受面の摩擦
係数を増大させる。 〔実施例〕 第1図は、この考案の実施例であり、織布を一
重平織りの組織にした場合について示したもので
ある。 同図の摺動部材10は、円筒状体に形成されて
おり、その中心線を境界として下半分の断面を示
す。紙面の上側の面が軸受面であり、紙面の下側
の面が反軸受面であるとすると、ラジアル軸受で
は、反軸受面が図示しないハウジング(裏金)の
内周面に接着剤を介して接着され、軸受面には図
示しない回転軸が嵌合される。また、球面ブツシ
ユ軸受では、反軸受面が図示しない内輪の外周面
に接着剤を介して接着され、軸受面には図示しな
い外輪が嵌込まれる。 同図において、織布12のたて糸13とよこ糸
14とは、1本ごとに交錯した組織になつてい
る。この織布12は、たて糸13とよこ糸14と
の双方に、潤滑性にすぐれた繊維、たとえば四ふ
つ化エチレン樹脂(TFE)繊維と、耐摩耗性に
すぐれた繊維、たとえばポリエチレンテレフタレ
ート(PET)繊維との異種の糸を撚り合わせた
交撚糸を用いて織布するのが好ましいが、たて糸
13に四ふつ化エチレン樹脂繊維の糸を用い、よ
こ糸14にポリエチレンテレフタレート繊維の糸
を用いて交織してもよい。 上記の織布12の軸受面側には、耐摩耗性にす
ぐれた材料、たとえばフエノール樹脂またはエポ
キシ樹脂を含浸させた含浸層16が形成され、反
軸受面側には、弾力性にすぐれた材料、たとえば
ゴム変性フエノール樹脂を含浸させた含浸層17
が形成されている。この反軸受面側の含浸層17
は、同図に示すように、軸受面側の含浸層16の
中に波状に侵入するように含浸させるのが好まし
い。 上記構成の摺動部材をマイナスの軸受すき間を
もつすべり軸受に使用した場合、軸受面側の耐摩
耗性にすぐれた含浸層によつて摩耗が軽減される
とともに、反軸受面側の弾力性にすぐれた含浸層
によつて弾性限界が向上して原形回復機能が働く
ことになる。また反軸受面側の含浸層は摩擦係数
が大きいから、軸受面側の含浸層が摩耗したとき
は、摩耗量が大きくなるのに伴つて反軸受面側の
含浸層が軸受面側の表面層中に漸次大きな割合を
占めてくる結果、軸受面の摩擦係数を増大させる
ことになる。さらに、この実施例のように、織布
のたて糸とよこ糸とに潤滑性および耐摩耗性にす
ぐれた繊維を用いる構成として場合は、軸受面側
の摩耗が著しく軽減されることになる。 このように、上記の織布と2層の含浸層との機
能が一体となつて働くことにより、所定のマイナ
スの軸受すき間が保持され、軸受面の摩擦係数が
増大することと相まつて、初期の回転トルクが短
時間で大幅に低下することがなく、回転トルクの
変化率を小さくすることができる。 第2図は、この考案の他の実施例であり、織布
の組織を一重綾織りにした場合を示す。 この実施例においては、軸受面側の含浸層16
と反軸受面側の含浸層17との構成材料は、前記
第1図の実施例と同一の材料を用いて形成してい
るが、織布12のたて糸13とよこ糸14とは、
異種の繊維を用いて織成している。 織布10のたて糸13は、弾力性にすぐれた繊
維、たとえばポリウレタン(PUR)繊維の糸で
あつて、よこ糸14は、潤滑性にすぐれた繊維、
たとえば四ふつ化エチレン樹脂(TFE)繊維と、
耐摩耗性にすぐれた繊維、たとえばポリエチレン
テレフタレート(PET)繊維との交撚糸である。
このよこ糸14は交撚糸としないで、耐摩耗性に
すぐれた繊維と潤滑性にすぐれた繊維の交織でも
よい。 第3図および第4図は、上記の織布12を、そ
れぞれ軸受面側及び反軸受面側からみた組織図で
ある。両図における斜線部分がたて糸13を示
し、白地部分がよこ糸14を示す。 上記のような繊維構成の組織にすることによ
り、軸受面側の表面は、潤滑性と耐摩耗性とにす
ぐれたよこ糸14が、弾力性にすぐれたたて糸1
3よりも多く表われるが、反軸受面側の表面で
は、弾力性にすぐれたたて糸13が大部分を占
め、よこ糸14は僅少な部分だけに表われること
になる。 この実施例によると、軸受面側の摩耗の軽減機
能、弾性限界の向上による原形回復機能および軸
受面側の摩耗時における摩擦係数増大機能が、そ
れぞれの含浸層だけでなく、織布の軸受面側のよ
こ糸と反軸受面側のたて糸とによつても営まれる
ことになるから、回転トルクの変化率の抑制効果
がより大きくなる。また、この実施例において
は、軸受面側の含浸層が摩耗した場合は、織布の
たて糸を構成する摩擦係数の大きいポリウレタン
繊維が軸受面に露出するから、軸受面の潤滑性、
耐摩耗性を損なうことなく、回転トルクの変化率
を最小限度に抑制する機能が相乗的に発揮される
ことになる。 なお、この実施例における織布のたて糸は、ポ
リウレタン繊維の糸に代えて、ポリエチレンテレ
フタレート繊維などの耐摩耗性にすぐれた繊維の
糸を使用することもできる。このような繊維構成
の織布にした場合は、織布による弾性限界の向上
機能は失われるが、反軸受面側の含浸層によつて
第2図の実施例とほぼ同様の効果が得られる。 第5図は、この考案のさらに他の実施例であ
り、織布の組織を二重綾織りにした場合を示す。 この実施例においても、軸受面側の含浸層16
と反軸受面側の含浸層17とは、前記第1図また
は第2図の実施例における構成材料と同一の材料
を用いて形成されているが、織布12は、1種の
たて糸13と2種のよこ糸14,15とを用いて
織成されている。 たて糸13は、潤滑性にすぐれた繊維、たとえ
ば四ふつ化エチレン樹脂(TFE)繊維と、耐摩
耗性にすぐれた繊維、たとえばポリエチレンテレ
フタレート(PET)繊維との交撚糸である。 軸受面側のよこ糸14は、たて糸13と同一構
成の四ふつ化エチレン樹脂繊維とポリエチレンテ
レフタレート繊維との交撚糸であるが、反軸受面
側のよこ糸15は、弾力性にすぐれた繊維、たと
えばポリウレタン(PUR)繊維の糸である。 上記のたて糸13と軸受面側のよこ糸14と
は、交撚糸としないで耐摩耗性にすぐれた繊維と
潤滑性にすぐれた繊維の交織でもよい。 第6図及び第7図は、上記の織布12を、それ
ぞれ軸受面側及び反軸受面側からみた組織図であ
る。両図における斜線部分がたて糸13を示し、
第6図の白地部分が軸受面側のよこ糸14、第7
図の白地部分が反軸受面側のよこ糸15をそれぞ
れ示す。 上記のような繊維構成の組織にすることによ
り、軸受面側の表面は、潤滑性と耐摩耗性とにす
ぐれた繊維のたて糸13とよこ糸14とが全表面
に表われるが、反軸受面側の表面には、弾力性に
すぐれた繊維のよこ糸15が潤滑性と耐摩耗性と
にすぐれたたて糸13よりも多く表われることに
なる。 したがつて、この実施例においては、織布の軸
受面側の耐摩耗性による摩耗軽減機能が、第2図
の実施例よりも高く発揮されることになる。 なお、この実施例におけるたて糸の一部、ある
いは軸受面側のよこ糸の一部を、ポリウレタン繊
維などの弾力性にすぐれた繊維によつて構成して
もよい。このような構成にした場合は、軸受面側
の含浸層が摩耗したときに、織布の軸受面側の摩
擦係数の大きいポリウレタン繊維が、軸受面の一
部に露出することになるから、第2図の実施例と
同様に軸受面の潤滑性、耐摩耗性を損なわずに回
転トルクの変化率を最小限度に抑制する効果が得
られる。 なお、この考案は、上記実施例の一重平織り、
一重綾織り、二重綾織りの織布に限らず、二重平
織り一重または二重の朱子織りの織布についても
前記と同様の繊維構成の組織にして適用すること
ができる。 また、前記各実施例では、含浸層を2層形成し
た場合について説明したが、必要に応じ3層以上
の含浸層を形成することもできる。含浸層を3層
以上形成する場合は、軸受面側の表面を形成する
最外層を、耐摩耗性にすぐれた材料を用いて形成
し、反軸受面側の含浸層のうち少なくとも1層
を、弾力性にすぐれた材料を用いて形成すればよ
い。 次に、この考案の摺動部材について回転トルク
を測定した結果を、比較例の測定結果と併せて第
8図に示す。 実線で示したのがこの考案の摺動部材であり、
破線で示したのが比較例の摺動部材である。 測定試料品の織布のたて糸およびよこ糸の構成
繊維は、次表に示すとおりである。
[Industrial Field of Application] This invention relates to a sliding member for a sliding bearing, and particularly reduces the rate of change in rotational torque in a sliding bearing used with a negative bearing clearance. [Conventional technology] In addition to low torque, plain bearings are often required to have characteristics such as wear resistance, low coefficient of friction, and durability, and are usually used in a fitted configuration with a positive bearing clearance. However, on the other hand, there are cases where the bearing clearance is set to a negative fit and used at high torque. Bearings for such usage conditions include radial bearings for low-speed rotation,
There are spherical bush bearings for swinging, and these bearings are conventionally made of a composite material made of a woven fabric woven from fluororesin fiber threads and polyethylene terephthalate fiber threads impregnated with phenolic resin. parts are used. [Problems to be solved by the invention] Sliding bearings used in the above-mentioned negative bearing clearance are required to have high torque connection characteristics, but sliding bearings using conventional sliding members do not. , the initial rotational torque decreases in a short period of time due to early wear of the bearing surface, a decrease in the negative clearance of the bearing due to compressive plastic deformation, or a decrease in the friction coefficient of the bearing surface due to these causes, so it is difficult to maintain high torque for a long time. There is a problem in that it is difficult to connect over a period of time. This idea was made to solve the above problem, and by making the impregnated layer on the bearing surface side and the impregnated layer on the opposite side of the bearing surface different from each other, it is possible to reduce the rate of change in rotational torque. An object of the present invention is to provide a sliding member for a bearing. [Means for solving the problem] In the sliding member for a sliding bearing of this invention, a woven fabric is impregnated with multiple impregnated layers of different materials, and the impregnated layer forming the surface on the bearing side is wear-resistant. At least one of the impregnated layers on the side opposite to the bearing surface is formed using a material with excellent elasticity. [Function] The sliding member of this invention has an improved elastic limit due to at least one highly elastic impregnated layer formed on the opposite side of the bearing surface, and a negative bearing clearance is maintained even under high surface pressure. , even if the bearing surface wears, the bearing clearance will decrease less. Additionally, when the impregnated layer on the bearing surface side wears out, the highly elastic impregnated layer on the opposite side of the bearing surface gradually occupies a larger proportion of the surface layer on the bearing surface side. The impregnated layer on the opposite bearing surface side, which has a larger coefficient of friction than the impregnated layer on the bearing surface side, increases the friction coefficient of the bearing surface. [Example] Fig. 1 shows an example of this invention, in which the woven fabric has a single plain weave structure. The sliding member 10 in the figure is formed into a cylindrical body, and a cross section of the lower half is shown with the center line as the boundary. Assuming that the upper surface of the paper is the bearing surface and the lower surface of the paper is the anti-bearing surface, in a radial bearing, the anti-bearing surface is attached to the inner peripheral surface of the housing (back metal) (not shown) via adhesive. A rotating shaft (not shown) is fitted onto the bearing surface. In addition, in a spherical bush bearing, the opposite bearing surface is bonded to the outer peripheral surface of an inner ring (not shown) via an adhesive, and the outer ring (not shown) is fitted into the bearing surface. In the figure, the warp yarns 13 and the weft yarns 14 of the woven fabric 12 have a structure in which each yarn is interlaced. This woven fabric 12 includes fibers with excellent lubricity, such as tetrafluoroethylene resin (TFE) fibers, and fibers with excellent abrasion resistance, such as polyethylene terephthalate (PET) fibers, in both the warp yarns 13 and the weft yarns 14. It is preferable to weave the fabric using a mixed yarn made by twisting different types of yarns together, but it is preferable to use a mixed yarn made of yarns of different types such as the warp yarn 13 and a polyethylene terephthalate fiber yarn for the weft yarn 14. Good too. An impregnated layer 16 impregnated with a material with excellent wear resistance, such as phenol resin or epoxy resin, is formed on the bearing surface side of the woven fabric 12, and a material with excellent elasticity is formed on the opposite side of the bearing surface. , for example, an impregnated layer 17 impregnated with a rubber-modified phenolic resin.
is formed. This impregnated layer 17 on the opposite bearing surface side
As shown in the figure, it is preferable to impregnate the impregnated layer 16 on the bearing surface side in a wavy manner. When the sliding member with the above structure is used in a sliding bearing with a negative bearing clearance, the wear is reduced by the impregnated layer with excellent wear resistance on the bearing surface side, and the elasticity of the opposite bearing surface is reduced. The excellent impregnated layer improves the elastic limit and restores the original shape. In addition, since the impregnated layer on the side opposite to the bearing surface has a large coefficient of friction, when the impregnated layer on the side of the bearing side wears out, as the amount of wear increases, the impregnated layer on the side opposite to the bearing side becomes the surface layer on the bearing side. As a result, the friction coefficient of the bearing surface increases. Furthermore, as in this embodiment, when fibers with excellent lubricity and wear resistance are used for the warp and weft of the woven fabric, wear on the bearing surface side is significantly reduced. In this way, the functions of the above-mentioned woven fabric and the two impregnated layers work together to maintain a predetermined negative bearing clearance, increase the friction coefficient of the bearing surface, and reduce the initial The rotational torque of the engine does not significantly decrease in a short period of time, and the rate of change in the rotational torque can be reduced. FIG. 2 shows another embodiment of this invention, in which the woven fabric has a single twill weave. In this embodiment, the impregnated layer 16 on the bearing surface side
The impregnated layer 17 on the side opposite to the bearing surface is formed using the same material as in the embodiment shown in FIG.
It is woven using different types of fibers. The warp yarns 13 of the woven fabric 10 are made of fibers with excellent elasticity, such as polyurethane (PUR) fibers, and the weft yarns 14 are made of fibers with excellent lubricity.
For example, tetrafluoroethylene resin (TFE) fiber,
It is a twisted yarn made of fibers with excellent abrasion resistance, such as polyethylene terephthalate (PET) fibers.
The weft yarn 14 may not be a twisted yarn, but may be a mixed weave of fibers with excellent abrasion resistance and fibers with excellent lubricity. FIGS. 3 and 4 are organization charts of the above-mentioned woven fabric 12 viewed from the bearing surface side and the opposite bearing surface side, respectively. In both figures, the shaded areas indicate the warp yarns 13, and the white areas indicate the weft yarns 14. By forming the structure with the above-mentioned fiber structure, on the surface of the bearing surface side, the weft threads 14 with excellent lubricity and abrasion resistance are combined with the warp threads 1 with excellent elasticity.
However, on the surface opposite to the bearing surface, the warp yarns 13 with excellent elasticity occupy the majority, and the weft yarns 14 appear only in a small portion. According to this example, the function of reducing wear on the bearing surface side, the function of restoring the original shape by improving the elastic limit, and the function of increasing the friction coefficient when the bearing surface side wears out are achieved not only by each impregnated layer but also by the bearing surface of the woven fabric. Since it is also carried out by the weft threads on the side and the warp threads on the side opposite to the bearing surface, the effect of suppressing the rate of change in rotational torque becomes greater. In addition, in this embodiment, when the impregnated layer on the bearing surface side wears out, the polyurethane fibers with a large friction coefficient that constitute the warp of the woven fabric are exposed on the bearing surface, so that the lubricity of the bearing surface is improved.
The function of suppressing the rate of change in rotational torque to a minimum is synergistically achieved without impairing wear resistance. The warp yarns of the woven fabric in this embodiment may be made of fibers with excellent abrasion resistance such as polyethylene terephthalate fibers instead of polyurethane fibers. If a woven fabric with such a fiber composition is used, the ability to improve the elastic limit of the woven fabric will be lost, but the impregnated layer on the side opposite to the bearing surface will provide almost the same effect as the embodiment shown in Figure 2. . FIG. 5 shows still another embodiment of this invention, in which the woven fabric has a double twill weave. Also in this embodiment, the impregnated layer 16 on the bearing surface side
The impregnated layer 17 on the side opposite to the bearing surface is formed using the same material as the constituent material in the embodiment shown in FIG. 1 or FIG. It is woven using two types of weft threads 14 and 15. The warp yarns 13 are intertwisted yarns of fibers with excellent lubricity, such as tetrafluoroethylene resin (TFE) fibers, and fibers with excellent wear resistance, such as polyethylene terephthalate (PET) fibers. The weft yarn 14 on the side of the bearing surface is a twisted yarn of tetrafluoroethylene resin fiber and polyethylene terephthalate fiber having the same composition as the warp yarn 13, but the weft yarn 15 on the opposite side of the bearing surface is made of a fiber with excellent elasticity, such as polyurethane. (PUR) is a fiber thread. The warp yarns 13 and the weft yarns 14 on the bearing surface side may not be intertwisted yarns, but may be a mixed weave of fibers with excellent wear resistance and fibers with excellent lubricity. FIGS. 6 and 7 are organization diagrams of the above-mentioned woven fabric 12 viewed from the bearing surface side and the opposite bearing surface side, respectively. The shaded areas in both figures indicate the warp yarns 13,
The white part in Figure 6 is the weft 14 and 7th threads on the bearing surface side.
The white background portions of the figures indicate the weft threads 15 on the side opposite to the bearing surface. By creating a structure with the above-mentioned fiber structure, warp yarns 13 and weft yarns 14 of fibers with excellent lubricity and wear resistance appear on the entire surface of the bearing surface side, but on the opposite side of the bearing surface. The weft yarns 15 of fibers with excellent elasticity appear more on the surface than the warp yarns 13 with excellent lubricity and wear resistance. Therefore, in this embodiment, the wear-reducing function due to the abrasion resistance of the woven fabric on the bearing surface side is exhibited to a higher degree than in the embodiment shown in FIG. In this embodiment, a part of the warp threads or a part of the weft threads on the bearing surface side may be made of highly elastic fibers such as polyurethane fibers. With such a configuration, when the impregnated layer on the bearing surface side wears out, the polyurethane fibers with a large friction coefficient on the bearing surface side of the woven fabric will be exposed on a part of the bearing surface. Similar to the embodiment shown in FIG. 2, the effect of suppressing the rate of change in rotational torque to the minimum level can be obtained without impairing the lubricity and wear resistance of the bearing surface. In addition, this invention is based on the single plain weave of the above embodiment,
The present invention is not limited to single twill weave or double twill weave, but can also be applied to double plain weave single or double satin weave woven fabrics having the same fiber structure as described above. Further, in each of the above embodiments, the case where two impregnated layers are formed has been described, but three or more impregnated layers may be formed as necessary. When forming three or more impregnated layers, the outermost layer forming the surface on the bearing side is formed using a material with excellent wear resistance, and at least one of the impregnated layers on the opposite side to the bearing side is formed using a material with excellent wear resistance. It may be formed using a material with excellent elasticity. Next, the results of measuring the rotational torque of the sliding member of this invention are shown in FIG. 8 together with the measurement results of a comparative example. The solid line shows the sliding member of this invention.
The sliding member of the comparative example is indicated by a broken line. The constituent fibers of the warp and weft of the woven fabric of the measurement sample are shown in the table below.

〔考案の効果〕[Effect of idea]

以上、説明したように、この考案の摺動部材
は、含浸層を異種材料により複数層形成して、軸
受面を耐摩耗性にすぐれた材料による含浸層と
し、反軸受面側には弾力性にすぐれた材料による
含浸層を少なくとも1層形成している。したがつ
て、この考案によれば、反軸受面側の含浸層によ
つて摺動部材の全体的な弾性限界が向上するか
ら、マイナスの軸受すき間で高面圧を受けても所
定の軸受すき間が減少することはなく、また軸受
面に摩耗が生じても、反軸受面側の含浸層の原形
回復機能によつて軸受すき間の減少が少なくな
り、さらに、軸受面が摩耗するのに伴つて、反軸
受面側の含浸層が軸受面側で大きな割合を占めて
摩擦係数を増大させる機能が生ずるから、これら
の各機能が綜合されて高トルクの長期間持続が可
能となる。このため、マイナスの軸受すき間で使
用されるすべり軸受用として好適な回転トルクの
変化率の小さい摺動部材が得られる。
As explained above, the sliding member of this invention has multiple impregnated layers made of different materials, the bearing surface is an impregnated layer made of a material with excellent wear resistance, and the opposite side to the bearing surface has elasticity. At least one impregnated layer made of a material with excellent properties is formed. Therefore, according to this invention, the overall elastic limit of the sliding member is improved by the impregnated layer on the side opposite to the bearing surface, so even if high surface pressure is applied due to the negative bearing clearance, the predetermined bearing clearance can be maintained. Even if the bearing surface wears out, the impregnated layer on the opposite bearing surface restores its original shape, which reduces the reduction in the bearing clearance. Since the impregnated layer on the side opposite to the bearing surface occupies a large proportion on the bearing surface side and has the function of increasing the coefficient of friction, these functions are combined to enable high torque to be maintained for a long period of time. Therefore, a sliding member with a small rate of change in rotational torque, which is suitable for a sliding bearing used in a negative bearing gap, can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の実施例の要部を示す断面
図、第2図は、この考案の他の実施例の要部を示
す断面図、第3図および第4図は、それぞれ第2
図の織布の軸受面側および反軸受面側の組織図、
第5図は、この考案のさらに他の実施例の要部を
示す断面図、第6図および第7図は、それぞれ第
5図の織布の軸受面側および反軸受面側の組織
図、第8図は、回転トルクの変化率の測定結果を
示す図表である。 図中、10は摺動部材、12は織布、16は軸
受面側の含浸層、17は反軸受面側の含浸層であ
る。
FIG. 1 is a sectional view showing a main part of an embodiment of this invention, FIG. 2 is a sectional view showing a main part of another embodiment of this invention, and FIGS.
Organization diagram of the bearing surface side and non-bearing surface side of the woven fabric shown in the figure,
FIG. 5 is a sectional view showing a main part of still another embodiment of this invention, and FIGS. 6 and 7 are organization diagrams of the bearing surface side and non-bearing surface side of the woven fabric shown in FIG. 5, respectively. FIG. 8 is a chart showing the measurement results of the rate of change in rotational torque. In the figure, 10 is a sliding member, 12 is a woven fabric, 16 is an impregnated layer on the side of the bearing surface, and 17 is an impregnated layer on the side opposite to the bearing surface.

Claims (1)

【実用新案登録請求の範囲】 (1) 織布と、該織布に樹脂を含浸させて形成され
た含浸層との複合体からなり、一方の面が軸受
面であつて、他方の反軸受面が他の軸受部材に
接着されるすべり軸受用摺動部材において、前
記織布に、耐摩耗性にすぐれた樹脂と弾力性に
すぐれた樹脂との少なくとも2種類の異種材料
による複数層の含浸層を形成して、軸受面側の
表面層を耐摩耗性にすぐれた含浸層、反軸受面
側の表面層、もしくはそれよりも内側の少なく
とも1層を、弾力性にすぐれた含浸層とし、か
つ前記摺動部材は、その軸受面がこれに対向し
てすべり接触する相手側軸受面との間に、マイ
ナスの軸受すき間を形成して使用されることを
特徴とするすべり軸受用摺動部材。 (2) 織布が、耐摩耗性にすぐれた繊維の糸と、弾
力性にすぐれた繊維の糸との異種の糸から織成
された一重綾織りであつて、軸受面側の表面に
は耐摩耗性にすぐれた繊維の糸が弾力性にすぐ
れた繊維の糸よりも多く表われ、反軸受面側の
表面には弾力性にすぐれた繊維の糸が耐摩耗性
にすぐれた繊維の糸よりも多く表われた組織と
なつている実用新案登録請求の範囲第1項記載
のすべり軸受用摺動部材。 (3) 織布が、耐摩耗性にすぐれた繊維の糸と、弾
力性にすぐれた繊維の糸との異種の糸から織成
された二重織りであつて、軸受面側の表面には
耐摩耗性にすぐれた繊維の糸が弾力性にすぐれ
た繊維の糸よりも多く表われ、反軸受面側の表
面には弾力性にすぐれた繊維の糸が耐摩耗性に
すぐれた繊維の糸よりも多く表われた組織とな
つている実用新案登録請求の範囲第1項記載の
すべり軸受用摺動部材。 (4) 織布が、二重綾織り、もしくは二重朱子織り
に織成されている実用新案登録請求の範囲第3
項記載のすべり軸受用摺動部材。
[Claims for Utility Model Registration] (1) Consisting of a composite of a woven fabric and an impregnated layer formed by impregnating the woven fabric with a resin, one surface is a bearing surface and the other side is a non-bearing surface. In a sliding member for a plain bearing whose surface is bonded to another bearing member, the woven fabric is impregnated with multiple layers of at least two types of different materials: a resin with excellent wear resistance and a resin with excellent elasticity. Forming a layer, the surface layer on the bearing surface side is an impregnated layer with excellent wear resistance, the surface layer on the opposite side of the bearing surface, or at least one layer inside thereof is an impregnated layer with excellent elasticity, The sliding member for a sliding bearing is characterized in that the sliding member is used with a negative bearing gap formed between the bearing surface of the sliding member and a mating bearing surface that faces and slides into contact with the sliding member. . (2) The woven fabric is a single twill weave woven from different types of fiber threads, one with excellent abrasion resistance and the other with excellent elasticity, and the surface on the bearing side is The threads of fibers with excellent wear resistance appear more than the threads of fibers with excellent elasticity, and the threads of fibers with excellent elasticity appear on the surface opposite to the bearing surface. A sliding member for a sliding bearing according to claim 1, which has a texture that is more visible than the above. (3) The woven fabric is a double weave woven from different types of fiber threads, one with excellent abrasion resistance and the other with excellent elasticity, and the surface on the bearing side has The threads of fibers with excellent wear resistance appear more than the threads of fibers with excellent elasticity, and the threads of fibers with excellent elasticity appear on the surface opposite to the bearing surface. A sliding member for a sliding bearing according to claim 1, which has a texture that is more visible than the above. (4) Utility model registration claim No. 3 in which the woven fabric is woven into a double twill weave or a double satin weave
A sliding member for a plain bearing as described in .
JP1985062847U 1985-04-26 1985-04-26 Expired JPH0215052Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985062847U JPH0215052Y2 (en) 1985-04-26 1985-04-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985062847U JPH0215052Y2 (en) 1985-04-26 1985-04-26

Publications (2)

Publication Number Publication Date
JPS61179415U JPS61179415U (en) 1986-11-08
JPH0215052Y2 true JPH0215052Y2 (en) 1990-04-24

Family

ID=30592444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985062847U Expired JPH0215052Y2 (en) 1985-04-26 1985-04-26

Country Status (1)

Country Link
JP (1) JPH0215052Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215630B2 (en) * 2007-10-23 2013-06-19 オイレス工業株式会社 Sliding member
JP6087551B2 (en) * 2012-09-21 2017-03-01 オイレス工業株式会社 Manufacturing method of multilayer sliding member
JP6742673B2 (en) * 2015-07-28 2020-08-19 イーグル工業株式会社 Sliding member and method of manufacturing sliding member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160423A (en) * 1980-05-09 1981-12-10 Yunipura Kk Sliding member and manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160423A (en) * 1980-05-09 1981-12-10 Yunipura Kk Sliding member and manufacturing method

Also Published As

Publication number Publication date
JPS61179415U (en) 1986-11-08

Similar Documents

Publication Publication Date Title
US5480231A (en) Spherical sliding bearing
US4214761A (en) Packing construction
JPS6329128B2 (en)
AU2017206158B2 (en) Self-Lubricating Hinge Assembly made from Composite Material and Operating under High Dynamic Loads
KR102041692B1 (en) Self-lubricating composite friction part
JP2005220486A (en) Fluorofiber union cloth and composite material
EP2955400B1 (en) Bearing liner
WO2017020821A1 (en) Self lubricating fabric, method for production and use thereof
JPH0215052Y2 (en)
JP3569453B2 (en) Double-layer plain bearing
US20030198412A1 (en) Grooved staved bearing assembly
US3000076A (en) Loom picker and bearing
US3741855A (en) Low friction bearing materials
US7316508B2 (en) Propeller shaft bearing
WO2021124686A1 (en) Sliding base-isolation device
JPH0135063Y2 (en)
WO2015115409A1 (en) Curved sliding liner and curved sliding member
JP2005220487A (en) Fluorine fiber fabric and composite material
GB9701778D0 (en) Plain bearing
JPH042695B2 (en)
JPS6350488Y2 (en)
JP7414007B2 (en) sliding fabric
US11187270B2 (en) Liner with improved resistance to wear and a plain bearing including such a liner
KR20050081493A (en) A self-lubricating bearing
CN101166918B (en) Power transmission belt for transmitting high loads