JPH02149692A - Co-ni alloy electrodepositing method for producing co-ni alloy foil - Google Patents

Co-ni alloy electrodepositing method for producing co-ni alloy foil

Info

Publication number
JPH02149692A
JPH02149692A JP30079888A JP30079888A JPH02149692A JP H02149692 A JPH02149692 A JP H02149692A JP 30079888 A JP30079888 A JP 30079888A JP 30079888 A JP30079888 A JP 30079888A JP H02149692 A JPH02149692 A JP H02149692A
Authority
JP
Japan
Prior art keywords
alloy
electrolyte
cathode
foil
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30079888A
Other languages
Japanese (ja)
Inventor
Wakahiro Harada
和加大 原田
Hideji Ohashi
大橋 秀次
Tsuguyasu Yoshii
吉井 紹泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30079888A priority Critical patent/JPH02149692A/en
Publication of JPH02149692A publication Critical patent/JPH02149692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the Co-Ni alloy foil having an excellent magnetic characteristic at a low cost by using an electrolyte contg. the specified amts. of the sulfamates of Ni and Co, a cathode having a passive film, and a soluble anode, and carrying out electrolysis under specified conditions. CONSTITUTION:The electrolyte contains Ni sulfamate and Co sulfamate respectively as Ni and Co sources. The electrolyte contains 1-60g/l of Ni ion and 1-60g/l of Co ion, and the concns. are changed in accordance with a desired Co-Ni electrodeposited alloy. Boric acid is further added to the electrolyte as a buffer to hold the pH at 2.0-4.0. Besides, MgCl2 is added to keep the current efficiency at about 100%. The electrolyte is used, and electrolysis is carried out with the cathode having a passive film and the soluble anode for keeping the ion concn. constant. In this case, the cathode current density is controlled to 5-10A/dm<2> and the electrolyte temp. to 40-60 deg.C, and a Co-Ni alloy is electrodeposited on the cathode. By this method, the Co-Ni alloy foil having excellent magnetic characteristic and glossiness is efficiently obtained at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、デジタルコンピューターの永久磁気皮膜等磁
性材料に用いられるCo−Ni合金箔を電着によって製
造するためのCo−Ni合金電解析出方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to Co-Ni alloy electrolytic deposition for producing Co-Ni alloy foil used in magnetic materials such as permanent magnetic coatings of digital computers by electrodeposition. Regarding the method.

(従来技術とその問題点) Co−Ni合金はそれが有する物理的特性のため磁性材
料として、デジタルコンピューターの永久磁気皮膜等に
用いられている。最近では、従来用いてきた材料よりさ
らに薄いCo−Ni合金箔が望まれ、今後これらの合金
箔の需要はさらに拡大するものと考えられる。従来Co
−Ni合金箔の製造方法には(1)目的の化学組成を有
する合金を圧延により板厚を減少させ目的とする箔を得
る方法、 (2)Co−Ni合金を電解法により陰極面
に析出させた後これを剥離する方法とがあった。
(Prior Art and its Problems) Due to its physical properties, Co--Ni alloy is used as a magnetic material in permanent magnetic coatings of digital computers and the like. Recently, there has been a demand for Co--Ni alloy foils that are even thinner than conventionally used materials, and it is thought that the demand for these alloy foils will further expand in the future. Conventional Co
-The manufacturing method of Ni alloy foil includes (1) a method of rolling an alloy having the desired chemical composition to reduce the plate thickness to obtain the desired foil, and (2) a method of depositing a Co-Ni alloy on the cathode surface by electrolytic method. There is a method of peeling it off after letting it dry.

圧延によりCo−Ni合金箔を製造する場合、圧延によ
り材料は加工硬化し、目的とする板厚を得るためには焼
鈍により材料を軟化しなければならない。そのため箔の
製造は極めて困難となり、コスト高の原因となる。また
、圧延法による合金箔は。
When manufacturing a Co-Ni alloy foil by rolling, the material is work-hardened by rolling, and must be softened by annealing in order to obtain the desired thickness. This makes manufacturing the foil extremely difficult and causes high costs. In addition, alloy foil is produced using the rolling method.

金か組織が圧延方向に成長するため磁気特性に劣る。Magnetic properties are poor because the gold structure grows in the rolling direction.

一方、電解法によりGo−Ni合金箔を製造する場合、
co2+、Nj2+を含む電解液を用い目的とする合金
組成を有する電着層を得なけれ″ばならない、従来より
磁性めっき、装飾めっきとして普通鋼等にCo−Ni合
金をめっきする方法はあった。しかし。
On the other hand, when manufacturing Go-Ni alloy foil by electrolytic method,
Conventionally, there has been a method of plating a Co--Ni alloy on ordinary steel, etc. as magnetic plating or decorative plating, which requires the use of an electrolytic solution containing co2+ and Nj2+ to obtain an electrodeposited layer having a desired alloy composition. but.

これらの電解液では電解条件によって析出組成および材
料の特性が異なり、電着層は内部応力が高く合金箔を形
成しにくい、従って、磁気特性が最も優れていると言わ
れている25%Ni−Co合金の電解製造方法も確立さ
れていない。
In these electrolytes, the deposited composition and material properties differ depending on the electrolytic conditions, and the electrodeposited layer has high internal stress and is difficult to form an alloy foil. Therefore, 25% Ni-, which is said to have the best magnetic properties, An electrolytic manufacturing method for Co alloys has also not been established.

本発明はCo−Ni合金箔を上記の問題点を解決して製
造できるCo−Ni合金電解析出方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for electrolytic deposition of a Co-Ni alloy that can solve the above-mentioned problems and produce a Co-Ni alloy foil.

(問題解決に関する知見) 発明者は、金属缶の特性を考えた場合、圧延による方法
は、圧延による集合組織により磁気特性が劣るが、電解
析出による方法は、結晶粒の微細化により磁気特性が優
れ、また電解箔の方が圧延箔に比較し、より薄い材料を
低コス1へで製造可能であることから、  Co−Ni
合金箔を製造するためのCo−Ni合金電解析出方法を
検討した。
(Knowledge related to problem solving) When considering the characteristics of metal cans, the inventor believes that the method using rolling has inferior magnetic properties due to the texture caused by rolling, but the method using electrolytic deposition has improved magnetic properties due to the refinement of crystal grains. Co-Ni
A Co-Ni alloy electrolytic deposition method for producing alloy foil was investigated.

その結果、電解析出しためっき層の内部応力を減少する
方法として電解液に応力除去効果をもたせるためにスル
ファミン酸塩を用いればよく、Co−Ni析出合金組成
を安定させるためCO板とNi板の可溶性陽極が適して
いること、電解効率を100%附近に維持するために塩
化マグネシウムを添加すればよいことを知見した。さら
に電解析出するCo −Ni合金の組成を自由に制御す
るための電解液の組成、pH,Dk(陰極電流密度)、
電解液温度等に関しても検討し、この目的を達成するた
めの電解液の組成、電解条件を見出した。
As a result, in order to reduce the internal stress of the electrolytically deposited plating layer, it is sufficient to use sulfamate to give the electrolytic solution a stress relieving effect, and to stabilize the Co-Ni deposited alloy composition, CO plates and Ni plates can be used. It was found that a soluble anode of 100% is suitable, and that magnesium chloride may be added to maintain the electrolytic efficiency near 100%. Furthermore, the composition of the electrolytic solution, pH, Dk (cathode current density), in order to freely control the composition of the Co-Ni alloy to be electrolytically deposited,
We also studied the temperature of the electrolyte and found the composition of the electrolyte and electrolysis conditions to achieve this objective.

(発明の構成) 本発明は、不動態皮膜を有する陰極上にCo −Ni合
金を電着し、得られた合金箔を陰極面より剥離すること
によりCo−Ni合金箔を製造する方法において: 電解液中のNi源としてNiのスルファミン酸塩、Co
源としてCOのスルファミン酸塩を用い;Niイオン濃
度は1〜60g/L Coイオン濃度は1〜60g/Q
とし;目的とするCo−Ni電解析出合金の組成により
その濃度を変化させた電解液を用い;緩衝剤としてほう
酸を添加して電解液のpHを2.0〜4.0を維持し;
また電流効率を100%付近に維持するために塩化マグ
ネシウムを添加し;可溶性陽極を用いて。
(Structure of the Invention) The present invention provides a method for producing a Co-Ni alloy foil by electrodepositing a Co-Ni alloy on a cathode having a passive film and peeling the obtained alloy foil from the cathode surface. Ni sulfamate, Co as a Ni source in the electrolyte
Using sulfamate of CO as a source; Ni ion concentration is 1 to 60 g/L, Co ion concentration is 1 to 60 g/Q
using an electrolytic solution whose concentration was varied depending on the composition of the target Co-Ni electrolytically deposited alloy; adding boric acid as a buffer to maintain the pH of the electrolytic solution at 2.0 to 4.0;
Also added magnesium chloride to maintain current efficiency near 100%; using a soluble anode.

陰極電流密度5〜IOA/da”、電解液温度40〜6
0℃でCo −Ni合金を、陰極上に電解析出する方法
を提供する。
Cathode current density 5~IOA/da'', electrolyte temperature 40~6
A method is provided for electrolytically depositing a Co--Ni alloy onto a cathode at 0<0>C.

(発明の具体的開示) 以下図面を参照して本発明の詳細な説明する。(Specific disclosure of invention) The present invention will be described in detail below with reference to the drawings.

Co−Ni合金電解液のNi源としてNiのスルファミ
ン酸塩を用い、Co源としてCOのスルファミン酸塩を
使用する。スルファミン酸塩を用いるのはNiの電着応
力を緩和させるためである。 Co源としてもスルファ
ミン酸塩を用いている。Ni源およびCo源として塩化
物、硫酸塩およびその他の塩を使用した場合、電解析出
したfI!着層の内部応力は高く、脆い電着層しか得ら
れず電解箔とはなりにくい。
Ni sulfamate is used as the Ni source of the Co--Ni alloy electrolyte, and CO sulfamate is used as the Co source. The purpose of using sulfamate is to relieve the stress of Ni electrodeposition. Sulfamate is also used as a Co source. When using chlorides, sulfates and other salts as Ni and Co sources, the fI of electrolytic deposition! The internal stress of the deposited layer is high, and only a brittle electrodeposited layer is obtained, making it difficult to use as an electrolytic foil.

スルファミン酸塩を使用することにより比較的内部応力
の低いCo−Ni合金電着層を得ることができる。その
Niイオン濃度は1〜60gIQ、Coイオン濃度は1
〜60gIQとし、目的とする合金の組成によりその濃
度を変化させる。金属イオン濃度に対する析出金属の組
成を第1図に示す。この図に示されるように、Ni源お
よびCo源としてスルファミン酸塩を使用したCo−N
i合金電解液からは全組成範囲でのCo−Ni合金を析
出させることが可能である。したがって、必要な組成の
合金を得るためにはこの図を参照し電解液の組成を決定
すれば良い。
By using sulfamate, a Co--Ni alloy electrodeposition layer with relatively low internal stress can be obtained. The Ni ion concentration is 1 to 60 gIQ, and the Co ion concentration is 1
~60gIQ, and the concentration is varied depending on the composition of the target alloy. FIG. 1 shows the composition of the precipitated metal with respect to the metal ion concentration. As shown in this figure, Co-N using sulfamate as Ni source and Co source
It is possible to deposit Co--Ni alloys in the entire composition range from the i-alloy electrolyte. Therefore, in order to obtain an alloy with the required composition, the composition of the electrolytic solution can be determined with reference to this figure.

また本発明における電解液には緩衝剤としてほう酸が添
加され、pHを2.0〜4.0に維持している。
Further, boric acid is added as a buffer to the electrolytic solution in the present invention to maintain the pH at 2.0 to 4.0.

電解液のpHが2.0より低い場合電流効率の低下を招
き陰極(ステンレス鋼等)と電着金属との密着性が増し
、電解箔として剥離し難くなる。一方、電解液のpHが
4.0より高い場合は水酸化物の沈澱を生じやすくなる
。この理由により電解液のpHを2.0〜4.0に維持
する必要がある。また本発明においては電流効率を10
0%付近に維持するために塩化マグネシウムが添加され
る。
If the pH of the electrolytic solution is lower than 2.0, the current efficiency will decrease and the adhesion between the cathode (stainless steel or the like) and the electrodeposited metal will increase, making it difficult to peel off as an electrolytic foil. On the other hand, when the pH of the electrolytic solution is higher than 4.0, hydroxide precipitation tends to occur. For this reason, it is necessary to maintain the pH of the electrolytic solution between 2.0 and 4.0. In addition, in the present invention, the current efficiency is 10
Magnesium chloride is added to maintain it near 0%.

陰極電流密度は 5〜IOA/dm2とする。陰極電流
密度が5 A/dm2よりも低い場合電解析出した合金
の組成が変動し易い。陰極電流密度が10^/d+u”
よりも高い場合電解析出した合金は脆くなり、電流効率
も低下する。従って、陰極電流密度が5〜10A/dm
” の場合のみ電解箔の製造に適した電着層を得ること
ができる。
The cathode current density is 5 to IOA/dm2. When the cathode current density is lower than 5 A/dm2, the composition of the electrolytically deposited alloy tends to vary. Cathode current density is 10^/d+u”
If the value is higher than , the electrolytically deposited alloy becomes brittle and the current efficiency decreases. Therefore, the cathode current density is 5 to 10 A/dm.
” Only in this case can an electrodeposited layer suitable for manufacturing electrolytic foils be obtained.

電解液温度は40〜60℃に保つ必要がある。ffi解
液温液温度0℃より低い場合電解液のな導性が悪くなり
、電解電圧は上昇する。また、電着層の内部応力も大き
くなるために電解箔を製造するのには適していない、?
!!解液温液温度0℃より高い場合は電解液の蒸散が速
くなり、金属イオンの酸化速度も速くなる。
The electrolyte temperature must be maintained at 40 to 60°C. If the ffi solution temperature is lower than 0° C., the conductivity of the electrolyte will deteriorate and the electrolytic voltage will increase. Also, the internal stress of the electrodeposited layer increases, making it unsuitable for manufacturing electrolytic foil.
! ! When the solution temperature is higher than 0° C., the evaporation of the electrolyte becomes faster and the oxidation rate of metal ions also becomes faster.

本発明においてはCo−Ni合金の析出組成の経時変化
をなくし、組成を安定させるために陽極にC。
In the present invention, carbon is added to the anode in order to eliminate changes in the precipitated composition of the Co-Ni alloy over time and to stabilize the composition.

板とNi板の可溶性陽極を用いる。pt板のような不溶
性陽極を用いて電解を行なった場合は電解液の変化にと
もない定期的に金属イオンを補給しなければならない。
A soluble anode made of a plate and a Ni plate is used. When electrolysis is performed using an insoluble anode such as a PT plate, metal ions must be periodically replenished as the electrolyte changes.

また1作業上でもガスが発生することや電解液が酸化し
やすいという問題が生じる。
Further, problems arise in that gas is generated even during one operation and that the electrolyte is easily oxidized.

従って、Co−Ni合金電解箔の製造には可溶性p!h
極が適している。
Therefore, the production of Co-Ni alloy electrolytic foil requires soluble p! h
Poles are suitable.

以上説明してきたように本発明によれば、coとNiと
の組成を自由に調整でき、任意の組成を有するCo−N
i合金電解箔を製造できる。また1本発明によるCo−
Ni合金箔は表面の光沢に優れており、液側面、母材側
面とも光沢面であるCo−Ni合金電解箔の製造が可能
である。
As explained above, according to the present invention, the composition of co and Ni can be adjusted freely, and Co-N having an arbitrary composition can be
i-alloy electrolytic foil can be manufactured. In addition, Co-
Ni alloy foil has excellent surface gloss, and it is possible to produce a Co--Ni alloy electrolytic foil that has glossy surfaces on both the liquid side and the base material side.

実施例1 母材に市販の5US430光輝焼鈍仕上げステンレス鋼
を使用して電解析出方法によるCo−Ni合金電解箔の
製造実験を行なった0本発明法と比較法として一般的な
Co−Ni合金電解液を用いて実験を行なった。fl!
解条件としてはP)l = 2.0〜4.0、浴温40
〜60℃に保ち、陰極電流密度(Dk)±5〜IOA/
dI11”で実験を行なった0表1に各電解浴における
箔試作結果を示す。その結果5本発明方法でしか目的と
する合金組成をもつ箔は得られなかった。
Example 1 An experiment was conducted to produce a Co-Ni alloy electrolytic foil by an electrolytic deposition method using a commercially available 5US430 bright annealed stainless steel as the base material.The method of the present invention and a common Co-Ni alloy as a comparative method were conducted. An experiment was conducted using an electrolyte. Fl!
The solution conditions are P)l = 2.0 to 4.0, bath temperature 40
Maintain at ~60°C, cathode current density (Dk) ±5 ~ IOA/
Table 1 shows the results of trial production of foils in each electrolytic bath.As a result, a foil having the desired alloy composition could only be obtained by the method of the present invention.

表1 実施例2 実施例1と同じ実験条件で浴中の金属イオン濃度を変え
てCo−Ni合金電解箔の製造実験を行なった。第1図
に本発明方法における浴中の金属イオン濃度に対する析
出組成を示す、この実験結果より、本発明方法では表2
に示す金属イオン濃度の浴組成で目的の合金組成をもつ
Co−Ni合金電解箔が得られた。
Table 1 Example 2 A Co--Ni alloy electrolytic foil production experiment was conducted under the same experimental conditions as in Example 1 by changing the metal ion concentration in the bath. Figure 1 shows the precipitation composition with respect to the metal ion concentration in the bath in the method of the present invention.From this experimental result, Table 2 shows that the method of the present invention
A Co--Ni alloy electrolytic foil having the desired alloy composition was obtained using a bath composition with a metal ion concentration shown in .

実施例3 実施例1と同じ実験条件で電解電流密度を変えてCo−
Ni合金friM箔の製造実験を行なった。第2図に本
発明方法における陰極電流密度に対する析出組成および
電流効率を示す。合金電解箔の製造のためには100%
近い高電流効率をもち、かつ析出組成のコントロール可
能な陰極電流密度でなければいけない、この実験結果よ
り、それらの条件を満たす陰極電流密度はIOA/di
以下であることがわかる。その範囲において電流密度が
低いと生産性がおどるためにCo−Ni合金電解箔製造
のためにはDk = 5〜IOA/d rn’が適して
いる。
Example 3 Under the same experimental conditions as Example 1, Co-
A manufacturing experiment of Ni alloy friM foil was conducted. FIG. 2 shows the deposition composition and current efficiency with respect to the cathode current density in the method of the present invention. 100% for manufacturing alloy electrolytic foil
From this experimental result, the cathode current density must have a high current efficiency close to that of IOA/di and be able to control the deposition composition.
It turns out that the following is true. If the current density is low in that range, productivity decreases, so Dk = 5 to IOA/drn' is suitable for manufacturing Co-Ni alloy electrolytic foil.

実施例4 実施例1と同じ実験条件で浴温を変えてCo−Ni合金
電解箔の製造実験を行なった。表3に本発明方法におけ
る浴温の影響を示す、その結果浴温は析出組成にはほと
んど影響はないが、箔の表面状態に影響を及ぼし光沢、
レベリング性の優れた箔を得るためには40〜60℃が
適していた。
Example 4 A Co--Ni alloy electrolytic foil manufacturing experiment was conducted under the same experimental conditions as Example 1 but with different bath temperatures. Table 3 shows the influence of bath temperature in the method of the present invention.As a result, bath temperature has almost no effect on the deposited composition, but it does affect the surface condition of the foil, resulting in gloss,
In order to obtain a foil with excellent leveling properties, a temperature of 40 to 60°C was suitable.

実施例5 実施例1と同じ実験条件で陽極を変えてCo−Ni合金
電解箔の製造実験を行なった。本発明法では可溶性陽極
であるCo板とNi板を用いているが、比較法として不
溶性陽極のpt板を用いて実験を行なった1表4に本発
明方法における陽極の影響を示した。その結果、析出組
成や浴組成を安定させるためには可溶性陽極の方が適し
ていた。
Example 5 A manufacturing experiment of a Co--Ni alloy electrolytic foil was conducted under the same experimental conditions as in Example 1 but with different anodes. In the method of the present invention, a Co plate and a Ni plate, which are soluble anodes, are used, but as a comparative method, an experiment was conducted using a PT plate, which is an insoluble anode.Table 4 shows the influence of the anode in the method of the present invention. As a result, soluble anodes were more suitable for stabilizing the precipitation composition and bath composition.

表4 トでIR造可能である0本発明法による電解析出方法は
表面状態が非常に美しいために、装飾材用のめっき法と
しても適用できる。
Since the electrolytic deposition method according to the present invention has a very beautiful surface condition, it can also be applied as a plating method for decorative materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における電解液中の金屑イオン濃度
に対する析出組成および電流効率を示す図、第2図は本
発明方法における陰極電流密度に対する析出組成および
電流効率を示す図である。 (発明の効果)
FIG. 1 is a diagram showing the deposition composition and current efficiency with respect to the gold scrap ion concentration in the electrolytic solution in the method of the present invention, and FIG. 2 is a diagram showing the deposition composition and current efficiency with respect to the cathode current density in the method of the present invention. (Effect of the invention)

Claims (1)

【特許請求の範囲】[Claims] 不動態皮膜を有する陰極上にCo−Ni合金を電着し、
得られた合金箔を陰極面より剥離することによりCo−
Ni合金箔を製造する方法において;電解液中のNi源
としてNiのスルファミン酸塩、Co源としてCoのス
ルファミン酸塩を用い;Niイオン濃度は1〜60g/
l、Coイオン濃度は1〜60g/lとし、目的とする
Co−Ni電解析出合金の組成によりその濃度を変化さ
せた電解液を用い;緩衝剤としてほう酸を添加して電解
液のpHを2.0〜4.0に維持し;また電流効率を1
00%付近に維持するために塩化マグネシウムを添加し
;可溶性陽極を用い、陰極電流密度5〜10A/dm^
2、電解液温度40〜60℃で電解析出を行う;ことか
らなる方法。
Electrodepositing a Co-Ni alloy on a cathode with a passive film,
By peeling the obtained alloy foil from the cathode surface, Co-
In the method for producing Ni alloy foil; using Ni sulfamate as the Ni source and Co sulfamate as the Co source in the electrolytic solution; Ni ion concentration is 1 to 60 g/
l, Co ion concentration is 1 to 60 g/l, and an electrolytic solution whose concentration is varied depending on the composition of the target Co-Ni electrolytically deposited alloy is used; boric acid is added as a buffer to adjust the pH of the electrolytic solution. Maintain the current efficiency between 2.0 and 4.0;
Add magnesium chloride to maintain near 00%; use soluble anode, cathode current density 5-10 A/dm^
2. A method consisting of performing electrolytic deposition at an electrolyte temperature of 40 to 60°C.
JP30079888A 1988-11-30 1988-11-30 Co-ni alloy electrodepositing method for producing co-ni alloy foil Pending JPH02149692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30079888A JPH02149692A (en) 1988-11-30 1988-11-30 Co-ni alloy electrodepositing method for producing co-ni alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30079888A JPH02149692A (en) 1988-11-30 1988-11-30 Co-ni alloy electrodepositing method for producing co-ni alloy foil

Publications (1)

Publication Number Publication Date
JPH02149692A true JPH02149692A (en) 1990-06-08

Family

ID=17889228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30079888A Pending JPH02149692A (en) 1988-11-30 1988-11-30 Co-ni alloy electrodepositing method for producing co-ni alloy foil

Country Status (1)

Country Link
JP (1) JPH02149692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314608A (en) * 1990-10-09 1994-05-24 Diamond Technologies Company Nickel-cobalt-boron alloy, implement, plating solution and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314608A (en) * 1990-10-09 1994-05-24 Diamond Technologies Company Nickel-cobalt-boron alloy, implement, plating solution and method for making same

Similar Documents

Publication Publication Date Title
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
JPS63270491A (en) Copper plating method of gravure roll and electroplating bath composition
JPH0343355B2 (en)
Fenineche et al. Effect of electrodeposition parameters on the microstructure and mechanical properties of Co-Ni alloys
CN100449038C (en) Process for preparing invor alloy foil
US3326782A (en) Bath and method for electroforming and electrodepositing nickel
JPH0136559B2 (en)
JPH0424439B2 (en)
JPH02149692A (en) Co-ni alloy electrodepositing method for producing co-ni alloy foil
US2464168A (en) Electrolytic iron for powder metallurgy purposes
US3111464A (en) Electrodeposition of chromium and chromium alloys
JPH02104688A (en) Electrolytically depositing method for fe-ni alloy to produce fe-ni alloy foil
US3772167A (en) Electrodeposition of metals
Chisholm et al. The electrodeposition of ternary iron-chromium-nickel alloys—A critical review
US2717870A (en) Electrodeposition of manganese
JPH03260100A (en) Production of base for printing plate
US3428441A (en) Article coated with a composite particulate,microporous chromium coating and method of producing said article
US2494205A (en) Nickel plating
US2977295A (en) Electroplating process
JP3723898B2 (en) Low hydrogen overvoltage cathode
US5965002A (en) Elecrodeposition of manganese and other hard to deposit metals
JPS6367560B2 (en)
US5888373A (en) Method for repairing nickel-zinc-copper or nickel-zinc alloy electroplating solutions from acidic waste solutions containing nickel and zinc ions and electroplating thereof
Rudnik Electrodeposition of silver from nitrate-tartrate solutions
JPH04157196A (en) Titanium alloy plating method