JPH02149624A - Manufacture of high-tensile cold rolled steel sheet excellent in formability - Google Patents

Manufacture of high-tensile cold rolled steel sheet excellent in formability

Info

Publication number
JPH02149624A
JPH02149624A JP30181688A JP30181688A JPH02149624A JP H02149624 A JPH02149624 A JP H02149624A JP 30181688 A JP30181688 A JP 30181688A JP 30181688 A JP30181688 A JP 30181688A JP H02149624 A JPH02149624 A JP H02149624A
Authority
JP
Japan
Prior art keywords
rolled
steel sheet
cold
formability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30181688A
Other languages
Japanese (ja)
Inventor
Atsuki Okamoto
篤樹 岡本
Naomitsu Mizui
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30181688A priority Critical patent/JPH02149624A/en
Publication of JPH02149624A publication Critical patent/JPH02149624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture a high-tensile steel sheet excellent in formability at a low cost by subjecting a slab of Ti-added dead-soft carbon steel to hot rolling and cold rolling and then applying recrystallization annealing to the resulting sheet under specific conditions. CONSTITUTION:A slab of a dead-soft carbon steel which has a composition containing, by weight, 0.0005-0.012% C, 0.0005-0.008% N, <0.08% sol.Al, <0.010% S, 0.005-0.040% Ti, 0.003-0.03% Nb, >0.90-3.0% Mn, and 0.05-0.15% P or further containing 0.0001-0.0005% B and/or 0.03-0.25% Mo or in addition to the above 0.02-0.6% Si, is hot-rolled, e.g. at 500-950 deg.C, successively worked to the final sheet thickness by means of cold rolling, and then subjected to recrystallization annealing while regulating average heating rate up to 500-700 deg.C to 10-100 deg.C/sec. By this method, the high-tensile cold rolled steel sheet practically free from the occurrence of secondary working brittleness and excellent in formability can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度でかつプレス成形性にすぐれた高強度
冷延鋼板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet that has high strength and excellent press formability.

本発明により製造される冷延鋼板は適宜表面処理やプレ
ス加工をした後、例えば自動車、家電製品、fjA構造
物などに使用されるのであり、特にそれらに要求される
造形性と強度を同時に付与することが可能である。その
結果、それらの製品の薄肉化すなわち軽量化が達成でき
る。
After the cold-rolled steel sheets produced by the present invention are subjected to appropriate surface treatment and press working, they are used, for example, in automobiles, home appliances, FJA structures, etc. In particular, the cold-rolled steel sheets manufactured by the present invention can be used to simultaneously provide formability and strength required for these products. It is possible to do so. As a result, these products can be made thinner or lighter.

(従来の技術) 製鋼段階で十分に脱炭処理をして極低炭素としてからT
iを添加した極低炭素Ti添加鋼をベースにSib M
ns C’やPを添加して強度を上げた高張力冷延鋼板
については多くの提案がすでにある。
(Conventional technology) After thorough decarburization treatment at the steel manufacturing stage to achieve extremely low carbon
Sib M based on ultra-low carbon Ti-added steel with i added
There have already been many proposals regarding high-strength cold-rolled steel sheets with increased strength by adding ns C' and P.

たとえば、特公昭57−57945号においては上記極
低炭素Ti添加鋼に多量のPを添加した冷延鋼板が開示
されている。この場合においてはMnは0.90%未満
しか含まれていないこともあり、得られるr値は1.6
〜1.9が限界になっている。また、N。
For example, Japanese Patent Publication No. 57-57945 discloses a cold-rolled steel sheet in which a large amount of P is added to the ultra-low carbon Ti-added steel. In this case, the Mn content may be less than 0.90%, and the resulting r value is 1.6.
~1.9 is the limit. Also, N.

S含有量について、さらには2次加工脆性について何ら
言及していない。
There is no mention of S content or secondary processing embrittlement.

また特公昭58−29129号においては上記極低炭素
Ti添加鋼に多量のMnを単独添加した例が開示されて
いるが、この場合も強度の割りには高いr値が得られ難
く、その結果、連続焼鈍後の冷却を水焼き入れにする必
要がBEしており、実用性がとぼしいものとなっている
In addition, Japanese Patent Publication No. 58-29129 discloses an example in which a large amount of Mn is added alone to the ultra-low carbon Ti-added steel, but in this case too, it is difficult to obtain a high r value considering the strength, and as a result, However, it is necessary to use water quenching for cooling after continuous annealing, making it impractical.

その他、上記極低炭素Ti添加鋼にSiを添加するもの
や、C「を添加するものなどが開示されているが実用的
には鋼板表面の酸化が問題となりなかなか実用化されて
いないのが実情である。
Other methods have been disclosed, such as those in which Si is added to the ultra-low carbon Ti-added steel and those in which C is added, but the reality is that oxidation on the surface of the steel plate becomes a problem and has not been put into practical use. It is.

一方、このような極低炭素Ti添加鋼に合金元素を添加
していくと2次加工脆性が生じやすくなることは良く知
られており、そのために一般にはBを複合添加し2次加
工脆性を防止する手段がとられている。しかし、多量の
Bの添加はスラブの割れの原因になったり、またそのよ
うな多量のBの添加を確実に行うには困難があり、操業
上の不安定性をもたらすことがあるなど、2次加工脆性
の防止の決定的手段とはなっていない。
On the other hand, it is well known that adding alloying elements to ultra-low carbon Ti-added steel tends to cause secondary work embrittlement, and for this reason, B is generally added in combination to reduce secondary work embrittlement. Measures are being taken to prevent this. However, adding a large amount of B can cause cracks in the slab, and it is difficult to reliably add such a large amount of B, which may lead to operational instability. It is not a definitive means of preventing processing embrittlement.

(発明が解決しようとする問題点) 以上のことから、本発明者らにおいてはもちろ、l−’
+ 、E uニh (t’ テも、引張強サカ38 k
gf/+u+2以上、降伏応力は(引張強さ−12kg
f/ms”)以下、r値1.8以上でかつ2次加工脆性
の生じにくい冷延鋼4反およびそれを通常の連VE焼S
屯でかつ(氏コストの合金添加で製造する方法が長年に
わたって研究され、希求されてきた。
(Problems to be Solved by the Invention) From the above, the inventors of the present invention understand that l-'
+ , E u ni h (t' te also has a tensile strength of 38 k
gf/+u+2 or more, the yield stress is (tensile strength -12kg
4 rolls of cold rolled steel with an r value of 1.8 or higher and less likely to cause secondary work brittleness (f/ms"), and a regular continuous VE sintering process.
For many years, a method of manufacturing by adding alloys at a low cost has been researched and desired.

したがって、本発明の目的とするところは、引張強さが
38 kgf/ms+”以上、降伏応力が(引張強さ1
2 kgf/am”)以下、r値1.8以上かつ2次加
工脆性の生じにくい成形性にすぐれた高張力冷延鋼板の
製造法を提供することである。
Therefore, the object of the present invention is to have a tensile strength of 38 kgf/ms+" or more and a yield stress of (tensile strength 1
2 kgf/am'') or less, an r value of 1.8 or more, and a high-strength cold-rolled steel sheet with excellent formability that is unlikely to cause secondary work brittleness.

(問題点を解決するための手段) 本発明者らは、かかる目的達成のため、前述の極低炭素
T+添加鋼に着目して鋭意研究を続けてきた。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have continued intensive research focusing on the above-mentioned ultra-low carbon T+ added steel.

ここに、本発明者らにより見い出された知見は、極低炭
素Ti添加鋼をベースに適債のMnとPを共存させると
、冷間圧延、焼鈍後の引張強さが上昇するだけでなく同
時にr値が著しく向上し、さらに少量の固溶Cが残存す
ることである。このような固溶Cの残存によって2次加
工脆性が効果的に防止される。
Here, the knowledge discovered by the present inventors is that when an appropriate amount of Mn and P coexist in ultra-low carbon Ti-added steel, not only does the tensile strength after cold rolling and annealing increase. At the same time, the r value is significantly improved and a small amount of solid solution C remains. The residual solid solution C effectively prevents secondary work brittleness.

これは?!、Mn5P、 SとCの間の相互作用に起因
するもので、例えば、MnとPが共存していない鋼にお
いてはTiCとMnSがそれぞれ安定な析出物として形
成されているため、TI≧4 (C+ 12/14N)
のTiが添加されていれば固溶Cは残存しないが、多量
のMnとPが共存しているとTiCの一部が分解され、
鋼中にはFeTiP、 MIIS、 its、 MnP
などの析出物が形成され、固溶状態のCが存在すること
になるためと思われる゛、このような状態で再結晶焼鈍
させるとこのiHtの固溶Cのためr値に好ましい再結
晶集合組織が発達し、r値が著しく向上する上にそのよ
うな固溶Cは焼鈍後の鋼板中にも残存し、結晶粒界を強
化し2次加工脆性を防止するとともに、少量の焼付硬化
性を発揮することも可能となる。
this is? ! , Mn5P, S and C. For example, in steel where Mn and P do not coexist, TiC and MnS are each formed as stable precipitates, so TI≧4 ( C+ 12/14N)
If a large amount of Ti is added, no solid solution C will remain, but if a large amount of Mn and P coexist, part of the TiC will be decomposed,
FeTiP, MIIS, its, MnP in steel
This is thought to be due to the formation of precipitates such as, and the presence of C in a solid solution state.If recrystallization annealing is performed in such a state, the recrystallization aggregation favorable for the r value will occur due to the solid solution C of iHt. The structure develops, and the r value improves markedly. In addition, such solid solution C remains in the steel sheet after annealing, strengthens grain boundaries and prevents secondary work brittleness, and also improves a small amount of bake hardenability. It is also possible to demonstrate.

本発明者らはそれらの知見に基づき、特開昭63−19
0141号に開示する冷延鋼板およびその製造法を出願
したが、さらに研究を重ねた結果、Nbの複合添加を行
いかつ再結晶焼鈍の際の加熱速度を特定範囲内に限定す
るとTi1ilの低減が可能となり、それだけのコスト
低下、表面処理法の改善がなされることが判明し、本発
明に至った。
Based on those findings, the present inventors
No. 0141 was filed for the cold-rolled steel sheet and its manufacturing method, but as a result of further research, Ti1il could be reduced by adding Nb in combination and limiting the heating rate during recrystallization annealing within a specific range. It has been found that this method has become possible, and that the cost can be reduced and the surface treatment method improved accordingly, leading to the present invention.

なお、Nb添加の効果のメカニズムは不明であるが、N
bはCやNと結合し、上記FeTi P 、 Ti S
の形成を助け、このような化合物の析出と再結晶のスピ
ードが競争するように再結晶焼鈍時の加熱速度が!I!
整されていると高いr値を示す再結晶集合組織が焼鈍の
加熱時に発達するものと思われる。
Note that although the mechanism of the effect of Nb addition is unknown,
b combines with C or N, and the above FeTi P , Ti S
Heating rate during recrystallization annealing so that the precipitation and recrystallization speed of such compounds compete! I!
It is thought that a recrystallized texture that exhibits a high r value when well-organized develops during heating during annealing.

さらに、上記の知見をベースに安価な強化元素であるS
iを適量添加したところ上記の効果は失われず容易に高
強度が得られる上、MnlとPgが適当な範囲にある綱
ではSiによる酸化の問題が軽減され冷延鋼板や亜鉛め
っき鋼板の製造に有利なことも同時に見い出した。
Furthermore, based on the above knowledge, S, which is an inexpensive reinforcing element,
When an appropriate amount of i is added, the above effects are not lost and high strength can be easily obtained, and the problem of oxidation due to Si is alleviated in steels with Mnl and Pg in appropriate ranges, making it suitable for the production of cold-rolled steel sheets and galvanized steel sheets. At the same time, we found some advantages.

ここに、本発明の要旨とするところは 重量%で、 C: o、ooos〜0.012%、N:0.0005
〜0.008%、sol、AQ: 0.08%以下、 
S: 0.010%以下、Ti: 0.005〜0.0
4%、 Nb: 0.003〜0.03%、を含み、 さらにMn: 0.906A超、3.0%以下およびP
:0.05〜0.15%を複合添加し、 ならびに所望によりさらにB :O,0OO1〜0.0
005%およびMo:0.03〜0.25%の1種また
は2種を添加し、 残部Feおよび不可避的不純物 よりなる組成を有する鋼を熱間圧延し、次いで冷間圧延
そして500℃から700℃までの平均加熱速度をlO
〜100℃/Sにて再結晶焼鈍をすることを特徴とする
成形性の良好な高張力冷延鋼板の製造法である。
Here, the gist of the present invention is in weight%, C: o,ooos~0.012%, N: 0.0005
~0.008%, sol, AQ: 0.08% or less,
S: 0.010% or less, Ti: 0.005 to 0.0
4%, Nb: 0.003 to 0.03%, further Mn: more than 0.906A, 3.0% or less, and P
:0.05 to 0.15% is added in combination, and if desired, further B :O,0OO1 to 0.0
005% and Mo: 0.03 to 0.25%, and the remainder is Fe and unavoidable impurities. The steel is hot rolled, then cold rolled, and then rolled from 500°C to 700°C. The average heating rate to °C is lO
This is a method for producing a high-strength cold-rolled steel sheet with good formability, which is characterized by recrystallization annealing at ~100° C./S.

本発明の好適態様にあっては、さらにSi: 0.02
〜0.60%を添加してもよい。
In a preferred embodiment of the present invention, Si: 0.02
~0.60% may be added.

(作用) ここに、本発明において鋼組成および製造条件を上述の
ように限定する理由についてさらに説明する。なお、本
明細四において「%」はとくにことわりがない限り、「
重■%」である。
(Function) Here, the reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be further explained. In addition, in this specification 4, "%" means "unless otherwise specified".
%".

C: Cは鋼中に必然的に含有される。前述の粒界強化に必要
なCは0.0003%程度であるが、Cを低下させるの
はコストアップにつながることから、下限を0.000
5%にした。Cが多くなると強化には寄与するが必要と
されるTi1ilが増してコストアップになる。したが
って、本発明にあってCの上限を0.012%とした。
C: C is naturally contained in steel. The C required for the grain boundary strengthening mentioned above is about 0.0003%, but since reducing C leads to an increase in cost, the lower limit is set to 0.0003%.
It was set to 5%. An increase in C contributes to strengthening, but the required Ti1il increases, leading to an increase in cost. Therefore, in the present invention, the upper limit of C is set to 0.012%.

N: Nは少ない方が望ましい、しかし、その低減にはコスト
がかかるため、下限をo、ooos%とじた。一方、余
り多いと多量のTiやNb添加が必要なことから上限を
0.008%とした。
N: It is desirable that N be small, but reducing it is costly, so the lower limit is set to o,oos%. On the other hand, if it is too large, a large amount of Ti or Nb needs to be added, so the upper limit was set at 0.008%.

sol、△Q: 脱酸調整に添加される。必ずしも添加しなくてもよいが
その時はTiやNbの添加歩留が低下する。SOl、A
Qが多いとコストアンプになるので上限を0.08%と
した。
sol, ΔQ: Added to deoxidation adjustment. Although it is not always necessary to add Ti and Nb, in that case the addition yield of Ti and Nb decreases. SOL,A
If Q is large, the cost will be increased, so the upper limit was set to 0.08%.

S: 本発明においては特に低下するのが望ましい。S: In the present invention, it is particularly desirable to reduce the amount.

slが0.010%を超えるとMnSが形成され、これ
が加工性を劣化させる上に前述のMnPが形成されにく
くなる。
When sl exceeds 0.010%, MnS is formed, which deteriorates processability and makes it difficult to form the above-mentioned MnP.

Tl: Tiは低降伏応力と高いr値を得るために添加される。Tl: Ti is added to obtain low yield stress and high r value.

その添加量は0.005%未満では固溶炭素や固溶Nが
多くなり降伏応力が高く、かつ低いr値しか得られない
If the amount added is less than 0.005%, solute carbon and solute N will increase, yield stress will be high, and only a low r value will be obtained.

一方、0.04%超添加してもその効果が飽和するだけ
でコストアンプになりかつ鋼板の表面処理性を劣化させ
る。
On the other hand, even if more than 0.04% is added, the effect is only saturated, resulting in a cost increase and deteriorating the surface treatment properties of the steel sheet.

Nb: NbもTIと同様の作用がある。特に上記の様にTi%
を限定した場合、NbはTiと相互作用をもち、Tiの
作用を効果的に発揮させる。
Nb: Nb also has the same effect as TI. Especially as mentioned above, Ti%
When Nb is limited, Nb interacts with Ti and effectively exerts the action of Ti.

このためには0.003〜0.03%の添加が有効であ
る。0.003%未満では降伏応力が高くなりかつr値
も低下する。 0.030%超では再結晶温度が高くな
り延性が低下してしまう。
For this purpose, addition of 0.003 to 0.03% is effective. If it is less than 0.003%, the yield stress becomes high and the r value also decreases. If it exceeds 0.030%, the recrystallization temperature becomes high and the ductility decreases.

Mn: これは、MnS、MnPを形成させるめに必要である。Mn: This is necessary to form MnS and MnP.

 0.90%以下ではその形成が不十分で、高いr値と
粒界強化が得られない、一方、3.0%を超えるとMn
Pが形成され過ぎ、却ってr値が低下する。したがって
、0.90%超、3.0%以下に限定した。好ましくは
、1.2〜2.0%である。
If it is less than 0.90%, its formation is insufficient and high r value and grain boundary strengthening cannot be obtained.On the other hand, if it exceeds 3.0%, Mn
Too much P is formed, and the r value actually decreases. Therefore, it was limited to more than 0.90% and 3.0% or less. Preferably it is 1.2 to 2.0%.

PもMn P 、 FeTi Pを形成させるために必
要である。特にTiCよりTiをh11提しCを固溶さ
せる作用がある。 O,OS%未満ではそのような効果
が不足で高いr値と粒界強化が達成できない。
P is also necessary to form Mn P and FeTi P. In particular, it has the effect of displacing Ti more than TiC and dissolving C as a solid solution. If the content is less than O,OS%, such effects are insufficient and a high r value and grain boundary strengthening cannot be achieved.

方、0615%を超えると鋼中でのP偏析が多くなり、
スラブの割れなどが生じやすくなる。したがって、0.
05〜0.15%に限定した。
On the other hand, when it exceeds 0.615%, P segregation in the steel increases,
Slab cracks are more likely to occur. Therefore, 0.
It was limited to 0.05 to 0.15%.

Si: Siは所望により添加され、本発明において規定する上
述のようなMnlとPffiとの範囲内にあっては、S
iは0.02〜0.60%添加すれば十分であって、酸
化の問題は起こらない。
Si: Si is added as desired, and within the range of Mnl and Pffi as defined above in the present invention, S
It is sufficient to add i in an amount of 0.02 to 0.60%, and no problem of oxidation occurs.

B: Bは粒界に偏析し粒界を強化する作用を有する0本発明
においてはCが粒界に偏析し粒界を強化し、2次加工脆
性を防止することを特徴としているが、必要に応じ少量
のBを複合添加しても本発明の効果を減することはなく
、粒界の強化を確実にするため必要に応じ添加してもよ
い、この場合Bの添加量は、0.0001%未満では意
味がなく、またo、ooos%超では添加コストの上昇
やスラブ割れの原因となるため、0.0001〜0.0
005%とした。本発明では、従来の場合と比較してこ
のように少量のBでよいことが一つの特徴である。
B: B has the effect of segregating at grain boundaries and strengthening them. The present invention is characterized by C segregating at grain boundaries, strengthening the grain boundaries, and preventing secondary work brittleness, but it is not necessary. Even if a small amount of B is added in combination, the effect of the present invention will not be reduced, and it may be added as necessary to ensure grain boundary reinforcement. In this case, the amount of B added is 0. If it is less than 0.0001%, it is meaningless, and if it exceeds o,oos%, it will increase the addition cost and cause slab cracking, so 0.0001 to 0.0
005%. One of the features of the present invention is that a smaller amount of B is required compared to the conventional case.

MO: ?IOも粒界を強化させる作用を有する。さらに粒界を
強化し、2次加工脆性を確実に防止したい場合、必要に
応じて添加される。この添加量は0.03%以上必要で
ある。ただし−〇は高価なのでその効果が飽和する0、
25%を上限とした。
MO: ? IO also has the effect of strengthening grain boundaries. Furthermore, if it is desired to strengthen grain boundaries and reliably prevent secondary processing brittleness, it is added as necessary. This addition amount needs to be 0.03% or more. However, −〇 is expensive, so its effect is saturated, 0,
The upper limit was set at 25%.

この他に必要強度に応じ六「などを適量(1%以下)添
加してもよい。
In addition to this, an appropriate amount (1% or less) of 6' etc. may be added depending on the required strength.

次に、製造法における条件限定の理由について述べる。Next, the reason for limiting the conditions in the manufacturing method will be described.

熱間圧延、冷間圧延、焼鈍: 熱間圧延は特に制限なく、慣用のそれを行えばよい0例
えば700℃以上で950℃以下で50%以上の加工を
行う。
Hot rolling, cold rolling, annealing: Hot rolling is not particularly limited, and any conventional method may be used.For example, 50% or more processing is performed at 700° C. or higher and 950° C. or lower.

本発明にあって、熱間圧延−冷間圧延−焼鈍が行われる
が、熱間圧延終了後の巻取温度は通常のように700℃
〜常温でよい、冷間圧延も同様である。
In the present invention, hot rolling, cold rolling, and annealing are performed, but the coiling temperature after hot rolling is usually 700°C.
The same applies to cold rolling, which may be carried out at room temperature.

しかしながら、再結晶焼鈍の加熱速度は限定されなけれ
ばならない。
However, the heating rate for recrystallization annealing must be limited.

すなわち、その加熱の500〜700℃までの平均加熱
速度を10〜b 通常の連続焼鈍では加熱速度は2〜b るのでそれより速くする必要がある。実際にはラジアン
トチューブの能力を増すとか直火加熱をするとかが採用
される。
That is, the average heating rate for heating from 500 to 700°C needs to be faster than 10-b.In normal continuous annealing, the heating rate is 2-b. In reality, increasing the capacity of radiant tubes or using direct flame heating are adopted.

上記限定の意味は冷間圧延組織が再結晶する時の加熱速
度、実際には再結晶のスピードを制御し再結晶時にFe
Ti Pなどの析出物を作用させることがr値に好まし
い再結晶集合mmを得るために必要との知見によってい
る。
The meaning of the above limitation is the heating rate when the cold-rolled structure recrystallizes, in fact, the recrystallization speed is controlled and Fe is
This is based on the knowledge that the action of precipitates such as Ti 2 P is necessary in order to obtain a recrystallization set mm favorable to the r value.

再結晶の開始温度は一般に約560℃、完了は約700
℃である。したがって再結晶が開始するより前の段階か
ら完了までの温度範囲での加熱速度が制御される。
The starting temperature for recrystallization is generally about 560°C, and the completion temperature is about 700°C.
It is ℃. Therefore, the heating rate is controlled in the temperature range from the stage before recrystallization begins until its completion.

10℃/S未満では再結晶のスピードが遅すぎ裔いr値
が得られない、100℃/S超では再結晶のスピードが
速すぎ集合mraのuJTaIがなされる余裕がなくや
はり高いr値が得られない、好ましくは20〜b なお、焼鈍は連続焼鈍が望ましい、その場合の最高焼鈍
温度は700〜920℃が好ましい、連続溶融亜鉛めっ
きラインで連続焼鈍する場合も同様である。この後適当
量の調質圧延を行っ、て製造される。
If it is less than 10°C/S, the recrystallization speed is too slow and a descendant r value cannot be obtained, and if it exceeds 100°C/S, the recrystallization speed is too fast and there is no room for uJTaI of the aggregated mra to be formed, resulting in a high r value. Not obtained, preferably 20 to b. Note that continuous annealing is desirable, and in that case, the maximum annealing temperature is preferably 700 to 920°C. The same applies to continuous annealing in a continuous hot-dip galvanizing line. After this, an appropriate amount of temper rolling is performed to produce the product.

次に、実施例によって本発明を詳述する。Next, the present invention will be explained in detail by way of examples.

実施例1 第1表 第1表に示す組成をベースにし、これにTiとNb添加
量が変動した鋼を溶製し、スラブ加熱温度1150℃、
仕上温度900℃、巻取温度500℃の条件下での熱間
圧延により3.21厚のI仮に仕上げた。
Example 1 Based on the composition shown in Table 1, steel with varying amounts of Ti and Nb added was melted, and the slab heating temperature was 1150°C.
A 3.21-thick I tent was finished by hot rolling under conditions of a finishing temperature of 900°C and a winding temperature of 500°C.

酸洗後、これらを0 、8mm厚まで圧下率75%で冷
間圧延し、次いで500〜700℃間の平均加熱速度2
0℃/sec、均熱850℃×40秒、冷却速度20℃
/secの連続焼鈍により再結晶焼鈍を行った。加熱は
直火加熱で行った。
After pickling, they were cold rolled to a thickness of 0.8 mm at a reduction rate of 75%, and then heated at an average heating rate of 2 between 500 and 700 °C.
0℃/sec, soaking at 850℃ x 40 seconds, cooling rate 20℃
Recrystallization annealing was performed by continuous annealing at /sec. Heating was performed using direct heat.

このようにし得た再結晶焼鈍材よりJIS S号試験片
を採取し、引張試験を行い「値(3方向平均値)を測定
した。
A JIS No. S test piece was taken from the recrystallized annealed material obtained in this way, and a tensile test was performed to measure the value (average value in three directions).

結果を第1図および第2図にまとめて示す。The results are summarized in FIGS. 1 and 2.

第1図は、Ti%、Nb%とr値との関係を示すグラフ
で本発明の範囲では高いr値が得られることがわかる。
FIG. 1 is a graph showing the relationship between Ti%, Nb% and r value, and it can be seen that a high r value can be obtained within the range of the present invention.

本発明による降伏応力、r値および引張強さの各データ
点を、従来製造されていた高張力冷延鋼板のr値、降伏
応力および引張強さの関係図上に示すと第2図のように
なり、本発明によれば同一強度レベルの従来の鋼板にく
らべr値が高く降伏応力が低くプレス成形性が良好な鋼
板が得られることがわかる。
The data points of the yield stress, r value, and tensile strength according to the present invention are shown in the relationship diagram of the r value, yield stress, and tensile strength of conventionally manufactured high-tensile cold rolled steel sheets as shown in Figure 2. It can be seen that according to the present invention, a steel plate with a higher r value, lower yield stress, and better press formability than a conventional steel plate with the same strength level can be obtained.

実施例2 第2表に示す成分組成の鋼を溶製し、スラブとなした後
1100℃にて1時間加熱後直ちに熱間圧延を開始し、
仕上温度880°Cにて3.21厚の熱延鋼板に仕上げ
た。酸洗後、これらを0 、8mm厚まで冷間圧延し、
次いで、500〜700℃間の平均加熱速度0.1〜2
50℃/sec、均熱820℃X60秒、冷却速度40
℃/secの連続焼鈍により再結晶焼鈍を行った。
Example 2 Steel having the composition shown in Table 2 was melted and made into a slab. After heating at 1100°C for 1 hour, hot rolling was immediately started.
A hot-rolled steel plate with a thickness of 3.21 mm was finished at a finishing temperature of 880°C. After pickling, these were cold rolled to a thickness of 0.8 mm,
Then, the average heating rate between 500 and 700°C is 0.1 to 2
50℃/sec, soaking at 820℃ x 60 seconds, cooling rate 40
Recrystallization annealing was performed by continuous annealing at °C/sec.

その後、伸び率0.3%の調質圧延を行いそれよりJI
S S号引張試験片を採取し引張試験を行った。
After that, it is temper rolled with an elongation rate of 0.3% and then JI
A No. SS tensile test piece was taken and a tensile test was conducted.

ここで時効指数は8%の予歪を加えた後、100℃、1
 hrの時効処理をし、次いで再引張を行いこの時の降
伏応力の上昇量から求めた。鋼板中に固溶炭素量が多い
とこの時効指数が高い値を示すことがわかっている。
Here, the aging index is 100℃, 1 after adding 8% prestrain.
The specimen was aged for hr, then re-stretched, and the yield stress was determined from the increase in yield stress at this time. It is known that this aging index exhibits a high value when the amount of solid solute carbon in the steel sheet is large.

この他に調質圧延をしたwJ板より直径66s+mのブ
ランクを打抜き次いで直径33ffi11のポンチでカ
ップ状に深絞りを行い、これに対し種々の温度で薄型テ
ストを行い何度で脆性破壊をするかを調べた。
In addition, blanks with a diameter of 66s+m are punched out from temper-rolled WJ plates, and then deep drawn into cup shapes using a punch with a diameter of 33FFI11, and thinner tests are conducted at various temperatures to determine the temperature at which brittle fracture occurs. I looked into it.

これが2次加工脆性テストの方法である。This is the method of secondary processing brittleness test.

第2表にはこれらの結果もまとめて示されている。Table 2 also summarizes these results.

本発明による鋼板は引張強さが38 kgf/arm”
以上でかつ降伏応力が(引張強さ−12kgr/m+”
)以下であり、また強度の割りに伸びがよ<、r値も1
.8以上、多くは2.0以上で非常に高いことがわかる
The steel plate according to the present invention has a tensile strength of 38 kgf/arm”
or more and the yield stress is (Tensile strength - 12kgr/m+"
) or less, and the elongation is good considering the strength.The r value is also 1.
.. It can be seen that the scores are very high, with scores of 8 or higher, and most of them 2.0 or higher.

これに対し、比較鋼1.2.6は加熱速度が不適切なた
めr値が低くそして比較115はTiの添加量が不足の
ため降伏応力が高くr値が低かった。
On the other hand, Comparative Steel 1.2.6 had a low r value due to an inappropriate heating rate, and Comparative Steel 115 had a high yield stress and low r value due to an insufficient amount of Ti added.

比較鋼16はMnが不足しているためr値が低い。Comparative Steel 16 has a low r value because it lacks Mn.

比較例17はPが少ないためr値が低い。Comparative Example 17 has a low r value due to low P content.

また、2次加工脆性については本発明例ではいずれも一
40℃以下であり実用上問題ないが、特に比較鋼1日は
Nb含を量が多すぎるために、前述の如き理由により、
延性が低下し、2次加工脆性遷移点度が一10℃となっ
て本発明の目的を達し得ない。
Regarding secondary work embrittlement, in all of the examples of the present invention, the temperature is -40°C or less, so there is no practical problem, but in particular, the comparative steel 1 day contains too much Nb, so for the reasons mentioned above,
The ductility decreases and the secondary processing brittleness transition point degree becomes 110°C, making it impossible to achieve the object of the present invention.

(発明の効果) このように、本発明によれば、成形性にすぐれた高張力
鋼が低コストの製造法によって得られるのであり、コス
トの低減そして製造ラインの面素化が強く求められてい
る今日的状況からはその効果は著しいものと云わざるを
得ない。
(Effects of the Invention) As described above, according to the present invention, high-strength steel with excellent formability can be obtained by a low-cost manufacturing method, and there is a strong demand for cost reduction and surface roughening of the manufacturing line. Considering the current situation, it cannot be said that the effect is remarkable.

特に、本発明により製造される鋼板は自動車のフレーム
、その他主要構造部材メンバー類に使用した場合、車体
重量の軽減に大きく寄与するものであり、その産業上の
意義、利益は大きい。
In particular, when the steel plate manufactured according to the present invention is used for automobile frames and other major structural members, it greatly contributes to reducing the weight of the vehicle, and has great industrial significance and benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Nb%、Ti%とr値および引張強さとの関
係を示すグラフ:および 第2図は、本発明にかかる鋼板の降伏応力、r値および
引張強さの各データ点を、従来製造されていた高張力冷
延鋼板のr値、降伏応力および引張強さの関係図上に示
すグラフである。
FIG. 1 is a graph showing the relationship between Nb%, Ti%, r value, and tensile strength; and FIG. 2 is a graph showing each data point of yield stress, r value, and tensile strength of the steel plate according to the present invention. It is a graph shown on the relationship diagram of r value, yield stress, and tensile strength of the high tensile strength cold-rolled steel plate manufactured conventionally.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.0005〜0.012%、N:0.0005〜
0.008%、sol.Al:0.08%以下、S:0
.010%以下、Ti:0.005〜0.04%、Nb
:0.003〜0.03%、Mn0.90%超、3.0
%以下、 P:0.05〜0.15%、および 残部Feおよび不可避的不純物 よりなる組成を有する鋼を熱間圧延し、次いで冷間圧延
そして500℃から700℃までの平均加熱速度を10
〜100℃/Sとして再結晶焼鈍をすることを特徴とす
る成形性の良好な高張力冷延鋼板の製造法。
(1) In weight%, C: 0.0005 to 0.012%, N: 0.0005 to
0.008%, sol. Al: 0.08% or less, S: 0
.. 010% or less, Ti: 0.005-0.04%, Nb
:0.003~0.03%, Mn over 0.90%, 3.0
% or less, P: 0.05 to 0.15%, and the balance consisting of Fe and unavoidable impurities is hot rolled, then cold rolled, and the average heating rate from 500°C to 700°C is 10%.
A method for producing a high-strength cold-rolled steel sheet with good formability, characterized by recrystallization annealing at ~100° C./S.
(2)重量%で、 C:0.0005〜0.012%、N:0.0005〜
0.008%、sol.Al:0.08%以下、S:0
.010%以下、Ti:0.005〜0.04%、Nb
:0.003〜0.03%、Mn:0.90%超、3.
0%以下、 P:0.05〜0.15%、および B:0.0001〜0.0005%およびMo:0.0
3〜0.25%の1種または2種、ならびに 残部Feおよび不可避的不純物 よりなる組成を有する鋼を熱間圧延し、次いで冷間圧延
そして500℃から700℃までの平均加熱速度を10
〜100℃/Sとして再結晶焼鈍をすることを特徴とす
る成形性の良好な高張力冷延鋼板の製造法。
(2) In weight%, C: 0.0005 to 0.012%, N: 0.0005 to
0.008%, sol. Al: 0.08% or less, S: 0
.. 010% or less, Ti: 0.005-0.04%, Nb
: 0.003 to 0.03%, Mn: more than 0.90%, 3.
0% or less, P: 0.05-0.15%, and B: 0.0001-0.0005% and Mo: 0.0
A steel having a composition consisting of 3 to 0.25% of one or two elements and the balance Fe and unavoidable impurities is hot rolled, then cold rolled and heated at an average heating rate of 10% from 500°C to 700°C.
A method for producing a high-strength cold-rolled steel sheet with good formability, characterized by recrystallization annealing at ~100° C./S.
(3)前記鋼がさらにSi:0.02〜0.60%を含
有する請求項1または2記載の成形性の良好な高張力冷
延鋼板の製造法。
(3) The method for producing a high-strength cold-rolled steel sheet with good formability according to claim 1 or 2, wherein the steel further contains Si: 0.02 to 0.60%.
JP30181688A 1988-11-29 1988-11-29 Manufacture of high-tensile cold rolled steel sheet excellent in formability Pending JPH02149624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30181688A JPH02149624A (en) 1988-11-29 1988-11-29 Manufacture of high-tensile cold rolled steel sheet excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30181688A JPH02149624A (en) 1988-11-29 1988-11-29 Manufacture of high-tensile cold rolled steel sheet excellent in formability

Publications (1)

Publication Number Publication Date
JPH02149624A true JPH02149624A (en) 1990-06-08

Family

ID=17901506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30181688A Pending JPH02149624A (en) 1988-11-29 1988-11-29 Manufacture of high-tensile cold rolled steel sheet excellent in formability

Country Status (1)

Country Link
JP (1) JPH02149624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247827A (en) * 1991-01-23 1992-09-03 Nkk Corp Manufacture of high strength cold rolled steel sheet excellent in press formability
EP0574814A2 (en) * 1992-06-08 1993-12-22 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
EP0691415A4 (en) * 1991-03-15 1995-10-12 Nippon Steel Corp High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
KR100530076B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247827A (en) * 1991-01-23 1992-09-03 Nkk Corp Manufacture of high strength cold rolled steel sheet excellent in press formability
JPH0826412B2 (en) * 1991-01-23 1996-03-13 日本鋼管株式会社 Method for producing high-strength cold-rolled steel sheet with excellent press formability
EP0691415A4 (en) * 1991-03-15 1995-10-12 Nippon Steel Corp High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
EP0691415A1 (en) * 1991-03-15 1996-01-10 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
EP0574814A2 (en) * 1992-06-08 1993-12-22 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
EP0574814A3 (en) * 1992-06-08 1997-01-29 Kawasaki Steel Co High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
KR100530076B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof

Similar Documents

Publication Publication Date Title
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JPH07188834A (en) High strength steel sheet having high ductility and its production
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2022535254A (en) Cold-rolled and coated steel sheet and method for producing same
JPH0567684B2 (en)
JP2530338B2 (en) High strength cold rolled steel sheet with good formability and its manufacturing method
JPH02149624A (en) Manufacture of high-tensile cold rolled steel sheet excellent in formability
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPS5884928A (en) Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JPH0931534A (en) Production of high strength hot rolled steel plate excellent in workability and fatigue characteristic
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JP3419000B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and secondary work brittle resistance, and method for producing the same
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPH02197545A (en) High tensile strength cold rolled steel sheet and its manufacture
JPH0394022A (en) Production of hot rolled steel plate for deep drawing excellent in resistance to secondary working brittleness
JPH04246153A (en) Cold rolled high strength steel sheet for deep drawing excellent in baking hardenability and having non-ageing characteristic and its manufacture
JPH04259353A (en) High tensile strength thin steel sheet having good formability and its manufacture