JPH02149622A - Manufacture of nonoriented silicon steel sheet having superior magnetic property - Google Patents

Manufacture of nonoriented silicon steel sheet having superior magnetic property

Info

Publication number
JPH02149622A
JPH02149622A JP30187988A JP30187988A JPH02149622A JP H02149622 A JPH02149622 A JP H02149622A JP 30187988 A JP30187988 A JP 30187988A JP 30187988 A JP30187988 A JP 30187988A JP H02149622 A JPH02149622 A JP H02149622A
Authority
JP
Japan
Prior art keywords
annealing
steel
hot
steel sheet
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30187988A
Other languages
Japanese (ja)
Other versions
JPH0699749B2 (en
Inventor
Teruo Kaneko
金子 輝雄
Hiroyoshi Yashiki
裕義 屋鋪
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30187988A priority Critical patent/JPH0699749B2/en
Publication of JPH02149622A publication Critical patent/JPH02149622A/en
Publication of JPH0699749B2 publication Critical patent/JPH0699749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To easily and stably manufacture a nonoriented silicon steel sheet reduced in iron loss and having high magnetic flux density by hot-rolling a steel with a specific composition, descaling the surface of the resulting hot rolled plate, and then applying annealing to the above under specific conditions in a nonoxidizing atmosphere in which dew point is specified. CONSTITUTION:A steel having a composition consisting of, by weight ratio, <=0.01% C, <=3.5% Si, 0.2-1.5% Mn, <=0.15% P, <=0.015% S, <=0.01% sol Al, and the balance essentially Fe is hot-rolled and then subjected to surface descaling. Subsequently, annealing is applied to the above at 850-1000 deg.C for 0.5-20hr in a nonoxidizing atmosphere in which dew point is regulated to <=0 deg.C. By this method, the nonoriented silicon steel sheet reduced in iron loss and having high magnetic flux density can be obtained. This sheet is useful, e.g. as iron core material for compact transformer and compact motor.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、小型トランスや小型モータの鉄心材料等と
して広く用いられている無方向性電磁綱板の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing non-directional electromagnetic steel sheets, which are widely used as iron core materials for small transformers and small motors.

〈従来技術とその課題〉 一般に、鉄心材料としての電磁綱板には、発熱による電
力損失を防ぐための低鉄損化と鉄心断面積を小さくする
ための高磁束密度化が強く要求されている。
<Prior art and its issues> In general, electromagnetic steel sheets used as iron core materials are strongly required to have low iron loss to prevent power loss due to heat generation and high magnetic flux density to reduce the core cross-sectional area. .

鉄を磁化する際に熱として無駄に消費されるエネルギー
が鉄損で、これは低いほど好ましいことは言うまでもな
い。この鉄損は、ヒステリシス損と渦電流損の2つの要
因に支配される。このうちのヒステリシス損は磁化の過
程において磁壁の移動を妨げる析出物や粒界が少ないほ
ど小さくなるので、ヒステリシス損を低くするには、出
来るだけ高純度の鋼を用い、かつ結晶粒を大きくするこ
とが必要となる。これに対して、渦電流損は磁化によっ
て誘起されるところの渦電流による損失であり、−数的
にはSt等の合金元素を添加して鋼の電気抵抗を増加さ
せると減少する。また、渦電流損に関しては、結晶粒は
小さい方が有利である。
Iron loss is the energy wasted as heat when magnetizing iron, and it goes without saying that the lower the iron loss, the better. This iron loss is dominated by two factors: hysteresis loss and eddy current loss. Of these, hysteresis loss becomes smaller as there are fewer precipitates and grain boundaries that impede movement of domain walls during the magnetization process, so in order to lower hysteresis loss, use steel of as high purity as possible and make the crystal grains larger. This is necessary. On the other hand, eddy current loss is a loss due to eddy currents induced by magnetization, and numerically decreases when alloying elements such as St are added to increase the electrical resistance of steel. Furthermore, with regard to eddy current loss, it is advantageous to have smaller crystal grains.

なぜなら、結晶粒が小さいと磁壁の移動距離も小さく、
従って発生する渦電流が少なくなるためである。
This is because when the crystal grains are small, the distance the domain walls move is also small.
This is because fewer eddy currents are generated.

このように、ヒステリシスtNと渦電流損とでは逆の結
晶粒径依存性を示すため、これらをバランスさせた結果
として100〜200μmの結晶粒径で最適な鉄損値を
得られることが知られてい−る。
In this way, it is known that hysteresis tN and eddy current loss show opposite dependence on grain size, and as a result of balancing them, an optimal iron loss value can be obtained with a grain size of 100 to 200 μm. Tell.

一方、磁束密度は、一定体積の鉄心にどれだけ多くのエ
ネルギーを詰め込めるかを示す指標で、この値が高いほ
ど鉄心をコンパクト化できるので有利となる。なお、磁
束密度は鉄の割合が多い純鉄はど高く、“合金元素添加
による低鉄損化”と“高磁束密度化”とは一般に両立し
ない。
On the other hand, magnetic flux density is an index that shows how much energy can be packed into a fixed volume of iron core, and the higher this value, the more advantageous it is because the iron core can be made more compact. Note that the magnetic flux density is high in pure iron with a high proportion of iron, and "lowering iron loss by adding alloying elements" and "increasing magnetic flux density" are generally not compatible.

ところで、無方向性電磁綱板のグレードは鉄損値で区分
けされる場合が多く、無方向性電磁綱板の製造に当って
は、通常、まずグレードに応じてSt添加量が決められ
る。もっとも、SiのほかにAIl。
By the way, the grades of non-oriented electromagnetic steel sheets are often categorized by iron loss value, and when manufacturing non-oriented electromagnetic steel sheets, the amount of St added is usually first determined according to the grade. However, in addition to Si, AIl.

Mn及びPも鋼の電気抵抗を増加し鉄損を低下させる元
素として知られており、必要により補助的に添加される
Mn and P are also known as elements that increase the electrical resistance of steel and reduce iron loss, and are added as supplements if necessary.

また、MnやPは打ち抜き性向上のための硬度調整を行
う目的で添加される場合が多い。そして、AI!は焼鈍
時における結晶粒の成長性と密接な関係があり、「粒成
長性にとっては、八!を含まないか、或いは逆に多量に
Afを含む鋼を用いるのが良い」との事実が知られてい
る。ただ、実際的にはAfを多量に添加した方が粒成長
は安定して良好な上、電気抵抗の点でも有利なことから
、高級グレードでは一般に高AN鋼が用いられている。
Furthermore, Mn and P are often added for the purpose of adjusting hardness to improve punching properties. And AI! is closely related to grain growth during annealing, and it is well known that ``for grain growth, it is better to use steel that does not contain 8! or, conversely, contains a large amount of Af.'' It is being However, in practice, adding a large amount of Af results in stable and good grain growth and is also advantageous in terms of electrical resistance, so high-AN steel is generally used in high-grade grades.

なお、C1S、N等の析出物を作り易い不純物元素は可
能な限り低減される。
Note that impurity elements that tend to form precipitates, such as C1S and N, are reduced as much as possible.

しかしながら、先にも述べたように、合金元素の添加は
磁束密度の点からは必ずしも望ましいことではなく、最
終焼鈍後の結晶粒を大きくすることも磁束密度低下の原
因となる。つまり、合金元素を添加することは鋼中にお
ける鉄の割合を減らすことを意味するので必然的に磁束
密度の減少を招き、また結晶粒の成長は磁束密度に不利
な結晶方位の発達を促すことにつながるためである。
However, as mentioned above, addition of alloying elements is not necessarily desirable from the viewpoint of magnetic flux density, and increasing the size of crystal grains after final annealing also causes a decrease in magnetic flux density. In other words, adding alloying elements means reducing the proportion of iron in the steel, which inevitably leads to a decrease in magnetic flux density, and the growth of crystal grains promotes the development of crystal orientations that are unfavorable to magnetic flux density. This is because it leads to

このように、低鉄損と高磁束密度化では相矛盾する要因
を含んでいることから、これらを両立させるべ〈従来か
ら種々の研究が行われてきた。低鉄損化と高磁束密度化
の両立が必要な訳は、折角鉄損の低い材料を作ったとし
ても、磁束密度が低いと所定のエネルギーを詰め込むの
に大きな体積の鉄心が必要となる上、鉄心が大きくなる
とそれに捲く銅コイルも多く必要となり、結果的に銅コ
イルに電流を流したとき発生するジュール熱が増えて鉄
損を下げた効果が打ち消されてしまうことになるからで
ある。
As described above, since low core loss and high magnetic flux density include contradictory factors, various studies have been conducted to achieve both. The reason why it is necessary to achieve both low iron loss and high magnetic flux density is that even if a material with low iron loss is made, if the magnetic flux density is low, a large volume of iron core is required to pack a certain amount of energy. This is because as the iron core becomes larger, more copper coils are required to be wound around it, and as a result, the Joule heat generated when current is passed through the copper coil increases, canceling out the effect of lowering iron loss.

そして、綱板の成分組成に工夫を凝らした上で、無方向
性電磁綱板を得るための熱間圧延、冷間圧延及び最終焼
鈍工程での条件を適正範囲の結晶粒径を得る上で出来る
だけ有利となるように制御しようとした提案等、数多く
の報告がなされたが、それでも効果とコストの点で十分
に満足できるものを見出せないのが現状である。
After devising the composition of the steel sheet, we adjusted the conditions for the hot rolling, cold rolling, and final annealing steps to obtain a non-oriented electromagnetic steel sheet to obtain a crystal grain size within the appropriate range. Although many reports have been made, including proposals for controlling to make it as advantageous as possible, the current situation is that it is still not possible to find a solution that is fully satisfactory in terms of effectiveness and cost.

しかし、原理的には、鉄損と磁束密度の両者を改善する
上で綱板の結晶方位を制御するのが有効であることが知
られている。即ち、鉄の磁化に不利な(111)や(2
11)の方位の結晶粒をできるだけ減らし、逆に磁化に
有利な(100)や(1101の方位を発達させれば良
いことである。
However, in principle, it is known that controlling the crystal orientation of the steel plate is effective in improving both iron loss and magnetic flux density. That is, (111) and (2) are disadvantageous to iron magnetization.
It is best to reduce the number of crystal grains in the 11) orientation as much as possible, and conversely develop the (100) and (1101) orientations, which are advantageous for magnetization.

上記結晶方位を制御するのに有望な具体的手段を窺わせ
るものとして、古くから2回合間圧延法の効果が知られ
ている。これは、1回目と2回目の冷間圧延圧下率の組
合わせや、これらの間に施される中間焼鈍の条件等を変
えることによって適正な結晶方位の発達が認められるよ
うになると言うものである。しかしながら、この方法は
工程が複雑でコスト高となる上、適正条件の範囲が狭い
ことから、工業的には必ずしも有利な方法とはならない
ものと考えられた。
As a promising concrete means for controlling the above-mentioned crystal orientation, the effect of two-pass rolling has been known for a long time. This means that by changing the combination of the first and second cold rolling reduction rates and the conditions of the intermediate annealing performed between them, the development of an appropriate crystal orientation can be observed. be. However, this method is complicated and costly, and the range of appropriate conditions is narrow, so it was thought that it would not necessarily be an advantageous method from an industrial perspective.

また、これとは別に、熱延板を焼鈍して冷延前の初期結
晶粒を大きくすることも最終焼鈍後の結晶方位を制御す
るのに効果的であるとされている。
Separately, annealing the hot-rolled sheet to enlarge the initial crystal grains before cold rolling is also said to be effective in controlling the crystal orientation after final annealing.

つまり、初期粒が大きいと冷間圧延時に結晶粒内に“変
形帯”と呼ばれるものが形成され、そこから磁気特性に
有利な方位が発達するからである。
In other words, if the initial grains are large, a so-called "deformation zone" is formed within the crystal grains during cold rolling, and an orientation advantageous for magnetic properties develops from there.

これを実現するためには熱延板を高温で焼鈍すれば良い
が、゛箱焼鈍の場合には経済性の点から窒素糸のガスが
使われるために吸窒を生じて特性が逆に劣化する。吸窒
を防ぐには連続式の短時間焼鈍を採用すれば良いが、こ
の場合には粒成長性の点で箱焼鈍より劣るので磁気特性
に不満を残すことになる。
In order to achieve this, the hot-rolled sheet can be annealed at a high temperature, but in the case of box annealing, nitrogen yarn gas is used for economic reasons, which causes nitrification and deteriorates the properties. do. In order to prevent nitrification, continuous short-time annealing may be used, but in this case, grain growth is inferior to box annealing, resulting in unsatisfactory magnetic properties.

そこで、本発明者等は、発熱による電力損失を防ぐため
の低鉄損化と鉄心断面積を小さくするための高磁束密度
化が強く求められる鉄心材料が置かれている上記現状に
鑑み、低鉄損と高磁束密度とを両立させ、省エネルギー
や小型化と言った社会的要求に十分応え得る無方向性電
磁綱板を容易かつ安価に量産することが可能な手段を提
供すべく、数多くの実験を重ねながら研究を行った。
Therefore, in view of the current situation where iron core materials are strongly required to have low iron loss to prevent power loss due to heat generation and high magnetic flux density to reduce core cross-sectional area, the present inventors have In order to provide a means to easily and inexpensively mass-produce non-oriented electromagnetic steel sheets that can satisfy social demands such as energy saving and miniaturization by achieving both iron loss and high magnetic flux density, we have developed a number of methods. The research was conducted through repeated experiments.

〈課題を解決するための手段〉 本発明者等は、上記研究を通じ、無方向性電磁綱板にお
いて低鉄損と高磁束密度とを両立させるには前述した“
冷間圧延前の初期結晶粒を大きくすることによる結晶方
位制御法”が有望かつ実際的であるとの感触を得、これ
を基にしてその効果を最大に発揮させるための工業的手
段を求めて更に研究を続けた結果、以下のような知見を
得るに至ったのである。
<Means for Solving the Problems> Through the above research, the present inventors have discovered that in order to achieve both low iron loss and high magnetic flux density in non-oriented electromagnetic steel sheets, the above-mentioned “
We felt that the ``crystal orientation control method by enlarging the initial crystal grains before cold rolling'' was promising and practical, and based on this, we sought an industrial means to maximize its effects. As a result of further research, they came to the following findings.

冷間圧延前の綱板の初期結晶粒を大きくするには熱延板
をできるだけ高温で焼鈍すれば良いことは冶金学的常識
として理解でき、実際、通常鋼では焼鈍温度に応じた結
晶粒径を得られることが知られている。しかしながら、
無方向性電磁綱板の場合には、吸窒の観点から焼鈍温度
が通常850℃以下に制限されている(無方向性電磁綱
板においては析出物を作り易いNを出来るだけ低減する
必要のあることは前述した通りである)。
It can be understood as metallurgical common sense that in order to increase the initial grain size of the steel sheet before cold rolling, it is sufficient to anneal the hot rolled sheet at the highest possible temperature.In fact, in ordinary steel, the grain size varies depending on the annealing temperature. It is known that it can be obtained. however,
In the case of non-oriented electromagnetic steel sheets, the annealing temperature is usually limited to 850°C or less from the viewpoint of nitrogen absorption. As mentioned above).

また、一般に鋼を窒素系雰囲気中で焼鈍する時の吸窒は
、鋼中のsol、AINに強く支配されることが知られ
ている。これは、鋼中にsof、AI!が存在するとN
が侵入しAINとして析出するため、言わば八lがNを
呼び込む恰好で吸窒量が増えることによるものである。
Further, it is known that nitrogen absorption when steel is generally annealed in a nitrogen atmosphere is strongly controlled by sol and AIN in the steel. This is sof in steel, AI! exists, then N
This is due to the fact that the amount of nitrogen adsorbed increases as the nitrogen enters and precipitates as AIN, so to speak.

これに対して、sol、Alを含まない鋼は原理的に吸
窒し難いので、吸窒が嫌われる用途のものであっても窒
素系雰囲気中での高温焼鈍が可能である。
On the other hand, since steel that does not contain sol or Al is difficult to absorb nitrogen in principle, high-temperature annealing in a nitrogen atmosphere is possible even for applications where nitrogen absorption is disliked.

この場合、実質的にsol、Afを含まない無方向性電
磁綱板用材を850℃以上の温度で十分に焼鈍すると、
不本意な吸窒を生じることなく急激に結晶粒が大きくな
って著しい磁気特性の改善効果が見られる。そして、こ
のような異常粒成長が生じる理由は、高温における十分
な焼鈍中にMnS等の析出物が粗大化し、該析出物によ
る粒界移動阻止効果が急激に顕著化するためであると考
えられる。
In this case, if a non-oriented electromagnetic steel plate material that does not substantially contain sol or Af is sufficiently annealed at a temperature of 850°C or higher,
The crystal grains suddenly become larger without causing unwanted nitrogen absorption, and a remarkable effect of improving magnetic properties is observed. The reason why such abnormal grain growth occurs is thought to be that precipitates such as MnS become coarse during sufficient annealing at high temperatures, and the effect of inhibiting grain boundary movement by these precipitates rapidly becomes noticeable. .

本発明は上記知見等に基づいてなされたものであり、 rc:0.01%以下(以降、成分割合を表わす%は重
量%とする)。
The present invention has been made based on the above-mentioned findings, etc. rc: 0.01% or less (hereinafter, % representing the component ratio is expressed as weight %).

St : 3.5%以下、    Mn : 0.2〜
1.5%。
St: 3.5% or less, Mn: 0.2~
1.5%.

P:0.15%以下、   S:0.015%以下。P: 0.15% or less, S: 0.015% or less.

sof、、Af : 0.01%以下 で、残部が実質的にFeより成る鋼を熱間圧延した後表
面のスケールを除去し、次いで露点が0℃以下の非酸化
性雰囲気中において850〜1000℃で0.5〜20
時間の焼鈍を施すことにより、磁気特性の良好な(低鉄
損で高磁束密度の)無方向性電磁綱板を筒車かつ安定に
、しかもコスト安く製造し得るようにした点」 を特徴としている。
sof,, Af: 0.01% or less steel with the remainder substantially made of Fe is hot-rolled, surface scale is removed, and then the dew point is 850 to 1000 in a non-oxidizing atmosphere with a dew point of 0°C or less. 0.5-20 at °C
By applying time annealing, we have made it possible to manufacture non-directional electromagnetic steel sheets with good magnetic properties (low iron loss and high magnetic flux density) in an hour wheel, stably, and at low cost. There is.

続いて、本発明において無方向性電磁綱板の製造条件を
前記の如くに限定した理由を、その裏付けとなった作用
等と共に説明する。
Next, the reason why the manufacturing conditions of the non-oriented electromagnetic steel sheet in the present invention are limited as described above will be explained together with the effects that underpin this.

八)素材鋼の成分組成 Cはセメンタイト(FetC)等の炭化物系析出物を増
加させ磁気特性を劣化させるので、その含有量を0.0
1%以下にする必要がある。なお、時効による特性劣化
を完全に防止するためには、C含有量は0.005%以
下に抑えるのが望ましい。
8) The composition C of the steel material increases carbide precipitates such as cementite (FetC) and deteriorates the magnetic properties, so the content should be reduced to 0.0.
It is necessary to keep it below 1%. Note that in order to completely prevent property deterioration due to aging, it is desirable to suppress the C content to 0.005% or less.

Si Siは、鋼の電気抵抗を上げて渦電流損を低減するのに
有効で、電磁綱板の所望グレードに応じて添加される。
Si Si is effective for increasing the electrical resistance of steel and reducing eddy current loss, and is added depending on the desired grade of the electromagnetic steel sheet.

しかしながら、3.5%を超えて含有させると鋼の冷間
加工性が劣化して圧延が難しくなることから、Si含有
量は3.5%以下と定めた。
However, if Si content exceeds 3.5%, the cold workability of the steel deteriorates and rolling becomes difficult, so the Si content was set at 3.5% or less.

n Mnは、Sによる鋼の熱間脆性防止並びに綱板の硬度調
整のために添加されるほか、電気抵抗を上げる作用をも
有している。しかしながら、Mn含有量が0.2%未満
であるとSによる熱間脆性を生じる恐れがあり、一方、
1.5%を超えて含有させると粒成長性が極端に劣化す
るようになることから、Mn含有量は0.2〜1.5%
と定めた。
n Mn is added to prevent hot embrittlement of steel due to S and to adjust the hardness of steel plates, and also has the effect of increasing electrical resistance. However, if the Mn content is less than 0.2%, hot embrittlement due to S may occur;
If the Mn content exceeds 1.5%, grain growth will be extremely degraded, so the Mn content should be 0.2 to 1.5%.
It was determined that

Pも綱板の硬度調整及び電気抵抗上昇の目的で添加され
るが、その含有量が0.15%を超えると冷間圧延性の
劣化を招くことから、P含有量は0.15%以下と定め
た。
P is also added for the purpose of adjusting the hardness of the steel plate and increasing the electrical resistance, but if the content exceeds 0.15%, it will cause deterioration of cold rollability, so the P content should be 0.15% or less. It was determined that

Sは硫化物系析出物を形成して粒成長性及び磁気特性を
劣化させるので、S含有量を0.015%以下に制限す
る必要がある。なお、S含有量は低いほど好ましく、出
来れば0.005%以下に抑えることが望ましい。
Since S forms sulfide-based precipitates and deteriorates grain growth and magnetic properties, it is necessary to limit the S content to 0.015% or less. Note that the S content is preferably as low as possible, and it is desirable to suppress it to 0.005% or less if possible.

sol、Al 5ot、Afl含有量の規制は本発明における重要な要
件の1つである。即ち、sof、Af含有量を低減する
ことにより熱延板焼鈍温度を高温とした場合でも吸窒を
生じることがなくなるので、吸窒を防ぎつつ結晶粒を十
分に粗大化し、磁気特性を飛躍的に改善することが可能
となる。しかしながら、sol八2へ有量が0.01%
を超えると上記効果が損なわれることから、sof、A
I含有量は0.01%と限定した。
Regulation of sol, Al 5ot, and Afl contents is one of the important requirements in the present invention. In other words, by reducing the sof and Af contents, nitrification will not occur even when the hot-rolled sheet annealing temperature is increased to a high temperature. Therefore, while preventing nitrification, the crystal grains can be sufficiently coarsened, and the magnetic properties can be dramatically improved. It becomes possible to improve the However, the amount in Sol82 is 0.01%
If sof,A is exceeded, the above effect will be impaired.
The I content was limited to 0.01%.

B)処理条件 熱延板は酸洗等により表面スケールを除去する必要があ
る。これは、圧延のままミルスケールが存在していると
焼鈍の際にスケールが還元される場合があり、この還元
が起きた後では脱スケールが著しく困難となる上、スケ
ールと地鉄の界面が活性化されて焼鈍の間に内部酸化を
生じ易くなるためである。
B) Treatment conditions It is necessary to remove surface scale from the hot rolled sheet by pickling or the like. This is because if mill scale is present during rolling, the scale may be reduced during annealing, and after this reduction occurs, descaling becomes extremely difficult, and the interface between the scale and the base steel becomes This is because it becomes activated and tends to cause internal oxidation during annealing.

熱延板の焼鈍に際しては、先ず雰囲気を非酸化性とする
必要がある。これは、綱板表面が酸化すると後工程で再
度酸洗する必要が生じるからである。
When annealing a hot rolled sheet, it is first necessary to make the atmosphere non-oxidizing. This is because if the surface of the steel plate becomes oxidized, it will be necessary to pickle it again in the subsequent process.

また、焼鈍雰囲気の露点が0℃を超えると内部酸化を生
じて磁気特性が劣化するので、焼鈍雰囲気の露点を0℃
以下と規制した。
In addition, if the dew point of the annealing atmosphere exceeds 0°C, internal oxidation will occur and the magnetic properties will deteriorate, so the dew point of the annealing atmosphere should be set to 0°C.
It was regulated as follows.

焼鈍温度は、850℃未満では飛躍的な特性改善に必要
な結晶粒径が得られず、一方、1000℃を超える温度
で焼鈍してもその効果が飽和する上、焼鈍炉の寿命が短
くなる等の障害が増える。
If the annealing temperature is less than 850°C, it will not be possible to obtain the crystal grain size necessary for dramatic property improvement, while if annealing is performed at a temperature exceeding 1000°C, the effect will be saturated and the life of the annealing furnace will be shortened. and other obstacles will increase.

従って、焼鈍温度を850〜1000℃と定めた。Therefore, the annealing temperature was set at 850 to 1000°C.

そして、焼鈍時の均熱時間を0.5〜20時間と限定し
たのは、均熱時間が0.5時間未満では十分な結晶粒成
長が起こらず、一方、20時間を超えて均熱しても効果
が飽和してしまうからである。
The reason why we limited the soaking time during annealing to 0.5 to 20 hours is because if the soaking time is less than 0.5 hours, sufficient crystal grain growth will not occur.On the other hand, if the soaking time is longer than 20 hours, This is because the effect becomes saturated.

なお、焼鈍は、十分な粒成長を行わしめるとの観点から
箱焼鈍とするのが適当である。
Note that box annealing is appropriately used for annealing from the viewpoint of achieving sufficient grain growth.

次に、本発明を実施例によって更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、第1表に示す如き成分組成を有する2、3鶴厚の
熱延綱板を準備した。
<Example> First, a hot-rolled steel sheet having a thickness of 2 to 3 mm and having a composition as shown in Table 1 was prepared.

次いで、この熱延綱板を酸洗してミルスケールを完全に
除去した後、露点を一30〜+30℃に第  1 表 (注2)*印は、本発明で規定する条件から外れている
ことを示す。
Next, this hot-rolled steel sheet was pickled to completely remove mill scale, and then the dew point was adjusted to -30 to +30°C. Show that.

調整した〔25%Hz75%NZ)の雰囲気中において
750〜1000°Cで0.1〜20時間均熱して焼鈍
した。
Annealing was carried out by soaking at 750 to 1000°C for 0.1 to 20 hours in an adjusted atmosphere of [25% Hz, 75% NZ].

その後、上記各熱延綱板を0.5++m厚にまで冷間圧
延し、更に950℃で1分の短時間再結晶焼鈍を施して
から30m1幅X 100 mm長の試験片に打ち抜き
、単板磁気測定器で磁気特性を測定した。
Thereafter, each hot-rolled steel sheet was cold-rolled to a thickness of 0.5++m, and then recrystallized for a short time of 1 minute at 950°C, and then punched into a test piece of 30m1 width x 100mm length to form a veneer. Magnetic properties were measured using a magnetometer.

この結果を、熱延板焼鈍温度、熱延板焼鈍時間及び熱延
板焼鈍雰囲気の露点で整理し第1図乃至第3図に示した
The results are summarized in terms of hot-rolled sheet annealing temperature, hot-rolled sheet annealing time, and dew point of hot-rolled sheet annealing atmosphere, and are shown in FIGS. 1 to 3.

第1図乃至第3図に示される結果からも、本発明で規定
した条件通りに製造された無方向性電磁綱板は鉄損及び
磁束密度が共に優れており、良好な磁気特性が備わって
いることが明らかであるのに対して、製造条件が本発明
の規定から外れているものでは磁気特性に劣ることが分
かる。
From the results shown in FIGS. 1 to 3, the non-oriented electromagnetic steel sheet manufactured according to the conditions specified in the present invention has excellent iron loss and magnetic flux density, and has good magnetic properties. On the other hand, it is clear that the magnetic properties are inferior when the manufacturing conditions deviate from the specifications of the present invention.

〈効果の総括〉 以上に説明した如く、この発明によれば、従来は難しか
った低鉄損化と高磁束密度化が両立された無方向性電磁
綱板を簡単かつ安定に製造することが可能となり、電力
撰失の少ない小型の鉄心として好適な材料を工業的にコ
スト安く提供できるなど、産業上極めて有用な効果がも
たらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to easily and stably manufacture a non-oriented electromagnetic steel sheet that achieves both low core loss and high magnetic flux density, which were previously difficult to achieve. This brings about extremely useful effects industrially, such as making it possible to provide a material suitable for small-sized iron cores with low power loss at a low industrial cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は、実施例で得られた無方向性電磁綱
板の磁気特性測定結果を示したグラフであり、第1図は
鋼種と熱延板焼鈍温度で整理した結果を、また第2図は
熱延板焼鈍時間で整理した結果を、そして第3図は熱延
板焼鈍雰囲気の露点で整理した結果をそれぞれ示してい
る。
Figures 1 to 3 are graphs showing the results of measuring the magnetic properties of non-oriented electromagnetic steel sheets obtained in Examples, and Figure 1 shows the results organized by steel type and hot-rolled plate annealing temperature. Further, FIG. 2 shows the results organized by the hot-rolled sheet annealing time, and FIG. 3 shows the results organized by the dew point of the hot-rolled sheet annealing atmosphere.

Claims (1)

【特許請求の範囲】 重量割合にて C:0.01%以下、Si:3.5%以下、Mn:0.
2〜1.5%、P:0.15%以下、S:0.015%
以下、sol.Al:0.01%以下で、残部が実質的
にFeより成る鋼を熱間圧延した後表面のスケールを除
去し、次いで露点が0℃以下の非酸化性雰囲気中におい
て850〜1000℃で0.5〜20時間の焼鈍を施す
ことを特徴とする、磁気特性の良好な無方向性電磁綱板
の製造法。
[Claims] In terms of weight percentage, C: 0.01% or less, Si: 3.5% or less, Mn: 0.
2-1.5%, P: 0.15% or less, S: 0.015%
Below, sol. After hot rolling a steel with Al: 0.01% or less and the remainder substantially Fe, the scale on the surface is removed, and then the steel is rolled at 850 to 1000°C in a non-oxidizing atmosphere with a dew point of 0°C or less. . A method for producing a non-oriented electromagnetic steel sheet with good magnetic properties, characterized by subjecting it to annealing for 5 to 20 hours.
JP30187988A 1988-11-29 1988-11-29 Manufacturing method of non-oriented electrical steel sheet with good magnetic properties Expired - Fee Related JPH0699749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30187988A JPH0699749B2 (en) 1988-11-29 1988-11-29 Manufacturing method of non-oriented electrical steel sheet with good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30187988A JPH0699749B2 (en) 1988-11-29 1988-11-29 Manufacturing method of non-oriented electrical steel sheet with good magnetic properties

Publications (2)

Publication Number Publication Date
JPH02149622A true JPH02149622A (en) 1990-06-08
JPH0699749B2 JPH0699749B2 (en) 1994-12-07

Family

ID=17902241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30187988A Expired - Fee Related JPH0699749B2 (en) 1988-11-29 1988-11-29 Manufacturing method of non-oriented electrical steel sheet with good magnetic properties

Country Status (1)

Country Link
JP (1) JPH0699749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323345A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
WO2013131211A1 (en) * 2012-03-09 2013-09-12 宝山钢铁股份有限公司 Method for producing silicon steel normalizing substrate
WO2013131212A1 (en) * 2012-03-08 2013-09-12 宝山钢铁股份有限公司 Method for producing silicon steel normalizing substrate
CN112195319A (en) * 2020-09-25 2021-01-08 张家港扬子江冷轧板有限公司 Normalizing treatment method for preventing non-oriented silicon steel from being internally oxidized

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323345A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
WO2013131212A1 (en) * 2012-03-08 2013-09-12 宝山钢铁股份有限公司 Method for producing silicon steel normalizing substrate
US9738946B2 (en) 2012-03-08 2017-08-22 Baoshan Iron & Steel, Co., Ltd. Method for producing silicon steel normalizing substrate
WO2013131211A1 (en) * 2012-03-09 2013-09-12 宝山钢铁股份有限公司 Method for producing silicon steel normalizing substrate
US9822423B2 (en) 2012-03-09 2017-11-21 Baoshan Iron & Steel, Co., Ltd. Method for producing silicon steel normalizing substrate
CN112195319A (en) * 2020-09-25 2021-01-08 张家港扬子江冷轧板有限公司 Normalizing treatment method for preventing non-oriented silicon steel from being internally oxidized

Also Published As

Publication number Publication date
JPH0699749B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
WO2012017933A1 (en) Process for producing non-oriented electromagnetic steel sheet
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
EP0315948B1 (en) Process for preparation of thin grain oriented electrical steel sheet having excellent iron loss and high flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH02149622A (en) Manufacture of nonoriented silicon steel sheet having superior magnetic property
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JPH0121851B2 (en)
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH075975B2 (en) Method for producing grain-oriented electrical steel sheet
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH03274247A (en) Nonoriented silicon steel sheet excellent in magnetic property
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees