JPH02149393A - Purification of water discharged from industrial waste including coal ash - Google Patents

Purification of water discharged from industrial waste including coal ash

Info

Publication number
JPH02149393A
JPH02149393A JP30004788A JP30004788A JPH02149393A JP H02149393 A JPH02149393 A JP H02149393A JP 30004788 A JP30004788 A JP 30004788A JP 30004788 A JP30004788 A JP 30004788A JP H02149393 A JPH02149393 A JP H02149393A
Authority
JP
Japan
Prior art keywords
soil
coal ash
purification
drain
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30004788A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
一男 佐藤
Masahiro Sakata
坂田 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP30004788A priority Critical patent/JPH02149393A/en
Publication of JPH02149393A publication Critical patent/JPH02149393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To substantially reduce the cost of the equipment for removing heavy metals from drain and neutralizing the same without the need of any operation cost by passing the drain through soil layer making use of its ability to adsorb elements in the soil and to neutralize acidic and alkaline water therein. CONSTITUTION:A heap of soil 1 is built up which is provided with a sufficiently large area for the base area of coal ash in an open-air storage and with a depressed part 1a to prevent drain from flowing out from the soil in order to obtain such depth of the soil heap as to permit the required degree of purification. When the coal ash 2 is piled in such depressed part 1a, the water drained off from the coal ash by the downward percolation of rainwater therethrough is purified through the soil 1 at the lower part thereof and the water thus purified is allowed to flow out from the soil base into rivers, etc. A ditch may alternatively be made around the coal ash in an open-air storage to collect the drain and then pass the same through the soil layer for water purification. Moreover, this method can be used for purification of the acidic or alkaline water containing harmful elements such as heavy metals drained off from the slag or the drain from other industrial waste.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は土壌の化学特性を利用した石炭灰等有害元素を
含む産業廃棄物排水の浄化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for purifying industrial wastewater containing harmful elements such as coal ash, which utilizes the chemical properties of soil.

(従来技術とその問題点) 石炭火力発電所から排出される多量の石炭灰は現在のと
ころその約45%が陸上投棄処分されているが、この石
炭灰には例えば第1表に示すような各種の有害物質が含
有されている。このため例えば降雨や融雪水の浸透があ
ると、野積された石炭灰からの排水中には生物に有害な
六価クロム、砒素等の重金属の溶出、更には一般にアル
カリ性水の浸出を招く。従って国が定める水質汚濁防止
法や地方公共団体が定める条令による排水基準を満たす
ための排水処理が必要となる場合がある。
(Prior art and its problems) At present, approximately 45% of the large amount of coal ash discharged from coal-fired power plants is disposed of on land. Contains various harmful substances. For this reason, for example, when rainfall or snowmelt water permeates, heavy metals such as hexavalent chromium and arsenic that are harmful to living things are leached into the wastewater from piled up coal ash, and alkaline water generally leaches out. Therefore, wastewater treatment may be necessary to meet the wastewater standards set by the national Water Pollution Control Act and the ordinances set by local governments.

そこで従来から逆性剤による酸性やアルカリ性水の中和
や、沈澱凝集法による重金属の除去、或いは吸着剤によ
る六価クロム、砒素、硼素などの元素別処理などが行わ
れている。しかしこのように大量に廃棄される石炭灰の
排水処理装置などによる浄化方法では設備に多額の費用
を要するばかりか、設備の運転管理にも多大の費用と労
力を必要とし、これらの費用は結局発電コストの上昇と
して跳ね返って来る。
Therefore, conventional methods include neutralizing acidic or alkaline water using a reversing agent, removing heavy metals using a precipitation-coagulation method, or treating elements such as hexavalent chromium, arsenic, and boron using an adsorbent. However, purification methods such as wastewater treatment equipment for coal ash, which are disposed of in large quantities, not only require a large amount of equipment costs, but also require a large amount of cost and labor to operate and manage the equipment, and these costs are ultimately This will come back as an increase in power generation costs.

このような問題は排出量が大量である第2表の如き有害
成分をもつ鉄鋼鉱滓についても同様である。
These problems also apply to steel slag, which contains harmful components such as those shown in Table 2, which are released in large quantities.

(発明の目的) 本発明は従来の排水処理装置などによる浄化に比べて設
備コストなどを大幅に低減できると同時に、運転コスト
が殆ど不要な新しい浄化方法の実現を目的とするもので
ある。
(Objective of the Invention) The present invention aims to realize a new purification method that can significantly reduce equipment costs compared to purification using conventional wastewater treatment equipment and the like, and at the same time requires almost no operating costs.

(問題点を解決するための本発明の手段)本発明は地域
的に含有成分の種類や量などにおいて多少の差はあって
も、土壌が石炭灰などからの排水の浄化成分を含有する
ことを明らかにし、土壌を介して排水させることにより
大量の排水を低い設備コストなどのもとに浄化できるこ
とを着想してなされたものである。
(Means of the present invention for solving the problems) The present invention provides that soil contains components for cleaning wastewater from coal ash, etc., even though there are some regional differences in the types and amounts of components contained. The idea was that large amounts of wastewater could be purified at low equipment costs by draining water through the soil.

例えば、第1図に示す各種土壌によるCr(Vl)の吸
着量図(測定者電力中央研究所)のように六価クロムは
有機物を多量に含む土壌によく吸着する。六価クロムは
陰イオンとして吸着するほかに(第1図の交換性Cr)
、有機物や第一鉄化合物によって三価クロムに還元され
たのち不溶性のクロマイト(FeCr204)や酸化ク
ロム(CrzC)+)として土壌に固定される(第1図
の非交換性Cr)。また砒素は土壌中の主に鉄の酸化物
や水和酸化物に吸着する。従ってこれらの成分を多く含
む土壌程排水中に含有される有害成分の除去に有効に働
く。
For example, as shown in the adsorption amount diagram of Cr (Vl) by various soils shown in FIG. 1 (measured by Central Research Institute of Electric Power Industry), hexavalent chromium is well adsorbed to soil containing a large amount of organic matter. In addition to being adsorbed as an anion, hexavalent chromium (exchangeable Cr in Figure 1)
After being reduced to trivalent chromium by organic matter and ferrous compounds, it is fixed in the soil as insoluble chromite (FeCr204) and chromium oxide (CrzC)+ (non-exchangeable Cr in Figure 1). Arsenic is also adsorbed mainly to iron oxides and hydrated oxides in soil. Therefore, the soil containing more of these components is more effective in removing harmful components contained in wastewater.

一方酸性水の中和には主に土壌中の炭酸塩によるものと
、土壌中の交換性のカルシウム1マグネシウム、カリウ
ム、ナトリウムが水素イオンと交換することによって行
われる。またアルカリ性水の中和は土壌中の交換性水素
と交換性アルミニウムが排水中の陽イオンとイオン交換
することによって行われる。従ってこれらの成分を多く
含む土壌程排水の中和に有効に働く。
On the other hand, acidic water is neutralized mainly by carbonates in the soil and by exchange of exchangeable calcium, magnesium, potassium, and sodium in the soil with hydrogen ions. Neutralization of alkaline water is carried out by ion exchange between exchangeable hydrogen and exchangeable aluminum in soil and cations in wastewater. Therefore, the soil containing more of these components is more effective at neutralizing wastewater.

従って例えば第2図に示す実施例図のように野積される
石炭灰の底面積に対して十分大きい面積をもたせ、かつ
排水が土壌外に流出しないように凹部(1a)を設けて
所要の浄化度が得られる厚さの土壌(1)を布設し、凹
部(1a)内に石炭灰(2)を野積すれば、降雨等の浸
透により石炭灰から浸出した排水は石炭灰下部の土壌(
1)によって浄化されて土壌底部からは清浄な水となっ
て自然流出し、河川などに流れこむ。
Therefore, for example, as shown in the example diagram shown in Fig. 2, the area is sufficiently large compared to the bottom area of the coal ash that is piled up in the open, and a recess (1a) is provided so that the wastewater does not flow out of the soil to carry out the necessary purification. If soil (1) is laid down with a thickness that provides a certain degree of moisture, and coal ash (2) is piled up in the recess (1a), drainage water leached from the coal ash due to permeation of rain etc. will be absorbed into the soil below the coal ash (2).
1), the water naturally flows out from the bottom of the soil as clean water and flows into rivers.

また例えば野積された石炭灰の周囲に集水溝を設けて排
水を集水したのち、これを土壌層に通すことにより浄化
を行いうる。
Furthermore, for example, water collection ditches may be provided around piled up coal ash to collect wastewater, and then the water can be purified by passing it through a soil layer.

次に実験結果の一例について説明する。Next, an example of experimental results will be explained.

北海道稚内型において褐色森林上を採取し、これを底部
に土壌が抜は落ちないプラスチック製の目皿を張った直
径が20cmのアクリル製の円筒体(3)内に充填して
、厚さが82.4cmの円柱状土壌層を形成し、その上
部から六価クロム(Ippm)、砒素(0,1ppm)
、モリブデン(10ppm)を含有する水溶液を降雨強
度30mm/hで注水する方法で実験した。なおこのと
き使用された土壌の性状は第3表の通りである。土壌円
筒内における水の平均流速は6.5cm/hであったた
め、793時間経過後に実験を終了した時点で土壌水は
51.5m移動したことになる。
In the Hokkaido Wakkanai model, samples were collected from brown forests, and the samples were filled into an acrylic cylinder (3) with a diameter of 20 cm and a plastic perforated plate on the bottom that prevents soil from falling out. A cylindrical soil layer of 82.4 cm is formed, and from the top it contains hexavalent chromium (Ippm) and arsenic (0.1 ppm).
An experiment was conducted by pouring an aqueous solution containing molybdenum (10 ppm) at a rainfall intensity of 30 mm/h. The properties of the soil used at this time are shown in Table 3. Since the average flow velocity of water in the soil cylinder was 6.5 cm/h, the soil water had traveled 51.5 m when the experiment ended after 793 hours.

一方策3図に示すカラム土壌の元素含有量の鉛直分布図
(793時間経過後)のように、上記成分は土壌に強く
吸着したため僅か20〜60cu+の移動であった。
On the other hand, as shown in the vertical distribution map of the element content of the column soil (after 793 hours) shown in Figure 3, the above components were strongly adsorbed to the soil, so that only 20 to 60 cu+ were transferred.

これから明らかなように元素の移動は土壌への吸着によ
って土壌水の移動に比べて遅延する。
As is clear from this, the movement of elements is delayed compared to the movement of soil water due to adsorption to the soil.

従って石炭灰の陸上投棄場所において例えば降雨の都度
排水の成分を測定し、浄化度が所定値を満足できなくな
ったとき、投棄場所を移すことにより、常に必要な浄化
度を保って排水でき汚濁を防止できる。
Therefore, at land dumping sites for coal ash, for example, the components of wastewater are measured every time it rains, and when the degree of purification no longer satisfies a predetermined value, by moving the dumping site, it is possible to always maintain the required degree of cleanliness and reduce pollution. It can be prevented.

以上本発明を石炭灰を例にとって説明したが、重金属等
有害元素を含んだり酸性、アルカリ性水を排出する鉱滓
その他の各種産業廃棄物から排水の浄化に用いうる。
Although the present invention has been described above using coal ash as an example, it can be used to purify wastewater from slag and other various industrial wastes that contain harmful elements such as heavy metals or discharge acidic or alkaline water.

(発明の効果) 以上の説明から明らかなように、単に土壌層を通過させ
るだけで産業廃棄物排水の重金属等有害元素の除去と排
水の中和が同時に行われるばかりでなく、その設備コス
トは土壌を利用するものであるので従来の方式に比べて
大幅に低(、しかも浄化に用いる土壌面に投棄すればよ
く沈澱装置や装置の稼動に必要な吸着剤などの資材を全
く必要としない。従って、特に石炭火力発電所石炭灰や
製鉄所からの鉱滓など大量に排出される産業廃棄物から
の排水の浄化にすぐれた効果を発揮する。
(Effects of the invention) As is clear from the above explanation, not only can harmful elements such as heavy metals from industrial waste water be removed and neutralized at the same time by simply passing it through the soil layer, but the equipment cost is also low. Since it uses soil, it is significantly less expensive than conventional methods (and it only needs to be dumped on the soil surface used for purification, and it does not require any materials such as sedimentation equipment or adsorbents needed to operate the equipment). Therefore, it is particularly effective in purifying wastewater from industrial wastes that are discharged in large quantities, such as coal ash from coal-fired power plants and slag from steel plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種土壌によるCr(Vl)の吸着図、第2図
は本発明の実施例図、第3図はカラム土壌の元素吸着量
の鉛直分布図である。 (1)・・・土壌、 (1a)・・・凹部、 (2)・
・・石炭灰。
FIG. 1 is an adsorption diagram of Cr (Vl) by various soils, FIG. 2 is an example diagram of the present invention, and FIG. 3 is a vertical distribution diagram of the amount of element adsorption in column soil. (1)...Soil, (1a)...Concavity, (2)・
...Coal ash.

Claims (1)

【特許請求の範囲】[Claims] (1)排水を土壌層に通すことにより、土壌中の元素吸
着能力、酸性水、アルカリ性の中和能力成分を利用して
、排水中の重金属の除去、排水の中和を行うことを特徴
とする石炭灰等産業廃棄物排水の浄化方法。
(1) By passing wastewater through the soil layer, heavy metals in the wastewater are removed and the wastewater is neutralized by utilizing the elemental adsorption capacity, acidic water, and alkaline neutralizing ability components in the soil. A method for purifying industrial wastewater such as coal ash.
JP30004788A 1988-11-28 1988-11-28 Purification of water discharged from industrial waste including coal ash Pending JPH02149393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30004788A JPH02149393A (en) 1988-11-28 1988-11-28 Purification of water discharged from industrial waste including coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30004788A JPH02149393A (en) 1988-11-28 1988-11-28 Purification of water discharged from industrial waste including coal ash

Publications (1)

Publication Number Publication Date
JPH02149393A true JPH02149393A (en) 1990-06-07

Family

ID=17880061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30004788A Pending JPH02149393A (en) 1988-11-28 1988-11-28 Purification of water discharged from industrial waste including coal ash

Country Status (1)

Country Link
JP (1) JPH02149393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU714496B2 (en) * 1996-07-19 2000-01-06 Jiri Kvasnicka The soil filter method for removal of heavy metals from contaminated water
CN102849871A (en) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 STD type technology and system for recovering condensate water of coal moisture control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU714496B2 (en) * 1996-07-19 2000-01-06 Jiri Kvasnicka The soil filter method for removal of heavy metals from contaminated water
CN102849871A (en) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 STD type technology and system for recovering condensate water of coal moisture control

Similar Documents

Publication Publication Date Title
Gibert et al. Municipal compost-based mixture for acid mine drainage bioremediation: Metal retention mechanisms
Wang et al. Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff
Sarkar et al. Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation
Thornton et al. Leachate treatment by coagulation and precipitation
Bolton et al. Elemental composition and speciation of some landfill leachates with particular reference to cadmium
Heal et al. Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil
Renman et al. Metal removal by bed filter materials used in domestic wastewater treatment
JPH02149393A (en) Purification of water discharged from industrial waste including coal ash
CN106629914A (en) Method for remediating heavy metal polluted water in situ through osmotic response brick and application
Athanasiadis et al. On-site infiltration of a copper roof runoff: Role of clinoptilolite as an artificial barrier material
KR20130087073A (en) A reactive barrier comprising a recycling aggregate and a purificating method of pollution materials using the same
JPS61101288A (en) Treatment for converting noxious waste to reclaiming material
RU2713346C1 (en) Method for detoxification of soil using natural sorbents
Reemtsma et al. Infiltration of combined sewer overflow and tertiary treated municipal wastewater: An integrated laboratory and field study on various metals
CN106746183B (en) A kind of highway sewage collecting processing system
Shabalala Utilisation of Pervious Concrete for Removal of Heavy Metals in Contaminated Waters: Opportunities and Challenges
Kronfeld et al. Aspects of trace metal contamination in the coastal rivers of Israel
Sellner Evaluating steel byproducts and natural minerals for phosphate adsorption from agricultural subsurface drainage
Lounate et al. Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment
Hallberg et al. Removal of heavy metals from road runoff by filtration in granular slag columns
Pandey et al. Reducing road runoff contaminants through low-cost treatment wall (filter) systems
Dell et al. Bioretention Media Mixtures-A Literature Review
JP2001239227A (en) Reclamation structure of waste and waste treating method using the same
CN106118685A (en) A kind of concave herbaceous field improvement layer filler purified for road rain water water drainage
KR20100119678A (en) Permeable reactive barriers containing waste foundry sands and method of remediation of contaminated groundwater with zinc using permeable reactive barriers