JPH0214805A - Production of expanded graphite and heating furnace for producing expanded graphite - Google Patents

Production of expanded graphite and heating furnace for producing expanded graphite

Info

Publication number
JPH0214805A
JPH0214805A JP63160714A JP16071488A JPH0214805A JP H0214805 A JPH0214805 A JP H0214805A JP 63160714 A JP63160714 A JP 63160714A JP 16071488 A JP16071488 A JP 16071488A JP H0214805 A JPH0214805 A JP H0214805A
Authority
JP
Japan
Prior art keywords
expanded graphite
graphite
heating
zone
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63160714A
Other languages
Japanese (ja)
Inventor
Yutaka Yamashita
豊 山下
Masanori Tomihara
冨原 政則
Koji Sakawaki
坂脇 弘二
Shigeaki Kido
城戸 重明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP63160714A priority Critical patent/JPH0214805A/en
Publication of JPH0214805A publication Critical patent/JPH0214805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable relatively simple production of homogenous expanded graphite by heat-treating an expanded graphite raw material consisting of a graphite intercalation compound by a specific method. CONSTITUTION:An expanded graphite raw material consisting of a graphite intercalation with preferably 4-20% moisture content is introduced into a vertically installed hollow heating furnace of a construction, having a heating zone preferably at 700-1200 deg.C in the upper part and a cooling zone in the lower part and capable of preferably introducing an inert gas into at least a heating zone and passed from the upper to the lower sides by natural falling to provide expanded graphite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は黒鉛層間化合物を熱処理することにより膨張黒
鉛を製造する方法およびそれに使用する膨張黒鉛製造用
加熱炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing expanded graphite by heat treating a graphite intercalation compound, and a heating furnace for producing expanded graphite used therein.

〔従来の技術〕[Conventional technology]

一般に膨張黒鉛は、天然黒鉛、キッシュ黒鉛、熱分解黒
30など高度に結晶構造の発達した黒鉛を濃硫酸および
濃硝酸、濃硫酸および過マンガン酸カリウム溶液などの
強酸化剤の処理液で酸処理して黒鉛層間化合物を生成さ
せ、水洗したのち酸処理黒鉛を急速に加熱することで得
られる。
Generally, expanded graphite is produced by treating graphite with a highly developed crystal structure, such as natural graphite, Quiche graphite, and pyrolytic black 30, with a treatment solution containing a strong oxidizing agent such as concentrated sulfuric acid, concentrated nitric acid, concentrated sulfuric acid, and potassium permanganate solution. It can be obtained by rapidly heating acid-treated graphite after washing with water to generate a graphite intercalation compound.

従来、膨張黒鉛製造炉はロータリーキルン方式でガスバ
ーナーによる直接加熱炉が採用されているが、ガスバー
ナーによる直接加熱炉では熱の付与が瞬間的であるため
、1000℃以下の温度での加熱では膨張に必要な熱が
不充分となり、一部で未膨張黒鉛が発生する場合がある
。このため膨張黒鉛をシート状に成型した後、フレーム
で再加熱し未膨張黒鉛を膨張させる必要があった。
Conventionally, expanded graphite manufacturing furnaces use a rotary kiln method with a direct heating furnace using a gas burner, but since heat is applied instantaneously in a direct heating furnace using a gas burner, heating at a temperature below 1000°C will cause expansion. The heat required for this may be insufficient, and unexpanded graphite may be generated in some areas. For this reason, it was necessary to mold the expanded graphite into a sheet and then reheat it in a frame to expand the unexpanded graphite.

それを避けるためには、1200℃以上の高温で処理す
る必要があるが、この温度で連続使用するためには材質
の問題があり、加熱炉内をシリカ−アルミナ系無機繊維
等の成形材でライニングする方法(特開昭62−615
28 )などが提案されている。
In order to avoid this, it is necessary to process at a high temperature of 1200℃ or higher, but there is a problem with the material for continuous use at this temperature, so the inside of the heating furnace is made of molded material such as silica-alumina-based inorganic fiber. Method of lining (Japanese Unexamined Patent Publication No. 62-615
28) have been proposed.

他の方式としてマイクロ波による製造法が開始されてい
る(公告昭和60−59173 )。これはマイクロ波
を照射することにより黒鉛層間化合物を発熱膨張化させ
ることを特徴とする製造法である。
As another method, a manufacturing method using microwaves has been started (public notice 1986-59173). This is a manufacturing method characterized by exothermic expansion of the graphite intercalation compound by irradiating it with microwaves.

(発明が解決しようとする課題) しかしながら、前記キルン方式では1200℃以上の高
温で処理する必要があるばかりでなく、黒鉛層間化合物
の吹出し用ノズルおよびガスバーナーの配置等により、
キルン方式では設備の大型化が避けられず、さらに温度
が高いため排ガス処理設備も大きくならざるを得ないと
いう問題があり、ざらに窯炉中の黒鉛層間化合物の、滞
留時間もバラつきショートパスが発生したり圧縮が起こ
るため製品の品質が不安定化するという問題もあった。
(Problems to be Solved by the Invention) However, in the kiln method, not only is it necessary to process at a high temperature of 1200°C or higher, but also the arrangement of the nozzle for blowing out the graphite intercalation compound and the gas burner, etc.
The kiln method has the problem of unavoidably increasing the size of the equipment, and also has the problem of having to increase the size of the exhaust gas treatment equipment due to the high temperature. There was also the problem that product quality became unstable due to generation and compression.

またマイクロ波による方法では酸処理黒鉛粒子は電気的
絶縁領域に保持しなければならず、このため具体的には
電気絶縁体と呼ばれる容器、室が必要であり、さらに連
続的に処理しようとする場合はベルト方式またはターン
テーブル方式を採用する必要があり装置が大型化する傾
向がある。またマイクロ波で膨張黒鉛を製造する場合処
理時間が30秒程度では残留硫黄が高く、少なくとも3
分以上必要であり、空気雰囲気のため酸化され歩留の低
下につながるという欠点がある。
In addition, in the microwave method, the acid-treated graphite particles must be kept in an electrically insulating area, which requires a container or chamber called an electrical insulator, and furthermore, the acid-treated graphite particles must be kept in an electrically insulating area. In this case, it is necessary to use a belt method or a turntable method, which tends to increase the size of the device. In addition, when producing expanded graphite using microwaves, residual sulfur is high when the processing time is about 30 seconds, and at least 3
The disadvantage is that the process requires more than 1 minute, and the air atmosphere causes oxidation, leading to a decrease in yield.

本発明は上記従来法の欠点を解消し比較的簡単なプロセ
スにより均質な膨張黒鉛を製造するための方法およびそ
のための加熱炉を提供することを目的とする。
An object of the present invention is to provide a method for producing homogeneous expanded graphite by a relatively simple process and a heating furnace for the same by eliminating the drawbacks of the conventional methods described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、黒鉛層間化合物よりなる膨張黒鉛原料
を加熱処理して膨張黒鉛を製造する方法において、面記
膨張黒鉛原料を、上部に加熱ゾーン、下部に冷却ゾーン
を有する垂直に設置された中空の加熱炉中を自然落下に
より上方から下方へ通過させる間に膨張黒鉛とすること
により、容易に品質の安定した膨張黒鉛を製造すること
が可能となり、さらに本発明によれば上部に加熱手段を
外部に備えた加熱ゾーン、下部に放熱のための冷却ゾー
ンを有する垂直に設置された中空のたて長の加熱炉であ
って、該加熱ゾーンの上方に原料ホッパーからの原料供
給口、該冷却ゾーンの下方に生成した膨張黒鉛の取出口
を備え、さらに排ガス排出口および必要により不活性ガ
スの供給口を所望の位置に備えることにより膨張黒鉛製
造用加熱炉における使用熱量の削減、本体設備及び排ガ
ス処理設備の簡略化が可能となる。
According to the present invention, in a method for producing expanded graphite by heat-treating an expanded graphite raw material made of a graphite intercalation compound, the planar expanded graphite raw material is vertically installed with a heating zone at the top and a cooling zone at the bottom. By forming the expanded graphite while passing through the hollow heating furnace from the top to the bottom by gravity, it is possible to easily produce expanded graphite with stable quality.Furthermore, according to the present invention, the heating means is provided in the upper part. It is a vertically installed hollow vertical heating furnace that has a heating zone with an external heating zone and a cooling zone for heat radiation at the bottom, and above the heating zone there is a raw material supply port from a raw material hopper, a By providing an outlet for the expanded graphite generated below the cooling zone, and further providing an exhaust gas outlet and, if necessary, an inert gas supply port at the desired position, the amount of heat used in the heating furnace for producing expanded graphite can be reduced, and the main equipment And it becomes possible to simplify the exhaust gas treatment equipment.

本発明では黒鉛層間化合物よりなる膨張黒鉛原料を用い
るが該黒鉛層間化合物の原料としては天然黒鉛、熱分解
黒鉛およびキッシュ黒鉛など高度に結晶構造の発達した
黒鉛が使用でき、特に天然鱗片状黒鉛が好ましく用いら
れる。該黒鉛層間化合物は従来法で製造されたものを用
いることができる、すなわち酸処理方法により黒鉛層間
化合物を製造するには従来性なわれているように上記黒
鉛粒子を好ましくは粒径2mm以下に粉砕したのち強酸
化性の酸溶液たとえば発煙硫酸、発煙硝酸、濃硫酸と濃
硝酸との混酸、濃硫酸と塩素酸カリなどの混合物により
処理すればよく、または黒鉛層間侵入物質であるBF3
.H3PO4゜H2SO4,HNO3等を含む電解液を
用い電解法によって上記層間化合物を作ることもできる
In the present invention, an expanded graphite raw material made of a graphite intercalation compound is used. As a raw material for the graphite intercalation compound, graphite with a highly developed crystal structure such as natural graphite, pyrolytic graphite, and quiche graphite can be used. In particular, natural flaky graphite is used as a raw material for the graphite intercalation compound. Preferably used. The graphite intercalation compound can be produced by a conventional method. In other words, in order to produce a graphite intercalation compound by an acid treatment method, the graphite particles are preferably reduced to a particle size of 2 mm or less, as is conventionally used. After pulverization, it may be treated with a strong oxidizing acid solution such as fuming sulfuric acid, fuming nitric acid, a mixed acid of concentrated sulfuric acid and concentrated nitric acid, a mixture of concentrated sulfuric acid and potassium chlorate, or BF3, which is a graphite interlayer intercalating substance.
.. The above-mentioned intercalation compound can also be produced by an electrolytic method using an electrolytic solution containing H3PO4°H2SO4, HNO3, etc.

更にまた。別の方法で黒鉛層間化合物を製造しても良く
本発明は黒鉛層間化合物の製造法に依存せず実施可能で
あり、市販の黒鉛層間化合物を用いても良い。
Yet again. The graphite intercalation compound may be produced by another method, and the present invention can be implemented without depending on the method for producing the graphite intercalation compound, and a commercially available graphite intercalation compound may be used.

但し、得られた層間化合物の水分は4〜20%好ましく
は5〜10%とすることが望ましい。4%より低い水分
では膨張化が不充分となり、その結果、内部に0.6〜
1.0%の残留硫黄が残るため好ましくない。一方水分
が多くなりすぎるとフィート詰りを起こしたり、また蒸
発潜熱ロスが大きくなり、その分急速昇温か不可能にな
る結果、膨張化が不完全となり未膨張黒鉛が発生するな
どの問題か起こり、水分が50%になると膨張黒鉛を得
ることができなくなる。このような膨張の不完全化を防
ぐには長い加熱ゾーンと高温が必要となり好ましくない
However, it is desirable that the moisture content of the obtained intercalation compound be 4 to 20%, preferably 5 to 10%. If the moisture content is lower than 4%, expansion will be insufficient, and as a result, 0.6~
This is not preferred because 1.0% of residual sulfur remains. On the other hand, if there is too much moisture, it may cause clogging, and the loss of latent heat of vaporization will increase, making it impossible to rapidly heat up the temperature, resulting in incomplete expansion and problems such as the generation of unexpanded graphite. When the water content reaches 50%, expanded graphite cannot be obtained. Preventing such incomplete expansion requires a long heating zone and a high temperature, which is undesirable.

上述した方法等により得られた黒鉛層間化合物は次に、
上部に加熱ゾーン、下部に冷却ゾーンを有する垂直に設
置された中空の加熱炉に投入される。すなわち、この層
間化合物を上部からロータリーフィーダー、振動フィー
ダー、リニヤフィーダー等を使用して一定量炉内へ自然
落下させ加熱ゾーンで急激に膨張させる。膨張後の膨張
黒鉛はゾーン内を徐々に落下し、その間に黒鉛層間侵入
物質がSo、、No2等のガスとして離脱する。
The graphite intercalation compound obtained by the method described above is then
It is placed in a vertically installed hollow furnace with a heating zone at the top and a cooling zone at the bottom. That is, a fixed amount of this intercalation compound is allowed to fall naturally into the furnace from above using a rotary feeder, vibratory feeder, linear feeder, etc., and is rapidly expanded in the heating zone. The expanded graphite after expansion gradually falls within the zone, and during this time, the graphite interlayer penetrating substances are released as gases such as So, No2, etc.

その後膨張黒鉛は冷却ゾーンを自然落下で通過し下部に
捕集される。
The expanded graphite then passes through the cooling zone by gravity and is collected at the bottom.

ここで自然落下とは自由落下に後述するガスの送入、吸
引及び器壁、内部設置のヒーター、撹拌装置等への接触
などによる力が作用した場合も含めたところの落下を意
味する。
Here, the term "natural fall" means a fall that includes the case where a force is applied to the free fall due to the introduction of gas, suction, and contact with the container wall, internally installed heater, stirring device, etc., which will be described later.

このときの加熱ゾーンの温度は好ましくは700〜12
00℃、さらに好ましくは900〜1100℃であり加
熱ゾーン滞留時間は1〜30秒好ましくは1〜10秒で
あるが、滞留時間、加熱ゾーン温度は原料含水率、粒度
等により適宜設定すればよい。一般に加熱ゾーン温度7
00℃未満では膨張不充分で膨張率100倍以下となり
、嵩密度が高く、残留硫黄も多くなるので好ましくない
。一方、1200℃を越えると酸化による消耗を防ぐた
め厳密な雰囲気制御が必要となる。またエネルギーロス
も大きくなるので通常は1200℃以下で実施するのが
好ましい。
The temperature of the heating zone at this time is preferably 700 to 12
00°C, more preferably 900 to 1100°C, and the residence time in the heating zone is 1 to 30 seconds, preferably 1 to 10 seconds, but the residence time and heating zone temperature may be set as appropriate depending on the moisture content of the raw material, particle size, etc. . Generally heating zone temperature 7
If the temperature is lower than 00°C, the expansion will be insufficient and the expansion rate will be less than 100 times, the bulk density will be high, and the amount of residual sulfur will increase, which is not preferable. On the other hand, when the temperature exceeds 1200°C, strict atmosphere control is required to prevent consumption due to oxidation. Furthermore, energy loss also increases, so it is usually preferable to carry out the process at 1200°C or lower.

滞留時間は加熱ゾーン温度が低い場合長く、高い場合短
くなるか、いずれにせよ1秒未満では加熱ゾーン温度7
00℃未満の場合と同様の理由により好ましくなく、3
0秒を越えると低温ではガスの発生がゆるやかとなり充
分な膨張効果が得られず、高温では酸化による消耗の恐
れがあるので好ましくない。又、エネルギーロス、ゾー
ンの長さ等の面から必要以上に滞留させることも意味が
ない。
The residence time is longer at lower heating zone temperatures and shorter at higher heating zone temperatures, or in any case less than 1 second at heating zone temperature 7.
It is unfavorable for the same reason as the case below 00℃, and 3
If the time exceeds 0 seconds, gas generation will be slow at low temperatures and a sufficient expansion effect will not be obtained, and at high temperatures there is a risk of consumption due to oxidation, which is not preferable. Furthermore, it is meaningless to allow the water to stay longer than necessary in terms of energy loss, zone length, etc.

加熱ゾーン、及びつづく冷却ゾーンにおける滞留時間は
原料および膨張黒鉛の加熱炉内の移動が基本的には自然
落下によるので、それぞれのゾーンの長さに依存するが
系外からの空気あるいは不活性ガスの導入、もしくは吸
引等によりフィード量、滞留時間等を制御することもで
き上記記載の範囲内で適宜設定することが可能である。
The residence time in the heating zone and subsequent cooling zone depends on the length of each zone, since the movement of raw materials and expanded graphite within the heating furnace is basically due to natural fall, but air or inert gas from outside the system is dependent on the length of each zone. The feed amount, residence time, etc. can also be controlled by introducing or suctioning, and can be appropriately set within the ranges described above.

加熱ゾーンが比較的低温域においては、空気中の熱処理
でも充分であるが、1000〜1200℃で処理する場
合には窒素等の不活性ガスを導入し酸素分圧を低下させ
て行なうとさらに好ましい結果が得られる。不活性ガス
の導入は加熱炉のどこから行なっても良いが、少なくと
も加熱ゾーンが不活性雰囲気に保持されるように導入す
ることが望ましい。又加熱ゾーンを加熱する方法として
は加熱ゾーンの外周部より加熱する間接加熱方式である
ため熱源としては電気、ガス、油等どんな手段によって
もよい。加熱ゾーンを通過した膨張黒鉛は冷却ゾーンへ
と自然落下していくが、冷却ゾーンは特に冷却装置等に
より低温にする必要はなく、膨張黒鉛が冷却ゾーン中で
200℃以下加熱炉の下部取出口下の温度で30〜40
℃程度となっていればよく、通常は自然放熱による放冷
で充分である。
When the heating zone is in a relatively low temperature range, heat treatment in air is sufficient, but when processing at 1000 to 1200°C, it is more preferable to introduce an inert gas such as nitrogen to lower the oxygen partial pressure. Get results. Although the inert gas may be introduced from anywhere in the heating furnace, it is desirable to introduce the inert gas so that at least the heating zone is maintained in an inert atmosphere. Further, since the method of heating the heating zone is an indirect heating method of heating from the outer periphery of the heating zone, the heat source may be any means such as electricity, gas, oil, etc. The expanded graphite that has passed through the heating zone naturally falls into the cooling zone, but there is no need to use a cooling device to lower the temperature in the cooling zone. 30-40 at lower temperature
℃ or so, and cooling by natural heat radiation is usually sufficient.

以上の方法により得られる膨張黒鉛は、使用する原料黒
鉛粒子の粒径が小さくなると膨張率が小さくなり、嵩密
度は大きくなる傾向にあるが、大略膨張率10〜250
倍、嵩密度が0.0025〜0.04g/cm3の範囲
に入るもので、残留硫黄分も0.1〜0.5%と少なく
、良好な品質を有している。又形状も自然落下のため、
キルン方式のように圧縮されておらず、各種成形体原料
として非常に取扱が容易なものである。又この様にして
得られた膨張黒鉛は好ましく黒鉛シート、パイプ、ガス
ケット、パツキン、燃料電池様電極など黒鉛成形体原料
として用いることができる。
Expanded graphite obtained by the above method has an expansion coefficient of approximately 10 to 250, although the expansion coefficient tends to decrease as the particle size of the raw material graphite particles used decreases, and the bulk density tends to increase.
The bulk density falls within the range of 0.0025 to 0.04 g/cm3, the residual sulfur content is low at 0.1 to 0.5%, and the quality is good. Also, the shape is due to natural fall,
Unlike the kiln method, it is not compressed and is very easy to handle as a raw material for various molded products. Further, the expanded graphite thus obtained can be preferably used as a raw material for graphite molded bodies such as graphite sheets, pipes, gaskets, packings, and fuel cell-like electrodes.

次に上記製造法にもとず〈加熱炉について説明する。本
発明の加熱炉の構成としては第1図に示すように基本的
には垂直に設置された中空のたて長の加熱炉で上方より
、上部ゾーンA(原料が炉内に入ってから加熱ゾーンに
到るまでの部分)、加熱ゾーンBおよび冷却ゾーンCよ
りなるものである。
Next, the heating furnace will be explained based on the above manufacturing method. As shown in Fig. 1, the heating furnace of the present invention basically consists of a vertically installed hollow vertical heating furnace that is heated from above in the upper zone A (raw material is heated after it enters the furnace). zone), heating zone B, and cooling zone C.

他に具備すべき主な機能としては、 原料供給手段(炉の上部、ホッパー1、フィーダ4を含
む) 製品排出口 (炉の下部、製品受器11、ベルトコンベ
ア等へ通じる) 排ガス出口 (自然排気または吸引) 必要により不活性ガス供給口(流速制御および雰囲気制
御)などである。
Other main functions that should be provided include: Raw material supply means (including the upper part of the furnace, hopper 1, and feeder 4), Product discharge port (leading to the lower part of the furnace, product receiver 11, belt conveyor, etc.), Exhaust gas outlet (natural Exhaust or suction), inert gas supply port (flow rate control and atmosphere control), etc. if necessary.

加熱ゾーン長さ、冷却ゾーン長さ、ゾーンの断面積等は
加熱ゾーン温度、ゾーン滞留時間、黒鉛原料等により適
宜設定し前述製造方法の条件を満たすようにする。加熱
ゾーンの加熱は、電気ヒーター COG、油などの燃料
炉等による間接加熱であり通常は外周部を加熱するが内
部にヒーター、熱交換器を入れてもよい。
The length of the heating zone, the length of the cooling zone, the cross-sectional area of the zone, etc. are appropriately set depending on the heating zone temperature, zone residence time, graphite raw material, etc., so as to satisfy the conditions of the aforementioned manufacturing method. The heating zone is heated indirectly by an electric heater (COG), a fuel furnace using oil, etc., and usually the outer circumference is heated, but a heater or a heat exchanger may be installed inside.

加熱部の材質としてはSUS:lIO3、セラミック材
料等の耐熱、耐酸性材料を用いることが望ましいが本発
明の方法によれば加熱部温度は1200℃を越える高温
である必要がないので特に高温耐性のためのシリカ−ア
ルミナ系無機繊維等でのライニングは必要とはならない
。又加熱炉の内部に必要により撹拌手段を設けてもよく
冷却ゾーン下部より製品受器の上部にかけて、発生ガス
や不活性ガス(N2)との分離を容易にするため)Vい
をするスカート部を設けてもよい。
It is desirable to use heat-resistant and acid-resistant materials such as SUS:IO3 and ceramic materials as the material for the heating part, but according to the method of the present invention, the temperature of the heating part does not need to exceed 1200°C, so it is particularly resistant to high temperatures. There is no need for lining with silica-alumina-based inorganic fibers or the like. In addition, stirring means may be provided inside the heating furnace if necessary. A skirt section with a V-shape extending from the lower part of the cooling zone to the upper part of the product receiver (in order to facilitate separation from generated gas and inert gas (N2)) may be provided.

本発明の加熱炉の構成は以りであり、該構成を有してい
れば形状は特に限定されるものではなく製造条件、製造
規模等に応じて所望の形状を選択することができる。
The configuration of the heating furnace of the present invention is as follows, and as long as it has this configuration, the shape is not particularly limited, and a desired shape can be selected depending on manufacturing conditions, manufacturing scale, etc.

第2図は排ガスを加熱炉の下部より行ない取出口より膨
張黒鉛をホッパー+1aに連続的に取り出し黒鉛シート
の連続製造装置と接続させるように設置した例であり、
このようにして加熱炉と次工程と接続するとこともでき
る。不活性ガスとじてはN2.CO2等あるが主に用い
られるのはN2でその導入方法としては第3図に示した
様に加熱炉の上部、下部の両方から行なうことができ、
加熱ゾーンのみに導入するのであれば加熱ゾーンの部分
に導入することもできる。排ガス方法も上部、下部の他
適当な位置から行なえば良い。
Figure 2 shows an example in which exhaust gas is introduced from the lower part of the heating furnace and expanded graphite is continuously taken out from the outlet into hopper +1a and connected to a continuous graphite sheet manufacturing device.
In this way, the heating furnace can also be connected to the next process. The inert gas is N2. There are CO2, etc., but the main one used is N2, which can be introduced from both the upper and lower parts of the heating furnace as shown in Figure 3.
If it is introduced only into the heating zone, it can also be introduced into the heating zone. The exhaust gas may be discharged from any suitable position other than the upper or lower part.

大型の加熱炉の場合、加熱炉断面を長方形にし熱交率を
上げることもできる。又大型の場合投入ゾーン(上部ゾ
ーン)は比較的小さい比率で設定することができる。第
4図に示した大型の加熱炉の寸法の1例を挙げれば各ゾ
ーンの高さが投入ゾーン600mm 、加熱ゾーン30
00o+n+、冷却ゾーン1000m11.厚さ5(1
〜100mm 、幅(奥行)  (50〜100)xn
(整数)mm程度である。この場合不活性ガスの送気の
装備はしていない。第5図は第4図と同様大型加熱炉の
例であり図中の数値はffi■寸法を表している。この
場合N2ガス送気を加熱炉上部より行ない、排ガスを下
部より行なうようになフている。フィーダにはロータリ
ーバルブ4aを用い、加熱源7は電気ヒーターにより加
熱する方法をとっている。第6図は大型加熱炉の上部構
造の斜面図でフィーダー4aを2ケ所設けている。
In the case of a large heating furnace, the heat exchange rate can be increased by making the heating furnace cross section rectangular. Further, in the case of a large size, the charging zone (upper zone) can be set at a relatively small ratio. An example of the dimensions of the large heating furnace shown in Figure 4 is that the height of each zone is 600 mm for the charging zone and 30 mm for the heating zone.
00o+n+, cooling zone 1000m11. Thickness 5 (1
~100mm, width (depth) (50-100) xn
(Integer) It is about mm. In this case, no inert gas supply equipment was used. FIG. 5, like FIG. 4, is an example of a large-sized heating furnace, and the numerical values in the figure represent ffi■ dimensions. In this case, N2 gas is supplied from the upper part of the heating furnace, and exhaust gas is supplied from the lower part. A rotary valve 4a is used as the feeder, and the heating source 7 is heated by an electric heater. FIG. 6 is a perspective view of the upper structure of a large heating furnace, in which feeders 4a are provided at two locations.

(実施例〕 実施例1 粒子径0.3〜1mmの天然鱗状黒鉛100 gを硫酸
9重量部と硝酸1容積部よりなる混酸1100gに常温
で浸漬処理した後、充分に水洗し、脱水、乾燥して黒鉛
層間化合物120gを調製した。この黒鉛層間化合物の
水分は5%で嵩密度は0.3〜0.4g/CmAであっ
た。この黒鉛層間化合物を図7に示ず5US31OS製
のたて型管状電気炉を用いて加熱処理し、膨張黒鉛を製
造した。すなわち、該黒鉛層間化合物をホッパーに入れ
、加熱ゾーンの温度を950−1000℃に調整した炉
内に振動フィーダーにより、6g/nimの流量で定量
的にフィードした。黒鉛層間化合物粒子は、炉内を自然
落下し、加熱ゾーンに到達すると瞬時に膨張し2〜3秒
間で加熱ゾーンを通過し、冷却ゾーンを経て膨張黒鉛と
して下部の受器に堆積補集された。製品の収叶は5g/
minであり、製品の歩留りは原料の天然鱗片状黒鉛に
対し99.7%、黒鉛層間化合物に対し82.9%であ
った。得られた膨張黒鉛は嵩密度0.003g/ cm
3.残留硫黄分0.2〜0.3%であり品質的にも安定
したものであった。なお、この例においては不活性ガス
の通気は行なわず排ガスはF部の開口部より排出させた
(Example) Example 1 100 g of natural scaly graphite with a particle size of 0.3 to 1 mm was immersed in 1100 g of a mixed acid consisting of 9 parts by weight of sulfuric acid and 1 part by volume of nitric acid at room temperature, then thoroughly washed with water, dehydrated, and dried. 120 g of graphite intercalation compound was prepared.The moisture content of this graphite intercalation compound was 5% and the bulk density was 0.3 to 0.4 g/CmA. The graphite intercalation compound was placed in a hopper, and the graphite intercalation compound was placed in a hopper, and 6 g/g/g was placed in the furnace with the temperature of the heating zone adjusted to 950-1000°C using a vibrating feeder. The graphite intercalation compound particles were fed quantitatively at a flow rate of nim.The graphite intercalation compound particles naturally fall through the furnace, expand instantly when they reach the heating zone, pass through the heating zone in 2 to 3 seconds, and pass through the cooling zone as expanded graphite. It was deposited and collected in the lower container.The product yield was 5g/
The yield of the product was 99.7% for the raw material natural flaky graphite and 82.9% for the graphite intercalation compound. The obtained expanded graphite has a bulk density of 0.003 g/cm
3. The residual sulfur content was 0.2 to 0.3%, and the quality was stable. In this example, the inert gas was not vented and the exhaust gas was discharged from the opening of the F section.

実施例2 実施例1と同じ酸処理黒鉛を脱水、乾燥し水分8%、嵩
密度0.3〜0.4g/cm3の黒鉛層間化合物を得た
。この黒鉛層間化合物を加熱ゾーンの温度を1000〜
1100℃に調整した実施例1と同じ炉内に20g/m
inの流量で振動フィーダーにより定量的にフィードし
た。この例では上部の通気口より2Nffi/minの
N2ガスを通気し、排ガスは下部の排気口より排出させ
るようにして加熱ゾーンを不活性雰囲気に保持すると共
に原料の装入量を増加させた。黒鉛層間化合物粒子は実
施例1の場合とほぼ同様に挙動し、1〜2秒間で加熱ゾ
ーンを通過し、冷却ゾーンを経て下部受器に捕集された
Example 2 The same acid-treated graphite as in Example 1 was dehydrated and dried to obtain a graphite intercalation compound having a moisture content of 8% and a bulk density of 0.3 to 0.4 g/cm3. The temperature of the heating zone for this graphite intercalation compound is 1000~
20g/m in the same furnace as in Example 1 adjusted to 1100℃
Quantitative feeding was carried out using a vibrating feeder at a flow rate of in. In this example, N2 gas was passed through the upper vent at a rate of 2 Nffi/min, and exhaust gas was discharged through the lower exhaust port to maintain the heating zone in an inert atmosphere and increase the amount of raw material charged. The graphite intercalation compound particles behaved almost the same as in Example 1, passing through the heating zone in 1-2 seconds, passing through the cooling zone, and being collected in the lower receiver.

製品の収量は16g/minであり、製品の歩留りは原
料の天然鱗片状黒鉛に対して99.0%、黒鉛層間化合
物に対し80.0%であった。得られた膨張黒鉛は嵩密
度0.00:]g/c+nj、残留硫黄分0.2−0.
3%であり品質の安定したものであった。
The yield of the product was 16 g/min, and the yield of the product was 99.0% based on the raw material natural flaky graphite and 80.0% based on the graphite intercalation compound. The obtained expanded graphite has a bulk density of 0.00:]g/c+nj and a residual sulfur content of 0.2-0.
3%, and the quality was stable.

実施例3 実施例1と同じ酸処理黒鉛を脱水、乾燥し、水分8%、
嵩密度0.3〜0.4g/cmjの黒鉛層間化合物を得
た。この黒鉛層間化合物を加熱ゾーンの温度を平均++
00℃(±30℃)に調整した実施例1と同じ炉内に6
g/minの流量で定量フィートした。
Example 3 The same acid-treated graphite as in Example 1 was dehydrated and dried to a moisture content of 8%,
A graphite intercalation compound having a bulk density of 0.3 to 0.4 g/cmj was obtained. The average temperature of the heating zone for this graphite intercalation compound is +
6 in the same furnace as in Example 1 adjusted to 00°C (±30°C).
A constant flow rate of g/min was carried out.

黒鉛層間化合物の挙動は実施例1と同様で2〜3秒で加
熱ゾーンを通過し冷却ゾーンを経て下部受器に捕集され
た。
The behavior of the graphite intercalation compound was similar to that in Example 1, and it passed through the heating zone in 2 to 3 seconds, passed through the cooling zone, and was collected in the lower receiver.

製品の歩留りは原料の天然鱗片状黒鉛に対して99.5
%、黒鉛層間化合物に対して82.7%であった。得ら
れた膨張黒鉛は嵩密度0.004g/ cm’ 、残留
硫黄分0.2〜0.3%であった。
The yield of the product is 99.5 compared to the raw material natural flaky graphite.
%, and 82.7% with respect to the graphite intercalation compound. The obtained expanded graphite had a bulk density of 0.004 g/cm' and a residual sulfur content of 0.2 to 0.3%.

実施例4 粒子径0.1〜1 m/mの天然鱗片状黒鉛を使用して
、実施例1と同じ方法で黒鉛層間化合物を調製した。こ
の黒鉛層間化合物の水分は5%で嵩密度は0.3〜0.
4g/cm3であった。この黒鉛層間化合物を加熱ゾー
ンの温度を800〜900℃に調整した実施例1と同じ
炉内に6 g/minの流量で定量フィードした。
Example 4 A graphite intercalation compound was prepared in the same manner as in Example 1 using natural flaky graphite having a particle size of 0.1 to 1 m/m. The moisture content of this graphite intercalation compound is 5% and the bulk density is 0.3 to 0.
It was 4g/cm3. This graphite intercalation compound was quantitatively fed at a flow rate of 6 g/min into the same furnace as in Example 1, in which the temperature of the heating zone was adjusted to 800 to 900°C.

黒鉛層間化合物の挙動は実施例1とほぼ同様に挙動し2
〜IO秒間で加熱ゾーン通過し下部受器に捕集した。製
品の歩留りは他の実施例とほぼ同じであり得られた膨張
黒鉛は嵩密度o、ooeg、/ CIl+3残留硫黄分
0.2〜0.:)%であった。
The behavior of the graphite intercalation compound was almost the same as in Example 1.
It passed through the heating zone in ~IO seconds and was collected in the lower receiver. The yield of the product was almost the same as in other examples, and the expanded graphite obtained had a bulk density o, ooeg, /CII+3 residual sulfur content of 0.2 to 0. :)%Met.

実施例5 天然鱗片状黒鉛を1mm以下に微粉砕し、各粒度分布毎
に各々を濃硫酸9容積部と濃硫酸1容積部よりなる混酸
に常温でIO分間浸禎処理した後、十分に水洗し、脱水
乾燥して黒鉛層間化合物を調製した。この黒鉛層間化合
物の水分は5%で嵩密度は0.15〜0.251<7c
m3であフた。
Example 5 Natural flaky graphite was finely ground to 1 mm or less, and each particle size distribution was immersed in a mixed acid consisting of 9 parts by volume of concentrated sulfuric acid and 1 part by volume of concentrated sulfuric acid for 10 minutes at room temperature, and then thoroughly washed with water. The mixture was dehydrated and dried to prepare a graphite intercalation compound. The moisture content of this graphite intercalation compound is 5%, and the bulk density is 0.15 to 0.251<7c.
It was over with m3.

この黒鉛層間化合物を実施例1と同じ炉で加熱ゾーン温
度1000℃で処理した。加熱ゾーンでの滞留時間は2
〜30秒でありその結果は下記のとおりである。
This graphite intercalation compound was treated in the same furnace as in Example 1 at a heating zone temperature of 1000°C. The residence time in the heating zone is 2
~30 seconds, and the results are as follows.

黒鉛粒径が小さくなるほど嵩密度は大きくなっている。The smaller the graphite particle size, the larger the bulk density.

これらをr、+> 、?顕微鏡で観察したところ膨張は
良好であった。
Let these be r, +>, ? When observed under a microscope, the expansion was good.

(発明の効果) 以上述べたように爪直に設置された中空の加熱炉中を膨
張黒鉛原料を自然落下させその間に加熱処理するという
方法により、キルン方式の場合のように製品は圧縮され
ることがなく各種成形体の原料として非常に使い易いも
のが得られ、又加熱ゾーンにおける滞留時間が一定(キ
ルンではショートバスがある)のため、均一で安定な品
質の製品を得ることができる。
(Effects of the invention) As described above, by the method of allowing the expanded graphite raw material to fall naturally into a hollow heating furnace installed directly in the direction of the nail, and heat-treating it during that time, the product is compressed as in the case of the kiln method. It is possible to obtain a product that is very easy to use as a raw material for various molded products without any problems, and because the residence time in the heating zone is constant (there is a short bath in the kiln), products of uniform and stable quality can be obtained.

さらに、この方法による加熱炉においては、たて型形式
としたことにより、キルン方式に比べ設備が簡略化でき
、装置が簡略化され、成形工程と組合せた連続化が容易
となる。また、所用熱量も少なくてすみ、接ガス部の部
材にかかる力が小さいので等級の低い耐熱、耐酸性の材
料を使用することができ特別な処理が必要ない。
Furthermore, since the heating furnace according to this method is of a vertical type, the equipment can be simplified compared to the kiln system, and the apparatus can be simplified, making it easy to perform continuous processing in combination with the molding process. In addition, the amount of heat required is small, and the force applied to the parts in contact with the gas is small, allowing the use of low-grade heat-resistant and acid-resistant materials, and no special treatment is required.

その他間接加熱方式のため熱源として電気、ガス、油等
、広範囲のものを使用することができ、さらに排ガスの
主成分は自生ガスのみとなるため排ガス処理設備が簡略
化できるという効果もある。
In addition, since it is an indirect heating method, a wide range of heat sources such as electricity, gas, and oil can be used as a heat source, and since the main component of the exhaust gas is only natural gas, it also has the effect of simplifying the exhaust gas treatment equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の標準的加熱炉の模式断面図、第2図は
本発明の加熱炉で製造した膨張黒鉛を連続的に取り出し
、黒鉛シートの連続製造装置と接続させた1例を示す模
式断面図、第3図は本発明の加熱炉におけるN2ガス導
入及び排ガス方法の例を示した模式断面図、第4図は本
発明の加熱炉のうち加熱ゾーンが角型である大型装置の
1例を示す模式斜視透視図、第5図は本発明の加熱炉の
うち加熱ゾーンが角型でありN2送気装備のある大型装
置の1例を示す模式断面図、第6図は本発明の加熱炉の
うちフィーダーを2ケ所設けた大型装置の上部構造を示
した模式斜視透視図、第7図は実施例で使用した竪型管
状炉及び加熱炉内の温度分布を示した模式断面図。 A・・・・・・投入ゾーン、B −−−−−−加熱ゾー
ン、C−・・・・・冷却ゾーン、 1・・・・・・原料受入れホッパー 2・・・・・・スライドダンパー 3−−−−−−短管、      4・・・・・・フィ
ーダー4a・・・・軸ロータリーバルブ、 5・・・・・・バイブレータ− 6−−−−−−加熱炉内管、 7−−−−−−加熱源(電気ヒーター等)、8−−−−
−− N 、装入ノズル、 9・・・・・・フード、 10−−−−−−排ガス出口ノズル、 11・・・・・・製品受器、 11a−−−製品採取ホツバ− 12−−−−・・加熱炉架台、 14−・・・・・操作用架台、 15−・・・・・N2受入配管、 16−−−−−−排ガス配管、 17−−−−−−スカート、 19−・・・・・振動供給装置、 21・・・・・・巻取。 13・・・・・・ホッパ架台、 18・・・・・・内筒、 20・・・・・・圧力ロール、
Fig. 1 is a schematic sectional view of a standard heating furnace of the present invention, and Fig. 2 shows an example in which expanded graphite produced in the heating furnace of the present invention is continuously taken out and connected to a continuous graphite sheet manufacturing device. 3 is a schematic sectional view showing an example of the N2 gas introduction and exhaust gas method in the heating furnace of the present invention. FIG. FIG. 5 is a schematic cross-sectional view showing an example of a large-scale apparatus with a rectangular heating zone and N2 air supply equipment among the heating furnaces of the present invention, and FIG. 6 is a schematic perspective view showing one example of the heating furnace of the present invention. Fig. 7 is a schematic perspective view showing the upper structure of a large device with two feeders in the heating furnace, and Fig. 7 is a schematic cross-sectional view showing the vertical tubular furnace used in the example and the temperature distribution inside the heating furnace. . A: Input zone, B: Heating zone, C: Cooling zone, 1: Raw material receiving hopper 2: Slide damper 3 -------Short pipe, 4...Feeder 4a...Axis rotary valve, 5...Vibrator 6-------Heating furnace inner tube, 7-- ----- Heating source (electric heater, etc.), 8---
--N, Charging nozzle, 9...Hood, 10---Exhaust gas outlet nozzle, 11...Product receiver, 11a---Product collection holder 12-- --- Heating furnace mount, 14-- Operation mount, 15-- N2 receiving piping, 16-- Exhaust gas piping, 17-- Skirt, 19 -... Vibration supply device, 21... Winding. 13...Hopper frame, 18...Inner cylinder, 20...Pressure roll,

Claims (1)

【特許請求の範囲】 1、黒鉛層間化合物よりなる膨張黒鉛原料を加熱処理し
て膨張黒鉛を製造する方法において、前記膨張黒鉛原料
を、上部に加熱ゾーン、下部に冷却ゾーンを有する垂直
に設置された中空の加熱炉中を自然落下により上方から
下方へ通過させる間に膨張黒鉛とすることを特徴とする
膨張黒鉛の製造方法。 2、加熱ゾーンの温度が700〜1200℃である請求
項1記載の方法。 3、加熱炉において少なくとも加熱ゾーンに不活性ガス
が導入されている請求項1または2に記載の方法。 4、上部に加熱手段を外周部に備えた加熱ゾーン、下部
に放熱のための冷却ゾーンを設けた垂直に設置された中
空のたて長加熱炉であって、該加熱ゾーンの上方に原料
ホッパーからの原料供給口、該冷却ゾーンの下方に生成
した膨張黒鉛の取出口を備え、さらに排ガス排出口およ
び必要により不活性ガスの供給口を所望の位置に備えた
ことを特徴とする膨張黒鉛製造用加熱炉。
[Claims] 1. A method for producing expanded graphite by heat treating an expanded graphite raw material made of a graphite intercalation compound, wherein the expanded graphite raw material is vertically installed with a heating zone at the top and a cooling zone at the bottom. 1. A method for producing expanded graphite, characterized in that the expanded graphite is made into expanded graphite while passing through a hollow heating furnace from the top to the bottom by gravity. 2. The method according to claim 1, wherein the temperature of the heating zone is 700 to 1200°C. 3. The method according to claim 1 or 2, wherein an inert gas is introduced into at least the heating zone of the heating furnace. 4. A vertically installed hollow vertical heating furnace with a heating zone equipped with heating means on the outer periphery at the top and a cooling zone for heat dissipation at the bottom, with a raw material hopper above the heating zone. Expanded graphite production characterized by having a raw material supply port from the cooling zone, a take-out port for the expanded graphite generated below the cooling zone, and further provided with an exhaust gas discharge port and, if necessary, an inert gas supply port at a desired position. heating furnace.
JP63160714A 1988-06-30 1988-06-30 Production of expanded graphite and heating furnace for producing expanded graphite Pending JPH0214805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160714A JPH0214805A (en) 1988-06-30 1988-06-30 Production of expanded graphite and heating furnace for producing expanded graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160714A JPH0214805A (en) 1988-06-30 1988-06-30 Production of expanded graphite and heating furnace for producing expanded graphite

Publications (1)

Publication Number Publication Date
JPH0214805A true JPH0214805A (en) 1990-01-18

Family

ID=15720883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160714A Pending JPH0214805A (en) 1988-06-30 1988-06-30 Production of expanded graphite and heating furnace for producing expanded graphite

Country Status (1)

Country Link
JP (1) JPH0214805A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383809A (en) * 1989-08-29 1991-04-09 Osaka Gas Co Ltd Apparatus for producing graphite powder
US5734509A (en) * 1992-12-09 1998-03-31 Nikon Corporation Zoom lens system
CN102303863A (en) * 2011-08-20 2012-01-04 山东东昀石墨科技有限公司 Nested tube double desulfuration graphite expanding device
JP2012524016A (en) * 2009-04-15 2012-10-11 ダウ グローバル テクノロジーズ エルエルシー Continuous feed furnace assembly, production of graphite oxide and continuous thermal delamination method
JP2016052646A (en) * 2014-09-04 2016-04-14 中外炉工業株式会社 Vertical powder treatment device
JP2017031051A (en) * 2011-11-30 2017-02-09 ノックス,マイケル,アール. Single mode microwave device for producing exfoliated graphite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383809A (en) * 1989-08-29 1991-04-09 Osaka Gas Co Ltd Apparatus for producing graphite powder
US5734509A (en) * 1992-12-09 1998-03-31 Nikon Corporation Zoom lens system
JP2012524016A (en) * 2009-04-15 2012-10-11 ダウ グローバル テクノロジーズ エルエルシー Continuous feed furnace assembly, production of graphite oxide and continuous thermal delamination method
JP2014237587A (en) * 2009-04-15 2014-12-18 ダウ グローバル テクノロジーズ エルエルシー Continuous-feed furnace assembly and process for continuously thermally exfoliating graphite oxide
CN102303863A (en) * 2011-08-20 2012-01-04 山东东昀石墨科技有限公司 Nested tube double desulfuration graphite expanding device
JP2017031051A (en) * 2011-11-30 2017-02-09 ノックス,マイケル,アール. Single mode microwave device for producing exfoliated graphite
JP2016052646A (en) * 2014-09-04 2016-04-14 中外炉工業株式会社 Vertical powder treatment device

Similar Documents

Publication Publication Date Title
EP0039517B1 (en) Apparatus for treating powdery materials utilizing microwave plasma
US5131992A (en) Microwave induced plasma process for producing tungsten carbide
US7927670B2 (en) Silica microspheres, method for making and assembling same and possible uses of silica microspheres
US5190737A (en) High yield manufacturing process for silicon carbide
JPH09278423A (en) Production of lithium sulfide
JP2000119710A (en) Niobium powder and production of niobium powder and/or tantalum powder
KR100479564B1 (en) Method and apparatus for production of amorphous silica from silicon and silicon-containing materials
GB2104884A (en) Method and apparatus for preparation of graphite fluoride by contact reaction between carbon and fluorine gas
US4505787A (en) Process for production of a carbide by-product with microwave energy and aluminum by electrolysis
GB802957A (en) Improvements in processes and apparatus for the production of dispersed powders by electric arcs
JPH0214805A (en) Production of expanded graphite and heating furnace for producing expanded graphite
CN113860773B (en) Device and method for dehydrating microwave-enhanced fluidized phosphogypsum
CN114130341A (en) Device and method for continuously synthesizing aluminum nitride powder by using conveying bed under normal pressure
US2863738A (en) Apparatus for conducting chemical reactions
US5157685A (en) Method and apparatus for preparing a melt for mineral fibre production
US20040129177A1 (en) Method and installation for the dehydroxylation treatment of aluminium silicate
JPH0860446A (en) Method for heat-treating carbon fiber by vapor-phase method
US4085201A (en) Process for manufacturing aluminum oxide
RU2102315C1 (en) Plant for production of cellular graphite
RU2035308C1 (en) Unit for recovering polytetrafluoroethylene
JPH0226812A (en) Production of aluminum nitride powder having high purity
CN108483449B (en) Device and method for preparing nano silicon
WO2001025147A1 (en) Method of preparing phosphorus
JPS616109A (en) Manufacture of sic
JPH01308812A (en) Continuous production of aluminum nitride powder and unit therefor