JPH0214744A - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPH0214744A
JPH0214744A JP63162563A JP16256388A JPH0214744A JP H0214744 A JPH0214744 A JP H0214744A JP 63162563 A JP63162563 A JP 63162563A JP 16256388 A JP16256388 A JP 16256388A JP H0214744 A JPH0214744 A JP H0214744A
Authority
JP
Japan
Prior art keywords
palladium
zirconia
catalyst
exhaust gas
dimensional structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63162563A
Other languages
Japanese (ja)
Inventor
Makoto Horiuchi
真 堀内
Yasuo Ikeda
池田 康生
Koichi Saito
斉藤 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63162563A priority Critical patent/JPH0214744A/en
Priority to DE3853258T priority patent/DE3853258T2/en
Priority to CA000582078A priority patent/CA1319141C/en
Priority to EP88118309A priority patent/EP0315896B1/en
Priority to KR1019880014616A priority patent/KR940000862B1/en
Publication of JPH0214744A publication Critical patent/JPH0214744A/en
Priority to US07/488,389 priority patent/US5000929A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an exhaust gas purification catalyst having improved purifying capacity at high temp. in oxidizing atmosphere by constituting the catalyst of a refractory three dimensional structure contg. a catalyst component consisting of at least one rare earth element oxide. CONSTITUTION:A three dimensional structure coated with zirconia is obtd. by forming a slurry of zirconia powder pulverized by a wet process, dipping the three dimensional structure in the slurry, then removing excess slurry, and drying the product and then calcining. Thereafter, the obtd. structure body coated with zirconia is dipped in an aq. soln. contg. a specified amt. of palladium and a specified amt. of at least one kind of rare earth element selected from a group consisting of praseodymium, cerium, lanthanum, neodymium and samarium. Excess soln. is removed, and obtd. product is dried and calcined in the air. Thus, an exhaust gas purification catalyst is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ディーゼルエンジン排ガスあるいは可燃性炭
素系微粒子を含有する産業排ガス等の浄化触媒に関する
ものであり、特に高温酸化雰囲気のような厳しい条件下
で使用されても轟い浄化性能を有する耐久性に優れた排
ガス浄化用触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a catalyst for purifying diesel engine exhaust gas or industrial exhaust gas containing combustible carbon-based fine particles, particularly under severe conditions such as high-temperature oxidizing atmosphere. The present invention relates to a highly durable exhaust gas purifying catalyst that has a roaring purifying performance even when used in a lower environment.

[従来の技術] 近年とくにディーゼルエンジン排ガス中の微粒子物質(
主として固体状炭素微粒子、硫酸塩などの硫黄系微粒子
、そして、液状ないし固体状の高分子酒炭化水素微粒子
などよりなる)が環境衛生上問題となっている。これら
微粒子はその粒子径がほとんど1ミクロン以下であり、
大気中に浮遊しやすく呼吸により人体内に取り込まれや
すいためである。したがってこれら微粒子のディーゼル
エンジンからの排出規制を厳しくしてい(方向で検討が
進められている。 これら微粒子の除去方法としては、
セラミックフオーム、セラミックハニカム、ワイヤーメ
ツシュ、金属発泡体、目封じタイプのセラミックハニカ
ムなどの耐火性三次元構造体に炭素系微粒子を燃焼させ
つる触媒物質を担持させ、ディーゼル排ガスなどに含ま
れる微粒子状物質を捕捉すると共に、通常の当該エンジ
ンの走行条件下でえられる排気ガスの排出条件(ガス組
成および温度)において(または電気ヒーター等での加
熱手段を用いて)、捕集した炭素系微粒子を燃焼浄化す
る触媒方式が検討されている。
[Prior art] In recent years, particulate matter in diesel engine exhaust gas (
These mainly consist of solid carbon fine particles, sulfur-based fine particles such as sulfates, and liquid or solid polymeric liquor hydrocarbon fine particles, etc.) that have become a problem in terms of environmental health. Most of these fine particles have a particle size of 1 micron or less,
This is because they easily float in the atmosphere and are easily taken into the human body through breathing. Therefore, stricter regulations on the emission of these particulates from diesel engines are currently being considered.
A fire-resistant three-dimensional structure such as ceramic foam, ceramic honeycomb, wire mesh, metal foam, and sealed ceramic honeycomb is loaded with a catalytic material that burns carbon-based particulates, thereby eliminating the particulates contained in diesel exhaust gas, etc. In addition to capturing the substance, the captured carbon-based fine particles are A catalytic method for combustion purification is being considered.

一般にデイ−、ゼルエンジンの排ガス浄化用触媒として
は、炭素系微粒子の燃焼性能が高く、かつ出来るだけ低
温から着火すると共に、燃料として用いる軽油中に多量
に含まれるイオウ成分から発生する二酸化イオウ(80
2)から三酸化イオウ(SOs )への転化率が低い性
能を有し、さらに高負荷での連続運転下でも耐えるいわ
ゆるa温耐久性のある触媒が望まれている。
In general, catalysts for purifying exhaust gas from diesel engines have high combustion performance for carbon-based particulates, ignite from as low a temperature as possible, and ignite sulfur dioxide (sulfur dioxide), which is generated from the sulfur component contained in large amounts in the light oil used as fuel. 80
There is a need for a catalyst that has a low conversion rate from 2) to sulfur trioxide (SOs) and has so-called A-temperature durability that can withstand continuous operation under high load.

しかし今迄この条件に十分適合する触媒は提案されてい
ないのが現状である。
However, to date, no catalyst has been proposed that satisfactorily meets these conditions.

従来より、炭素系微粒子の浄化効率を高める目的で以下
の如き種々の提案がなされている。
Conventionally, the following various proposals have been made for the purpose of increasing the purification efficiency of carbon-based fine particles.

白金族金属を炭素系微粒子燃焼用触媒として使用してい
る例としては、特開昭55−24597号公報において
、ロジウム乙5%/白金合金とか、白金/パラジウム−
50150の混合物とか、酸化タンタルまたは酸化セリ
ウム上に担持したパラジウムあるいは、パラジウムと7
5重ffi%以下の白金とからなる合金等が、S OF
 (solubleorganic fraction
)に対して効果があることが提案されている。
Examples of using platinum group metals as carbon-based particulate combustion catalysts include 5% rhodium/platinum alloys and platinum/palladium alloys in JP-A-55-24597.
50150, palladium supported on tantalum oxide or cerium oxide, or palladium and 7
S OF
(soluble organic fraction
) has been proposed to be effective against

その他、特開昭61−129030号、同61−149
222号および同61−146314号公報において、
パラジウムとロジウムを主な活性成分とし、さらにアル
カリ金属、アルカリ土類金属、銅、ランタン、亜鉛なら
びにマンガン等を添加した触媒組成物が効果があること
が提案されている。
Others: JP-A-61-129030, JP-A No. 61-149
In No. 222 and No. 61-146314,
It has been proposed that a catalyst composition containing palladium and rhodium as the main active ingredients, with further additions of alkali metals, alkaline earth metals, copper, lanthanum, zinc, manganese, etc., is effective.

[発明が解決しようとする問題点] しかし白金を触媒成分として含有する触媒は、排ガス中
の802の酸化能が高く、サルフェート(S02が酸化
されてS03や硫酸ミストとなったもの)を多量に生成
し、むしろ硫黄系微粒子の増加を招く結果となり好まし
くない。これに対しパラジウムは白金に比べてサルフェ
ート生成率が低く、炭素系微粒子の燃焼性能を有し、か
つ耐熱性もある、好ましい性能を有している。
[Problems to be solved by the invention] However, catalysts containing platinum as a catalyst component have a high ability to oxidize 802 in exhaust gas, and produce a large amount of sulfate (S02 oxidized to S03 and sulfuric acid mist). This is not preferable since it results in an increase in sulfur-based fine particles. On the other hand, palladium has preferable properties such as a lower sulfate production rate than platinum, good combustion performance for carbon-based fine particles, and heat resistance.

しかしながら、ディーゼルエンジンの排ガス雰囲気に曝
されるとパラジウム表面の酸化状態が変化し、急速に活
性を失なうなどの欠点を有していた。
However, when exposed to the exhaust gas atmosphere of a diesel engine, the oxidation state of the palladium surface changes, resulting in a rapid loss of activity.

従って現在までに提案されたパラジウムを含有する触媒
においてこの失活を抑制してなる触媒は提案されていな
い。
Therefore, among the palladium-containing catalysts proposed to date, no catalyst has been proposed that suppresses this deactivation.

そこで、本発明の目的は炭素系微粒子の低温からの燃焼
性能を有し、かつサルフェートの生成率の低いパラジウ
ムの好ましい性能に着目し、その選択酸化性能を高めて
排ガス浄化能を高めると共に、ディーゼルエンジンの排
ガス雰囲気下において安定に、かつ長時間維持しつる耐
熱性、耐久性のある実用可能な炭素系微粒子を浄化する
排ガス浄化用触媒を提供することにある。
Therefore, the purpose of the present invention is to focus on the favorable performance of palladium, which has the ability to burn carbon-based particulates from low temperatures and has a low rate of sulfate generation. It is an object of the present invention to provide a catalyst for exhaust gas purification that purifies carbon-based fine particles stably in the exhaust gas atmosphere of an engine, has heat resistance and durability that can be maintained for a long time, and can be used for practical purposes.

[問題点を解決、するための手段] 本発明者らは、上記目的を達成するためにディーゼル排
ガス中でのパラジウムの反応挙動に関して鋭意研究した
結果、ジルコニア基材上にパラジウムを含有させること
によって、低温からの炭素系微粒子の燃焼性能を有し、
かつサルフェートの生成率を低減する、優れた選択酸化
能を示すことを見い出した。さらに、ジルコニア基材上
にパラジウムとプラセオジム、セリウム、ランタン、ネ
オジウムおよびサマリウムからなる群から選ばれる少な
くとも1種の希土類元素の酸化物を含有させることによ
って、パラジウムならびにジルコニア基材の安定化が達
成され、高い選択酸化性能を有し、かつ400℃以上の
高温でのディーゼルエンジン排ガス雰囲気下において長
時間その性能を維持しうる耐熱性ならびに耐久性を有す
るものであることを見い出し、本発明を完成するに至っ
た。
[Means for Solving the Problems] In order to achieve the above object, the present inventors conducted extensive research on the reaction behavior of palladium in diesel exhaust gas, and found that by incorporating palladium on a zirconia base material, , has the combustion performance of carbon-based particulates from low temperatures,
It was also found that it exhibits excellent selective oxidation ability that reduces the rate of sulfate production. Further, by incorporating palladium and an oxide of at least one rare earth element selected from the group consisting of praseodymium, cerium, lanthanum, neodymium, and samarium on the zirconia base material, stabilization of palladium and the zirconia base material is achieved. discovered that it has high selective oxidation performance, and has heat resistance and durability that can maintain its performance for a long time in a diesel engine exhaust gas atmosphere at a high temperature of 400°C or higher, and completed the present invention. reached.

すなわち、本発明は、耐火性三次元構造体に、ジルコニ
アおよびパラジウムならびにプラセオジム、セリウム、
ランタン、ネオジムおよびサマリウムからなる群から選
ばれる少なくとも1種の希土類元素の酸化物を含有する
ことを特徴とする炭素系微粒子を浄化する排ガス浄化用
触媒である。
That is, the present invention provides a refractory three-dimensional structure containing zirconia and palladium, as well as praseodymium, cerium,
This is an exhaust gas purifying catalyst for purifying carbon-based fine particles, characterized by containing an oxide of at least one rare earth element selected from the group consisting of lanthanum, neodymium, and samarium.

本発明における触媒成分であるパラジウムとプラセオジ
ム、セリウム、ランタン、ネオジムおよびサマリウムか
らなる群から選ばれる少なくとも1種の希土類元素は、
耐火性三次元構造体に担持されたジルコニア基材上に所
定の面を分散担持されている。
At least one rare earth element selected from the group consisting of palladium, praseodymium, cerium, lanthanum, neodymium, and samarium, which is a catalyst component in the present invention, is
A predetermined surface is dispersed and supported on a zirconia base material supported on a fire-resistant three-dimensional structure.

本発明におけるパラジウムの出発原料としては、硝酸パ
ラジウム、塩化パラジウム、パラジウムテトラミンクロ
ライドおよびパラジウムスルフィj〜錯塩等から選ばれ
る。
The starting material for palladium in the present invention is selected from palladium nitrate, palladium chloride, palladium tetramine chloride, palladium sulfide complex salts, and the like.

また、プラセオジム、セリウム、ランタン、ネオジムお
よびサマリウムの出発原料としては、市販の酸化物、塩
化物、硝酸塩、炭酸塩等の水あるいは有機溶媒可溶性塩
が好適に用いられる。触媒層を構成する各成分の担持量
は、ジルコニアとしては、三次元構造体1ノあたり3〜
150g、好ましくは10〜120g、プラセオジム、
セリウム、ランタン、ネオジムおよびサマリウムからな
る群から選ばれる少なくとも1擾の希土類元素は、その
酸化物の合計重量として、構造体11あたり1〜50g
、好ましくは5〜30g、パラジウムとしては構造体1
ノあたり0.1〜2C1,好ましくは1〜10qの範囲
である。
Further, as starting materials for praseodymium, cerium, lanthanum, neodymium and samarium, commercially available salts soluble in water or organic solvents such as oxides, chlorides, nitrates and carbonates are preferably used. The supported amount of each component constituting the catalyst layer is 3 to 3 per 3-dimensional structure as zirconia.
150 g, preferably 10-120 g, praseodymium,
At least one rare earth element selected from the group consisting of cerium, lanthanum, neodymium and samarium is present in an amount of 1 to 50 g per structure 11 as a total weight of its oxides.
, preferably 5 to 30 g, as palladium Structure 1
The amount is in the range of 0.1 to 2C1, preferably 1 to 10q.

本発明にかかる触媒調製法は、特定されないが、好まし
いものとしては以下の方法が一例としてあげられる。
Although the method for preparing the catalyst according to the present invention is not specified, the following method is preferred as an example.

すなわら、ジルコニア粉体を湿式粉砕してスラリー化し
、該スラリーに三次元構造体を浸漬し、余分なスラリー
を取除き、乾燥、焼成してジルコニアコートした三次元
構造体をえる。
That is, zirconia powder is wet-pulverized to form a slurry, a three-dimensional structure is immersed in the slurry, excess slurry is removed, and a zirconia-coated three-dimensional structure is obtained by drying and firing.

ここでジルコニア粉体の担持強度を高めるために、水溶
性のアルミナゾルおよび/またはシリカゾルをアルミナ
および/またはシリカの総IIIで、ジルコニアに対し
て20重量%以下の割合で混入することは本発明の効果
を何ら妨げるものではない。
Here, in order to increase the supporting strength of the zirconia powder, it is preferable in the present invention to mix a water-soluble alumina sol and/or silica sol in a total amount of alumina and/or silica in a proportion of 20% by weight or less based on the zirconia. It does not interfere with the effect in any way.

次に、ジルコニアコートした構造体をパラジウムとプラ
セオジム、セリウム、ランタン、ネオジムおよびサマリ
ウムからなる群から選ばれる少なくとも1種の希土類の
所定量を含有してなる水溶液中に浸漬して余分な溶液を
取除き空気雰囲気下で乾燥、焼成して調製する。
Next, the zirconia-coated structure is immersed in an aqueous solution containing palladium and a predetermined amount of at least one rare earth element selected from the group consisting of praseodymium, cerium, lanthanum, neodymium, and samarium, and excess solution is removed. It is prepared by drying and firing in an air atmosphere.

耐火性三次元構造体としは、セラミックフオーム、セラ
ミックハニカム、ウオールフロータイブのハニカムモノ
リス、メタルハニカム、金属発泡体またはメタルメツシ
ュが用いられ、そのうちウオールフロータイブのハニカ
ムモノリス、セラミックハニカムおよびセラミックフオ
ームが好適に用いられる。
As the refractory three-dimensional structure, ceramic foam, ceramic honeycomb, wall-flow type honeycomb monolith, metal honeycomb, metal foam or metal mesh are used, among which wall-flow type honeycomb monolith, ceramic honeycomb and ceramic foam are preferred. used.

[作 用] 本発明のジルコニアとプラセオジム、セリウム2ランタ
ン、ネオジムおよびサマリウムからなる群から選ばれる
少なくとも1種の希土類元素の酸化物とパラジウムを含
有してなる炭素系微粒子を浄化する排ガス浄化用触媒は
、ジルコニアを基材として用いることによって低温から
の炭素系微粒子の燃焼性能を有し、かつサルフェートの
生成率を低減する選択酸化能に優れたものであり、さら
にはプラセオジム、セリウム、ランタン、ネオジムおよ
びサマリウムからなる群から選ばれる少なくとも1種の
希土類の添加により、パラジウムならびにジルコニアの
安定化が達成され、その優れた浄化性能を低温から再現
性よく、さらにはディーゼルエンジン排気ガスの排出条
件(ガス組成および温度)において長時間にわたって初
期活性を維持する耐熱性、耐久性を有する排ガス浄化用
触媒である。
[Function] A catalyst for exhaust gas purification that purifies carbon-based fine particles containing zirconia of the present invention, an oxide of at least one rare earth element selected from the group consisting of praseodymium, cerium dilanthanum, neodymium, and samarium, and palladium. By using zirconia as a base material, it has the ability to burn carbon-based particulates from low temperatures and has excellent selective oxidation ability to reduce the rate of sulfate production. By adding at least one rare earth element selected from the group consisting of It is a heat-resistant and durable catalyst for exhaust gas purification that maintains its initial activity over a long period of time (composition and temperature).

[実 施 例] 以下、実施例および比較例を示し本発明を更に詳細に説
明するが、本発明はこれら実施例のみに限定されるもの
ではないことは言うまでもない。
[Examples] Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples, but it goes without saying that the present invention is not limited only to these Examples.

実施例1 比表面積130TIL2/gを有するジルコニア粉末2
 Kyを秤り取り、水を加え湿式粉砕してスラリー化し
、コージェライト製ウオールフロー型モノリス担体(ハ
ニカム型三次元構造体であり、両端面の隣接する8孔を
互い違いに閉塞させ隔壁からのみガスを通過させるよう
にした目封じタイプの構造体’) 5.66インチ径X
 6. O0インチ長さのものを該スラリーに浸漬し、
余分なスラリーを取り除き150℃で3′時間乾燥後、
500℃で2時間焼成してジルコニアを担持した構造体
をえた。
Example 1 Zirconia powder 2 having a specific surface area of 130 TIL2/g
Ky is weighed out, water is added and wet-pulverized to form a slurry, which is made into a cordierite wall-flow monolithic carrier (honeycomb-shaped three-dimensional structure, with 8 adjacent holes on both end faces alternately blocked to allow gas to flow only from the partition walls). 5.66 inch diameter
6. 0 inch length is immersed in the slurry,
After removing excess slurry and drying at 150°C for 3' hours,
A structure supporting zirconia was obtained by firing at 500° C. for 2 hours.

次いで、硝酸プラセオジム[Pr  (NO3)3・6
H20] 6080とパラジウムとして23g含有する
硝酸パラジウムを脱イオン水に溶解させ2Jの溶液をえ
た。この溶液にジルコニア担持した三次元構造体を浸漬
させ、余分な溶液を取除き150℃で3時間乾燥し、次
いで500℃で2時間焼成して完成触媒をえた。
Next, praseodymium nitrate [Pr (NO3)3.6
H20] 6080 and palladium nitrate containing 23 g of palladium were dissolved in deionized water to obtain a 2 J solution. A three-dimensional structure carrying zirconia was immersed in this solution, excess solution was removed, it was dried at 150°C for 3 hours, and then calcined at 500°C for 2 hours to obtain a completed catalyst.

えられた触媒のジルコニア、パラジウム、WI化プラセ
オジム[Pr6O11]それぞれの成分の担持間は構造
体1j!あたり60(1、1,5(J 、 15!It
であった。
The structure 1j! supports the components of the obtained catalyst, zirconia, palladium, and WI-based praseodymium [Pr6O11]. per 60 (1, 1, 5 (J, 15!It
Met.

実施例2 硝酸プラセオジムの替わりに硝酸セリウム[Ce  (
NO3)3−6H20] 582にJを用いた以外は、
実施例1におけると同様にして完成触媒をえた。えられ
た触媒のジルコニア、パラジウム、1llI化セリウム
[Ce 02 ]の担持吊はそれぞれ構造体11あたり
60G 、1.!M 、15Qであった。
Example 2 Cerium nitrate [Ce (
NO3)3-6H20] Except for using J in 582,
A finished catalyst was obtained in the same manner as in Example 1. The supporting suspension of the obtained catalysts, zirconia, palladium, and cerium 1llI chloride [Ce 02 ], was 60 G per structure 11 and 1. ! M, 15Q.

実施例3 硝酸プラセオジムの替わりに硝酸ランタン[La  (
NO3)3−6820]613aを用いた以外は、実施
例1におけると同様にして完成触媒をえた。えられた触
媒のジルコニア、パラジウム、酸化ランタン[La 2
03 ]の担持量はそれぞれ構造体11あたり60i1
1 、1.50 、15(Jであった。
Example 3 Lanthanum nitrate [La (
A finished catalyst was obtained in the same manner as in Example 1, except that NO3)3-6820]613a was used. The catalyst obtained was zirconia, palladium, and lanthanum oxide [La 2
03] is 60i1 per structure 11, respectively.
1, 1.50, 15 (J).

実施例4 硝酸プラセオジムの替わりに硝酸ネオジム[Nd  <
NOs )3 ・6H20] 601gを用いる以外は
、実施例1におけると同様にして完成触媒をえた。えら
れた触媒のジルコニア、パラジウム、Fi化ネオジム[
Nd 20s ]の担持量はそれぞれ構造体11あたり
60(J 、1.5U 、15aであった。
Example 4 Neodymium nitrate [Nd<
A finished catalyst was obtained in the same manner as in Example 1, except that 601 g of NOs )3 .6H20] was used. The catalyst obtained was zirconia, palladium, and neodymium oxide [
The supported amounts of Nd 20s ] were 60 (J , 1.5 U, and 15 a per structure 11), respectively.

実施例5 硝酸プラセオジムの替わりに硝酸サマリウム[Sm  
(NO3)3 ・6H20] 588(lを用いた以外
は、実施例1におけると同様にして完成触媒をえた。え
られた触媒のジルコニア、パラジウム、酸化サマリウム
[Sm 203]の担持間はそれぞれ構造体1j!あた
り6ag、1.5(1,15(1であった。
Example 5 Samarium nitrate [Sm
A completed catalyst was obtained in the same manner as in Example 1 except that (NO3)3 .6H20]588(l) was used. It was 6ag, 1.5(1,15(1) per body 1j!

実施例6 比表面積130m2/(Jを有するジルコニア粉末1 
kQに硝酸セリウム500o、硝酸プラセオジム440
gを溶解した水溶液11を投入し充分かきまぜた後15
0℃で6時間乾燥後、500℃で2時間焼成して酸化セ
リウムおよび酸化プラセオジムを含有したジルコニア粉
末を得た。
Example 6 Zirconia powder 1 having a specific surface area of 130 m2/(J
kQ with 500o cerium nitrate and 440o praseodymium nitrate
After adding aqueous solution 11 in which g was dissolved and stirring thoroughly, 15
After drying at 0°C for 6 hours, it was fired at 500°C for 2 hours to obtain zirconia powder containing cerium oxide and praseodymium oxide.

該粉体1都を湿式粉砕してスラリー化し、該スラリーに
実施例1で用いたのと同様の三次元構造体を浸漬し、余
分なスラリーを取除き、150℃で3時間乾燥後、50
0℃で2時間焼成して、酸化セリウムおよび酸化サマリ
ウム含有ジルコニアを担持した構造体をえた。
The powder was wet-pulverized to form a slurry, a three-dimensional structure similar to that used in Example 1 was immersed in the slurry, excess slurry was removed, and after drying at 150°C for 3 hours,
By firing at 0° C. for 2 hours, a structure supporting zirconia containing cerium oxide and samarium oxide was obtained.

次いでパラジウムとして35aを含有する塩化パラジウ
ムを脱イオン水に溶解させ21の溶液をえた。この溶液
に該酸化セリウムおよび酸化プラセオジムを含有するジ
ルコニアを担持した構造体を浸漬させ、パラジウムを吸
着させた後、余分な溶液を取り除き、150℃で2時間
乾燥後、800℃で1時間焼成して完成触媒をえた。え
られた触媒のジルコニア、酸化セリウム、M化プラセオ
ジム、パラジウム、それぞれの担持量は構造体11あた
り30!II 、 60 、5CI 、 2.3(lで
あった。
Next, palladium chloride containing 35a as palladium was dissolved in deionized water to obtain a solution of 21. A structure supporting zirconia containing cerium oxide and praseodymium oxide was immersed in this solution to adsorb palladium, then excess solution was removed, dried at 150°C for 2 hours, and then baked at 800°C for 1 hour. A completed catalyst was obtained. The supported amount of each of the obtained catalysts, zirconia, cerium oxide, praseodymium M, and palladium, was 30 per structure 11! II, 60, 5CI, 2.3 (l).

実施例7 比表面積46m、/(Jを有するジルコニア粉末lko
を秤り取り水湿式粉砕してスラリー化し、ジルコニアを
40重層%含有するスラリーを2.58!Jをえた。該
スラリーにアルミナを20ffili1%含有する市販
のアルミナゾル500gを投入しで、溶解性アルミナを
含有したジルコニアスラリーを得Iこ 。
Example 7 Zirconia powder lko with specific surface area 46 m, /(J
was weighed and wet-pulverized to form a slurry, and a slurry containing 40% zirconia was obtained at 2.58%! I got J. A zirconia slurry containing soluble alumina was obtained by adding 500 g of a commercially available alumina sol containing 20 ffili1% of alumina to the slurry.

該スラリーに実施例1で用いたのと同様の三次元構造体
を浸漬し、余分なスラリーを取除き、150℃で3時間
乾燥後、400℃で2時間焼成してジルコニアを担持し
た構造体をえた。
A three-dimensional structure similar to that used in Example 1 was immersed in the slurry, excess slurry was removed, dried at 150°C for 3 hours, and then fired at 400°C for 2 hours to obtain a structure supporting zirconia. I got it.

次いで硝酸ランタン613gと硝酸ネオジム420gと
パラジウムとして65g含有する硝酸パラジウムを脱イ
オン水に溶解させ2〕の溶液をえた。この溶液にジルコ
ニアを担持した三次元構造体を浸漬させ、余分な溶液を
取除き150℃で3時間乾燥し、次いで500℃で2時
間焼成して完成触媒をえた。
Next, 613 g of lanthanum nitrate, 420 g of neodymium nitrate, and palladium nitrate containing 65 g of palladium were dissolved in deionized water to obtain a solution 2). A three-dimensional structure supporting zirconia was immersed in this solution, excess solution was removed, dried at 150°C for 3 hours, and then calcined at 500°C for 2 hours to obtain a completed catalyst.

えられた触媒のジルコニア、アルミナ、酸化ランタン、
酸化ネオジム、パラジウムそれぞれの成分の担持量は構
造体1f!あたり80g、8(1。
The resulting catalysts are zirconia, alumina, lanthanum oxide,
The supported amount of each component of neodymium oxide and palladium is 1f of the structure! 80g per, 8(1.

10g、70.4.2CIであった。10 g, 70.4.2 CI.

実施例8 比表面積2TrL2/9、平均粒径30μmを有するジ
ルコニア粉末1 Kgをシリカを20重量%含有する市
販のシリカゾル1 Klに投入し充分混合してスラリー
化し、該スラリーに実施例1で用いたのと同様の三次元
構造体を浸漬し、余分なスラリーを取除き、150℃で
3時間乾燥後、500℃で2時間焼成して、ジルコニア
を担持した構造体をえた。
Example 8 1 kg of zirconia powder having a specific surface area of 2TrL2/9 and an average particle size of 30 μm was added to a commercially available silica sol 1 Kl containing 20% by weight of silica, thoroughly mixed to form a slurry, and the slurry was used in Example 1. A three-dimensional structure similar to the one shown above was immersed, excess slurry was removed, and after drying at 150°C for 3 hours, it was fired at 500°C for 2 hours to obtain a structure supporting zirconia.

次いて硝酸プラセオジム292g、硝酸セリウム232
Q、硝酸サマリウム141gおよびパラジウムとして2
3(lを含有する硝酸パラジウムを脱イオン水に溶解さ
せ21の溶液をえた。この溶液に該ジルコニア担持構造
体を浸漬させ、余分な溶液を取除き150℃で3時間乾
燥し、次いで500℃で2時間焼成して完成触媒をえた
Next, 292 g of praseodymium nitrate, 232 g of cerium nitrate
Q, 141g of samarium nitrate and 2 as palladium
A solution of 21 was obtained by dissolving palladium nitrate containing 3(l) in deionized water. The zirconia support structure was immersed in this solution, excess solution was removed, and the structure was dried at 150°C for 3 hours, then at 500°C. After firing for 2 hours, a completed catalyst was obtained.

えられた触媒のジルコニア、シリカ、WI化プラセオジ
ム、酸化セリウム、酸化サマリウム、パラジウムの担持
量はそれぞれ構造体1Jlあたり50a、10g、6g
、5g、3g、1.9gであった。
The supported amounts of zirconia, silica, WI-based praseodymium, cerium oxide, samarium oxide, and palladium of the obtained catalyst were 50a, 10g, and 6g per 1Jl of the structure, respectively.
, 5g, 3g, and 1.9g.

実施例9 実施例1において三次元構造体としてウオールフロー型
ハニカムモノリスを用いる酔わりに、コージエライ1〜
発泡体(7:IJ密度0.35+1/a  、空孔率8
7.5%、容積2.51>を用いた以外は実施@1にお
けると同様にして完成触媒をえた。
Example 9 In Example 1, a wall flow type honeycomb monolith was used as the three-dimensional structure.
Foam (7: IJ density 0.35+1/a, porosity 8
The finished catalyst was obtained as in Run @1 except that 7.5%, volume 2.51> was used.

えられた触媒のジルコニア、M化プラセオジム。The obtained catalyst is zirconia and praseodymium M.

パラジウムのそれぞれの担持量は構造体11当り60q
 、15q 、1.5gであった。
The amount of palladium supported is 60q per 11 structures.
, 15q, 1.5g.

比較例1 比表面積150m2/gを有するアルミナ粉末2 Kg
を秤り取り水と湿式粉砕してスラリー化し、該スラリー
に実施例1で用いたのと同様の三次元構造体を浸漬し、
余分なスラリー取除き150℃で、3時間乾燥1500
℃で2時間焼成してアルミナを担持した構造体をえた。
Comparative Example 1 Alumina powder with a specific surface area of 150 m2/g 2 kg
was weighed and wet-pulverized with water to form a slurry, and a three-dimensional structure similar to that used in Example 1 was immersed in the slurry,
Remove excess slurry and dry at 150℃ for 3 hours.
A structure supporting alumina was obtained by firing at ℃ for 2 hours.

次いでパラジウムとして23g含有する硝酸パラジウム
を脱イオン水に溶解させ21の溶液をえた。この溶液に
アルミナ担持した三次元構造体を浸漬させ、余分な溶液
を取除き150℃で3時間乾燥した侵、500℃で2時
間焼成して完成触媒をえた。
Next, palladium nitrate containing 23 g of palladium was dissolved in deionized water to obtain a solution of No. 21. The three-dimensional structure supporting alumina was immersed in this solution, excess solution was removed, the structure was dried at 150°C for 3 hours, and then calcined at 500°C for 2 hours to obtain a completed catalyst.

えられた触媒のアルミナ、パラジウムのそれぞれの担持
量は、構造体11あたり60g、1.5gであった。
The supported amounts of alumina and palladium in the obtained catalyst were 60 g and 1.5 g per structure 11, respectively.

比較例2 パラジウムとして23g含有する硝酸パラジウムを脱イ
オン水に溶解させた21の溶液に、実施例1におけると
同様にして調製したアルミナ担持三次元構造体を浸漬さ
せ、余分な溶液を取除き150℃で3時間乾燥した後、
500℃で2時間焼成して完成触媒をえた。
Comparative Example 2 An alumina-supported three-dimensional structure prepared in the same manner as in Example 1 was immersed in a solution of 21 in which palladium nitrate containing 23 g of palladium was dissolved in deionized water, and the excess solution was removed. After drying for 3 hours at °C,
A completed catalyst was obtained by calcining at 500°C for 2 hours.

えられた触媒のジルコニア、パラジウムのそれぞれの担
持量は、構造体11あたり60o、15σ、1.5(J
であった。
The supported amounts of zirconia and palladium in the obtained catalyst were 60o, 15σ, and 1.5 (J
Met.

上記実施例1〜9ならびに比較例1〜2の各触媒組成物
の構造体11あたりの担1mを表−1に示した。
Table 1 shows 1 m of support per structure 11 for each of the catalyst compositions of Examples 1 to 9 and Comparative Examples 1 to 2.

[発明の効果] 実施例1〜9、比較例1〜2でえられた触媒について、
排気12300cc、4気筒デイーゼルエンジンを用い
て、触媒の評価試験を行なった。エンジン回転数250
Or91、t’ルク4.0に0・−の条件で微粒子の捕
捉約2時間を行ない、次いでトルクを0.5ko−s間
隔で5分毎に上昇させて、触媒層の圧損変化を連続的に
記録し、微粒子が触媒上で排ガス温度上昇に伴ない、微
粒子の蓄積による圧力上昇と微粒子の燃焼による圧力降
下とが等しくなる温度(Te >と着火燃焼、圧損が急
激に降下する温度(Ti )を求めた。
[Effect of the invention] Regarding the catalysts obtained in Examples 1 to 9 and Comparative Examples 1 to 2,
A catalyst evaluation test was conducted using a 4-cylinder diesel engine with an exhaust of 12,300 cc. Engine speed 250
Or91, particle capture was carried out for about 2 hours under the conditions of t' torque 4.0 and 0 -, and then the torque was increased every 5 minutes at 0.5 ko-s intervals to continuously observe pressure drop changes in the catalyst layer. As the exhaust gas temperature rises on the catalyst, the temperature at which the pressure increase due to the accumulation of the particles is equal to the pressure drop due to the combustion of the particles (Te > and the temperature at which ignition combustion and pressure drop rapidly decreases (Ti ) was sought.

又、S02のSO3への転化率を排ガス温度400℃で
求めた。802の転化率は入口ガス、出口ガスの802
濃度を非分散型赤外分析計(NDIR法)で分析し、次
の算出式よりS02の転化率(%)を求めた。
In addition, the conversion rate of SO2 to SO3 was determined at an exhaust gas temperature of 400°C. The conversion rate of 802 is the inlet gas and outlet gas.
The concentration was analyzed using a non-dispersive infrared analyzer (NDIR method), and the conversion rate (%) of S02 was determined using the following formula.

入口8021度(DEl量)− 次に、エンジン回転数2500rp■の全負荷、触媒入
口温度600℃での触媒耐久試験を行ない、300時間
後の活性を初期の評価と同じ方法で評価し、活性劣化を
測定した。
Inlet 8021 degrees (DEL amount) - Next, a catalyst durability test was conducted at a full load engine speed of 2500 rpm and a catalyst inlet temperature of 600 degrees Celsius, and the activity after 300 hours was evaluated using the same method as the initial evaluation. Deterioration was measured.

以上の測定結果を第2表に示す。The above measurement results are shown in Table 2.

第2表より本発明に開示するジルコニアとプラセオジム
、セリウム、ランタン、ネオジムおよびサマリウムから
選ばれた1種又は2種以上の希土類元素とパラジウムを
共存させた触媒は、高い浄化性能を有すると共に、高温
酸化雰囲気のような厳しい条件下においても劣化の少な
い、耐久性にも優れた触媒であることは明らかである。
From Table 2, the catalyst disclosed in the present invention in which palladium coexists with zirconia and one or more rare earth elements selected from praseodymium, cerium, lanthanum, neodymium, and samarium has high purification performance and high temperature It is clear that this is a highly durable catalyst that exhibits little deterioration even under severe conditions such as an oxidizing atmosphere.

Claims (3)

【特許請求の範囲】[Claims] (1)耐火性三次元構造体に、ジルコニアおよびパラジ
ウムならびにプラセオジム、セリウム、ランタン、ネオ
ジムおよびサマリウムからなる群から選ばれる少なくと
も1種の希土類元素の酸化物を含有することを特徴とす
る炭素系微粒子を浄化する排ガス浄化用触媒。
(1) Carbon-based fine particles characterized in that a fire-resistant three-dimensional structure contains zirconia and palladium, and an oxide of at least one rare earth element selected from the group consisting of praseodymium, cerium, lanthanum, neodymium, and samarium. A catalyst for purifying exhaust gas.
(2)ジルコニアおよびパラジウムが該耐火性三次元構
造体1リットル当り、それぞれ3〜150g、0.1〜
20g担持されていることを特徴とする請求項(1)の
触媒。
(2) Zirconia and palladium are 3 to 150 g and 0.1 to 150 g, respectively, per 1 liter of the fire-resistant three-dimensional structure.
The catalyst according to claim 1, wherein 20g is supported.
(3)該希土類元素の酸化物の担持量合計が該耐火性三
次元構造体1リットル当り1〜50g担持されているこ
とを特徴とする請求項(1)の触媒。
(3) The catalyst according to claim (1), wherein the total amount of the rare earth element oxide supported is 1 to 50 g per liter of the refractory three-dimensional structure.
JP63162563A 1987-11-07 1988-07-01 Exhaust gas purification catalyst Pending JPH0214744A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63162563A JPH0214744A (en) 1988-07-01 1988-07-01 Exhaust gas purification catalyst
DE3853258T DE3853258T2 (en) 1987-11-07 1988-11-03 Catalytic converter for exhaust gas cleaning of diesel engines.
CA000582078A CA1319141C (en) 1987-11-07 1988-11-03 Exhaust gas purification catalyst
EP88118309A EP0315896B1 (en) 1987-11-07 1988-11-03 Diesel engine exhaust gas purification catalyst
KR1019880014616A KR940000862B1 (en) 1987-11-07 1988-11-07 Exhust gas purification catalyst
US07/488,389 US5000929A (en) 1987-11-07 1990-02-23 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63162563A JPH0214744A (en) 1988-07-01 1988-07-01 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
JPH0214744A true JPH0214744A (en) 1990-01-18

Family

ID=15756969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162563A Pending JPH0214744A (en) 1987-11-07 1988-07-01 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH0214744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343207A (en) * 2001-05-18 2002-11-29 Saginomiya Seisakusho Inc Pressure switch
KR100384015B1 (en) * 2000-12-02 2003-05-14 현대자동차주식회사 Improved NOx conversion and thermal durable Pd only three way catalyst
WO2006068022A1 (en) * 2004-12-20 2006-06-29 Tanaka Kikinzoku Kogyo K.K. Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
JP2007083224A (en) * 2005-08-23 2007-04-05 Mazda Motor Corp Diesel particulate filter
JP2008105027A (en) * 2006-10-23 2008-05-08 Haldor Topsoe As Method and apparatus for purification of exhaust gas from compression ignition engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687430A (en) * 1979-12-19 1981-07-16 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPS62241554A (en) * 1986-04-11 1987-10-22 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas and preparation thereof
JPS6467256A (en) * 1987-09-08 1989-03-13 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPH0558775A (en) * 1991-09-02 1993-03-09 Fujitsu Ltd Molecular-beam epitaxy device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687430A (en) * 1979-12-19 1981-07-16 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JPS62241554A (en) * 1986-04-11 1987-10-22 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas and preparation thereof
JPS6467256A (en) * 1987-09-08 1989-03-13 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
JPH0558775A (en) * 1991-09-02 1993-03-09 Fujitsu Ltd Molecular-beam epitaxy device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384015B1 (en) * 2000-12-02 2003-05-14 현대자동차주식회사 Improved NOx conversion and thermal durable Pd only three way catalyst
JP2002343207A (en) * 2001-05-18 2002-11-29 Saginomiya Seisakusho Inc Pressure switch
WO2006068022A1 (en) * 2004-12-20 2006-06-29 Tanaka Kikinzoku Kogyo K.K. Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
JPWO2006068022A1 (en) * 2004-12-20 2008-06-12 田中貴金属工業株式会社 Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
JP4501012B2 (en) * 2004-12-20 2010-07-14 田中貴金属工業株式会社 Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
US7875572B2 (en) 2004-12-20 2011-01-25 Tanaka Kikinzoku Kogyo K.K. Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
JP2007083224A (en) * 2005-08-23 2007-04-05 Mazda Motor Corp Diesel particulate filter
JP2008105027A (en) * 2006-10-23 2008-05-08 Haldor Topsoe As Method and apparatus for purification of exhaust gas from compression ignition engine
US8603941B2 (en) 2006-10-23 2013-12-10 Haldor Topsoe A/S Method and apparatus for the purification of exhaust gas from a compression ignition engine

Similar Documents

Publication Publication Date Title
KR940000862B1 (en) Exhust gas purification catalyst
JP2821033B2 (en) Diesel engine exhaust gas purification catalyst
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP2716205B2 (en) Exhaust gas purification catalyst
JP2006518276A (en) Layered catalyst composite and method of using the same
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JPH1033985A (en) Catalyst for purifying exhaust gas from diesel engine
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JP4556716B2 (en) Exhaust gas purification catalyst, production method thereof, exhaust gas purification material, and exhaust gas purification system
JPH0462778B2 (en)
JP7088951B2 (en) Diesel oxidation catalyst containing manganese
JPH0214744A (en) Exhaust gas purification catalyst
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPH01254251A (en) Catalyst for purifying exhaust gas
JPS6164331A (en) Catalyst for purifying exhaust gas
JP3956158B2 (en) Nitrogen oxide removal catalyst
JPH0342936B2 (en)
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas
JP3436765B2 (en) Diesel engine exhaust gas purification catalyst
JP3337081B2 (en) Diesel engine exhaust gas purification catalyst
JPS62193648A (en) Catalyst for purifying exhaust gas
JPH0260374B2 (en)
JPH10272363A (en) Catalyst for exhaust gas purification
JPS60183037A (en) Exhaust gas purifying catalyst and its preparation