JPH02146722A - Manufacture of quantum fine line - Google Patents

Manufacture of quantum fine line

Info

Publication number
JPH02146722A
JPH02146722A JP30030588A JP30030588A JPH02146722A JP H02146722 A JPH02146722 A JP H02146722A JP 30030588 A JP30030588 A JP 30030588A JP 30030588 A JP30030588 A JP 30030588A JP H02146722 A JPH02146722 A JP H02146722A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
plane
substrate
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30030588A
Other languages
Japanese (ja)
Inventor
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30030588A priority Critical patent/JPH02146722A/en
Publication of JPH02146722A publication Critical patent/JPH02146722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make quantized energy in a quantum fine line constant, and steep as well by forming a semiconductor layer having a quantum well structure on a plane substrate and after cleavage of the above semiconductor layer is made vertically to the plane of the substrate, by causing a semiconductor equipped with forbidden bands including such a band of the semiconductor making up a well layer to grow on a cleavage plane. CONSTITUTION:A semiconductor layer having a quantum well structure 11 is formed on a plane substrate and cleavage of its semiconductor layer made vertically to the plane substrate makes the semiconductor layers having the quantum well structure 11 finely linear. After that, the semiconductor layers 13 and 14 equipped with forbidden bands including such a band of the semiconductor making up a well layer out of the semiconductor layers having the quantum well structure 11 are made to grow on the above-mentioned cleavage plane. For example, a multi quantum well 11 in which a GalnAs layer and an InP layer are laminated alternately a plurality of times grows on the plane (100) of the InP substrate 10 and an InP layer 12 is formed thickly on the above well 11. Then an InP growth layer 13 is formed on cleavage plane after cleaving its substrate with a face (011). Subsequently, the substrate is cleaved again so that the width A of quantum well structure 11 may come to the order of 100-200Angstrom and the InP layer 14 is allowed to grow on the above cleavage plane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体中に形成される量子細線の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing quantum wires formed in a semiconductor.

〔従来の技術〕[Conventional technology]

第2図は、従来の量子細線の製造方法を示す工程断面図
である。平面基板1上に量子井戸構造2をエピタキシャ
ル成長により形成しく第2図(A)参照)、その上にス
トライプ状のマスクパターン3を形成する(第2図(B
)参照)。その後、このマスクパターンを用いて量子井
戸構造2の上層バリア層4を選択的にエツチングしく第
2図(C)参照)、さらに井戸層5を選択的にエツチン
グする(第2図(D)参照)。ついで、マスクパターン
3を除去しく第2図(E)参照)、バリア層4と同じ半
導体を用いて、細線状に残された井戸層5を埋め込み、
量子細線を形成する(第2図(F)参照)。
FIG. 2 is a process cross-sectional view showing a conventional quantum wire manufacturing method. A quantum well structure 2 is formed on a flat substrate 1 by epitaxial growth (see FIG. 2(A)), and a striped mask pattern 3 is formed thereon (see FIG. 2(B)).
)reference). Thereafter, using this mask pattern, the upper barrier layer 4 of the quantum well structure 2 is selectively etched (see FIG. 2(C)), and the well layer 5 is further selectively etched (see FIG. 2(D)). ). Next, the mask pattern 3 is removed (see FIG. 2(E)), and the well layer 5 left in the form of a thin line is buried using the same semiconductor as the barrier layer 4.
A quantum wire is formed (see FIG. 2(F)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ストライプ状のマスク3をパターンニングする
際にリソグラフィ技術を用いるため、量子サイズ効果を
得るのに十分な細いパターンニングを行うことが困難で
あった。
However, since lithography technology is used when patterning the striped mask 3, it is difficult to perform patterning thin enough to obtain a quantum size effect.

また、量子井戸構造2をエツチングする場合、表面の損
傷を極力少なくするために通常はウェットエツチングを
用いる必要があるが、ウェットエツチングは制御性およ
び再現性の点で問題があった。特に、隣り合う量子細線
において、エツチングで形成した量子細線幅を原子層単
位(数A単位)で均一にすることは、不可能に近い。し
たがって、得られる量子細線中の量子化されたエネルギ
準位が、互いに隣り合う細線で異なるという問題があっ
た。
Further, when etching the quantum well structure 2, it is usually necessary to use wet etching in order to minimize damage to the surface, but wet etching has problems in terms of controllability and reproducibility. In particular, it is nearly impossible to make the width of quantum wires formed by etching uniform in atomic layer units (several amps) in adjacent quantum wires. Therefore, there is a problem in that the quantized energy levels in the obtained quantum wires differ between adjacent wires.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は、平面基板上に量
子井戸構造を持つ半導体層を形成した後、基板の平面に
垂直な方向にへき開し、その後、量子井戸構造を持つ半
導体層のうちの井戸層を構成する半導体の禁制帯を包含
する禁制帯を有する半導体を前記へき開面に成長するこ
とにより、量子細線を形成するものである。
In order to solve the above problems, the present invention forms a semiconductor layer with a quantum well structure on a flat substrate, cleaves it in a direction perpendicular to the plane of the substrate, and then cleaves the semiconductor layer with a quantum well structure on a flat substrate. A quantum wire is formed by growing a semiconductor having a forbidden band including the forbidden band of the semiconductor constituting the well layer on the cleavage plane.

〔作用〕[Effect]

量子細線の長手方向に垂直な2方向の寸法のうち、1方
向は平面基板上の量子井戸構造を成長するときの精度で
決定され、もう一つの方向は、へき開時の精度で決定さ
れる。
Of the two dimensions perpendicular to the longitudinal direction of the quantum wire, one direction is determined by the accuracy when growing a quantum well structure on a flat substrate, and the other direction is determined by the accuracy when cleaving.

一方、量子井戸構造は、分子線エピタキシー(MBE)
法や有機金属気相成長(OMVPE)法などの方法で、
単原子層程度の精度で平坦なヘテロ界面が形成される。
On the other hand, the quantum well structure is created using molecular beam epitaxy (MBE).
method, metal organic vapor phase epitaxy (OMVPE) method, etc.
A flat heterointerface is formed with an accuracy comparable to that of a monoatomic layer.

また、へき開で形成される面も、単原子層の精度で平坦
となる。
Furthermore, the surface formed by cleavage is also flat with the precision of a monoatomic layer.

したがって、本発明によって得られる量子細線は、隣り
合う量子細線の間で寸法の違いがほとんど無く、そのた
めに、量子細線中の量子化されたエネルギ準位がほとん
ど一定となる。
Therefore, in the quantum wire obtained by the present invention, there is almost no difference in size between adjacent quantum wires, and therefore the quantized energy level in the quantum wire is almost constant.

〔実施例〕〔Example〕

第2図は、本発明の一実施例を示す工程斜視図である。 FIG. 2 is a process perspective view showing an embodiment of the present invention.

なお、図における寸法比率は、見易さを優先しているた
めに、必ずしも実際の寸法比率と合致していない。
Note that the dimensional ratios in the figures do not necessarily match the actual dimensional ratios because priority is given to ease of viewing.

InP基板lOの(100)面上に、100A程度の厚
さのGa I nAs層とInP層を交互に複数回重ね
た多重量子井戸構造11をOMVPE法により成長し、
その上にInP層12を厚く形成する(第1図(A)参
照)。なお、InPの禁制帯は、Ga1nAsの禁制帯
を包含しているため、量子井戸構造11のうち、Ga 
I nAs層が井戸層となり、InP層がバリア層とな
る。
A multi-quantum well structure 11 in which Ga InAs layers and InP layers each having a thickness of about 100 A are alternately stacked multiple times is grown on the (100) plane of an InP substrate lO by the OMVPE method.
A thick InP layer 12 is formed thereon (see FIG. 1(A)). In addition, since the forbidden band of InP includes the forbidden band of Ga1nAs, in the quantum well structure 11, Ga
The InAs layer becomes a well layer, and the InP layer becomes a barrier layer.

つぎに、この量子井戸構造11が形成されたInP基板
10を、(011)面でへき開する(第1図(B)参照
)。そして、へき開面に、まずOMVPE法でInPを
数μm程度成長した後、さらに、液相エピタキシー(L
 P E)法により、InPを50〜100μm成長し
て、InP成長層13を形成する(第1図(C)参照)
。InP成長層13を、OMVPE法とLPE法の2種
類の方法を用いて形成するのはつぎの理由による。
Next, the InP substrate 10 on which the quantum well structure 11 is formed is cleaved along the (011) plane (see FIG. 1(B)). Then, after first growing InP to several μm on the cleavage plane using the OMVPE method, further liquid phase epitaxy (L
InP is grown to a thickness of 50 to 100 μm using the PE method to form an InP growth layer 13 (see FIG. 1(C)).
. The reason why the InP growth layer 13 is formed using two methods, the OMVPE method and the LPE method, is as follows.

すなわち、LPE法は成長速度が速いという利点を有す
るものの、へき開面をメルトバックしてしまうという欠
点を有するため、最初からLPE法を用いてInPを成
長させると、単原子層の精度で平坦となっているへき開
面の平坦性が失われてしまう。一方、OMVPE法は、
へき開面の平坦性を保存しつつInPの成長を達成する
ことができるが、その成長速度が遅い。そこで、画成長
方法の欠点を相殺しつつそれぞれの利点を生かし、最初
にOMVPE法で薄い膜を形成し、その後LPE法で厚
くしている。この場合、OMVPE法に代えてMBE法
を用いても同様のメリットが得られる。
In other words, although the LPE method has the advantage of a fast growth rate, it has the disadvantage of melting back the cleavage plane, so if you grow InP using the LPE method from the beginning, you will not be able to grow InP with the precision of a single atomic layer. The flatness of the cleavage plane is lost. On the other hand, the OMVPE method
Although InP growth can be achieved while preserving the flatness of the cleavage plane, the growth rate is slow. Therefore, by taking advantage of the advantages of each of the image growth methods while offsetting their drawbacks, a thin film is first formed using the OMVPE method, and then thickened using the LPE method. In this case, similar advantages can be obtained by using the MBE method instead of the OMVPE method.

つぎに、量子井戸構造11の幅Aが100〜200八程
度となるように、量子井戸構造11が形成されているI
nP基板11を(011)面で再びへき開する(第1図
(D)参照)。そして、最後に、この第2のへき開面に
OMVPE法により、数μmのInP層14を成長する
ことにより、InPで囲まれたGa I nAsの量子
細線が形成される(第1図(E)参照)。
Next, I
The nP substrate 11 is again cleaved along the (011) plane (see FIG. 1(D)). Finally, by growing an InP layer 14 of several micrometers on this second cleavage plane by OMVPE, a quantum wire of GaInAs surrounded by InP is formed (Fig. 1(E)). reference).

なお、本実施例では量子細線をGa I nAs、量子
細線を囲むバリア層をInPとしたが、材料はこれに限
定されるものではなく、量子細線を構成する半導体の禁
制帯がバリア層を構成する半導体の禁制帯に包含される
ような関係にあれば良い。
In this example, the quantum wire was made of GaInAs, and the barrier layer surrounding the quantum wire was InP, but the material is not limited to these, and the forbidden band of the semiconductor that makes up the quantum wire makes up the barrier layer. It is sufficient if the relationship is included in the forbidden band of the semiconductor.

このような関係を有するものとして、たとえば、量子細
線にGaAs、バリア層にA、QGaAsを用いたもの
などが挙げられる。また、量子細線の周囲のバリア層を
全て同じ材料で構成する必要はなく、上記の禁制帯の関
係を満足する材料であれば、量子細線の上下のバリア層
と左右のバリア層の材料が相違していてもよい。
Examples of materials having such a relationship include those using GaAs for the quantum wire and A or QGaAs for the barrier layer. In addition, it is not necessary that all the barrier layers around the quantum wire be made of the same material; as long as the material satisfies the above forbidden band relationship, the barrier layers above and below the quantum wire and the barrier layers on the left and right can be made of different materials. You may do so.

また、本実施例では、第1のへき開面を形成した後、そ
のへき開面にバリア層となる成長層を形成し、その後、
第1のへき開面に平行に第2のへき開面を形成し、その
上にバリア層となる成長層を形成しているが、2つのへ
き開面を初めに形成してから、両へき開面にバリア層を
成長させてもよい。
Furthermore, in this example, after forming the first cleavage plane, a growth layer serving as a barrier layer is formed on the cleavage plane, and then,
A second cleavage plane is formed parallel to the first cleavage plane, and a growth layer that becomes a barrier layer is formed on top of the second cleavage plane. Layers may be grown.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の量子細線の製造方法によ
れば、量子細線の長手方向に垂直な2方向の寸法のうち
、1方向は平面基板上の量子井戸構造を成長するときの
精度で決定され、もう一つの方向は、へき開時の精度で
決定されるので、いずれの方向の寸法も単原子層程度の
精度で制御できる。したがって、本発明により製造され
た量子細線は、量子細線中の量子化されたエネルギが一
定かつ急峻となり、これを用いたデバイスの性能向上に
大きく貢献する。
As explained above, according to the quantum wire manufacturing method of the present invention, one of the dimensions in two directions perpendicular to the longitudinal direction of the quantum wire has the precision required when growing a quantum well structure on a flat substrate. Since the other direction is determined by the precision at the time of cleavage, the dimensions in either direction can be controlled with precision comparable to that of a monoatomic layer. Therefore, in the quantum wire manufactured according to the present invention, the quantized energy in the quantum wire is constant and steep, which greatly contributes to improving the performance of devices using the quantum wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す工程斜視図、第2図
は、従来の量子細線の製造方法を示す工程断面図である
。 10・・・InP基板、11・・・量子井戸構造、13
.14・・・InP成長層。 特許出願人  住友電気工業株式会社
FIG. 1 is a process perspective view showing an embodiment of the present invention, and FIG. 2 is a process cross-sectional view showing a conventional quantum wire manufacturing method. 10... InP substrate, 11... quantum well structure, 13
.. 14...InP growth layer. Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、平面基板上に量子井戸構造を持つ半導体層を形成す
る工程と、 前記基板の平面に垂直な方向にへき開して前記量子井戸
構造を持つ半導体層を細線化する工程と、前記量子井戸
構造を持つ半導体層のうちの井戸層を構成する半導体の
禁制帯を包含する禁制帯を有する半導体を前記へき開面
に成長する工程とを備えた量子細線の製造方法。 2、平面基板上に量子井戸構造を持つ半導体層を形成す
る工程と、 前記基板の平面に垂直な方向に第1のへき開面を形成す
る工程と、 前記量子井戸構造を持つ半導体層のうちの井戸層を構成
する半導体の禁制帯を包含する禁制帯を有する半導体を
前記第1のへき開面に成長する工程と、 前記第1のへき開面に平行な第2のへき開面を形成する
ことにより前記量子井戸構造を持つ半導体層を細線化す
る工程と、 前記量子井戸構造を持つ半導体層のうちの井戸層を構成
する半導体の禁制帯を包含する禁制帯を有する半導体を
前記第2のへき開面に成長する工程と を備えた量子細線の製造方法。
[Claims] 1. A step of forming a semiconductor layer having a quantum well structure on a flat substrate, and a step of cleaving the semiconductor layer having a quantum well structure into thin wires by cleaving in a direction perpendicular to the plane of the substrate. and growing a semiconductor having a forbidden band including a forbidden band of a semiconductor constituting a well layer of the semiconductor layer having a quantum well structure on the cleavage plane. 2. A step of forming a semiconductor layer having a quantum well structure on a flat substrate; a step of forming a first cleavage plane in a direction perpendicular to the plane of the substrate; a step of growing a semiconductor having a forbidden band including a forbidden band of the semiconductor constituting the well layer on the first cleavage plane; and forming a second cleavage plane parallel to the first cleavage plane. A step of thinning a semiconductor layer having a quantum well structure, and forming a semiconductor having a forbidden band including a forbidden band of a semiconductor constituting a well layer in the semiconductor layer having a quantum well structure on the second cleavage plane. A method for producing a quantum wire, comprising a growing step.
JP30030588A 1988-11-28 1988-11-28 Manufacture of quantum fine line Pending JPH02146722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30030588A JPH02146722A (en) 1988-11-28 1988-11-28 Manufacture of quantum fine line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30030588A JPH02146722A (en) 1988-11-28 1988-11-28 Manufacture of quantum fine line

Publications (1)

Publication Number Publication Date
JPH02146722A true JPH02146722A (en) 1990-06-05

Family

ID=17883180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30030588A Pending JPH02146722A (en) 1988-11-28 1988-11-28 Manufacture of quantum fine line

Country Status (1)

Country Link
JP (1) JPH02146722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045944A (en) * 2009-08-26 2011-03-10 National Institute For Materials Science Nanoribbon and manufacturing method thereof, fet using nanoribbon and manufacturing method thereof, and base sequence determination method using nanoribbon and apparatus for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045944A (en) * 2009-08-26 2011-03-10 National Institute For Materials Science Nanoribbon and manufacturing method thereof, fet using nanoribbon and manufacturing method thereof, and base sequence determination method using nanoribbon and apparatus for the same

Similar Documents

Publication Publication Date Title
US5313484A (en) Quantum box or quantum wire semiconductor structure and methods of producing same
JP2827326B2 (en) Manufacturing method of semiconductor laser
US5258326A (en) Quantum device fabrication method
EP0678946B1 (en) Quantum wire device and method of making such a device
JPH02266514A (en) Semiconductor device in hetero structure and its manufacture
KR100251602B1 (en) Reverse side etching for producing layers with strain variation
JPH02146722A (en) Manufacture of quantum fine line
JPH0552676B2 (en)
US5659179A (en) Ultra-small semiconductor devices having patterned edge planar surfaces
US5833870A (en) Method for forming a high density quantum wire
JPH11112099A (en) Manufacture of semiconductor optical element
JPS60113488A (en) Manufacture of element having effect of one-dimensional quantum size
JPS60250684A (en) Manufacture of 3-dimensional quantum well semiconductor laser
JPH08181301A (en) Quantum dot structure and its manufacture
JPS62273791A (en) Manufacture of semiconductor quantum well laser
JPS62179790A (en) Semiconductor laser
JPS6114788A (en) Manufacture of two-dimensional quantum well structure
JP3132054B2 (en) Method of manufacturing buried semiconductor laser
JPS63318732A (en) Manufacture of semiconductor device
JPH01215087A (en) Semiconductor light emitting device
JP3120439B2 (en) Semiconductor device and manufacturing method thereof
JPH076963A (en) Manufacture of semiconductor quantum fine wire structure
JPH04317318A (en) Manufacture of three-dimensional lattice structure and crystal-burying method
JPH01208871A (en) Quantum fine line structure and formation thereof
JPH0488628A (en) Manufacture of semiconductor device