JPH02145702A - High strength alloy steel powder for powder metallurgy - Google Patents

High strength alloy steel powder for powder metallurgy

Info

Publication number
JPH02145702A
JPH02145702A JP63299344A JP29934488A JPH02145702A JP H02145702 A JPH02145702 A JP H02145702A JP 63299344 A JP63299344 A JP 63299344A JP 29934488 A JP29934488 A JP 29934488A JP H02145702 A JPH02145702 A JP H02145702A
Authority
JP
Japan
Prior art keywords
powder
alloy
iron powder
strength
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63299344A
Other languages
Japanese (ja)
Other versions
JPH0689363B2 (en
Inventor
Hitoshi Sakuma
均 佐久間
Hirotaka Hanaoka
花岡 宏卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63299344A priority Critical patent/JPH0689363B2/en
Publication of JPH02145702A publication Critical patent/JPH02145702A/en
Publication of JPH0689363B2 publication Critical patent/JPH0689363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain raw material alloy steel powder for manufacturing Fe series sintered member having high density and high strength by diffusing and sticking the specific quantity of Ni, Cu, Mo as these alloy fine powders to high purity iron powder. CONSTITUTION:At the time of manufacturing the sintered member by compacting and sintering the Fe powder with powder metallurgical method, as the iron powder for raw material, the high purity iron powder having composition of wt.% of <=0.01% C, <=0.02% Si, <=0.10% Mn, <=0.01% P, <=0.01% S, <=0.15% O, is used and to the iron powder, the metals of Ni, Cu, Mo are diffused and stuck as fine powder state of form of Ni-Cu alloy, Ni-Mo alloy, Ni-Cu-Mo alloy, etc. In this case, these metal elements are diffused and stuck so as to 6-8% Ni, 0-2% Cu, 0.5-1.0% Mo to the iron powder. By using this alloy steel powder, the Fe series sintered member having high density and high strength can be manufactured at low sintering temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば歯車、軸受部品等各種の焼結機械部品
の製造に使用される高圧縮性、高強度の粉末冶金用合金
鋼粉に関する。なお、本発明の合金鋼粉は、所望形状に
圧縮成形された後、焼結(合金粉末同士の接合)され、
しかる後HIP(熱間静水圧成形)等で各種部品に加工
される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy steel powder for powder metallurgy with high compressibility and high strength used for manufacturing various sintered machine parts such as gears and bearing parts. . The alloyed steel powder of the present invention is compression-molded into a desired shape and then sintered (bonding of the alloyed powders).
After that, it is processed into various parts by HIP (hot isostatic pressing) or the like.

〔従来の技術〕[Conventional technology]

近年、焼結部品の高強度化の9請がますます高まってお
り、この7請に対して合金化、高密度化等の手法により
、種々の高強度焼結材が開発されている。
In recent years, there has been an increasing demand for high strength sintered parts, and various high strength sintered materials have been developed using techniques such as alloying and densification.

この高強度焼結材を得る手法の1つとして、純鉄粉を主
原料とし、これにNi 、Cu 、Ha等の合金用単体
元素微粉末を混合し、焼結時に合金元素を固溶させる、
いわゆるプレミックス法がある。
One method for obtaining this high-strength sintered material is to use pure iron powder as the main raw material, mix it with fine powder of single elements for alloying such as Ni, Cu, Ha, etc., and dissolve the alloying elements as a solid solution during sintering. ,
There is a so-called premix method.

しかし、このプレミックス法ではプレス成形時に、鉄粉
と合金用微粉末とが比重差によって分離、偏析したり、
焼結中に合金用微粉末の拡散が不十分であったりして組
織が不均一化し、その結果、強度や寸法のバラツキが生
じるといった問題がある。
However, with this premix method, during press forming, iron powder and fine alloy powder may separate and segregate due to the difference in specific gravity.
There is a problem in that during sintering, the fine powder for alloying is not sufficiently diffused, and the structure becomes non-uniform, resulting in variations in strength and dimensions.

また他の手法として、アトマイズ法の発達により、上記
Ni、Cu、Mo等の合金元素をFe中に固溶させた合
金鋼粉が製造されるようになり、この合金鋼粉を用いる
、いわゆるプレアロイ法が提案されている。この合金鋼
粉の場合、MJ織の不均−化の問題は解消できるものの
、粒子の硬度が高くなるため圧縮性が低下し、従って高
密度の焼結材が得られず、十分な強度が得られない。
As another method, with the development of the atomization method, it has become possible to produce alloy steel powder in which alloying elements such as Ni, Cu, Mo, etc. are dissolved in Fe. A law is proposed. In the case of this alloy steel powder, although the problem of unevenness in the MJ weave can be solved, the hardness of the particles increases and the compressibility decreases, so a high-density sintered material cannot be obtained and sufficient strength is not obtained. I can't get it.

そこで上記問題点を解消して高密度、高強度の焼結材料
を得る他の手法として、従来例えば特公昭45−964
9号公報に記載されているように、純鉄粉にNl 、 
 Cu 、 Mo等の単体元素の微粉末を部分的に拡散
付着させた、いわゆる部分拡散合金鋼粉がある(第2図
参照)、この公報記載の手法による鋼粉は、圧縮性は純
鉄粉と同等であり、かつ高い焼結体強度を有している。
Therefore, as another method for solving the above problems and obtaining a high-density, high-strength sintered material, for example, Japanese Patent Publication No. 45-964
As described in Publication No. 9, pure iron powder contains Nl,
There is a so-called partially diffused alloy steel powder in which fine powders of simple elements such as Cu and Mo are partially diffused and attached (see Figure 2).The steel powder produced by the method described in this publication has a compressibility comparable to that of pure iron powder , and has high sintered body strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記公報記載の手法により、例えば6〜l
owt%Niを含有するような高Ni合金鋼粉を製造す
る場合、この合金用元素の融点が高く、また鉄粉中への
拡散速度が遅いことから、未拡散の合金用元素が多く残
り、十分な強度が得られない、また十分に拡散させるた
めには高温で長時間の焼結が必要となり、コスト高とな
る問題点がある。
However, by the method described in the above publication, for example, 6 to 1
When producing high Ni alloy steel powder containing owt%Ni, since the melting point of this alloying element is high and the rate of diffusion into the iron powder is slow, a large amount of undiffused alloying element remains. There are problems in that sufficient strength cannot be obtained, and sintering at high temperatures and for a long time is required for sufficient diffusion, resulting in high costs.

そこで本発明者等は、上記問題点を解消できる粉末冶金
用高強度合金鋼粉として、高純度純鉄粉に、Ni 、C
u 、Moの内2種類以上の元素を予め合金化した合金
微粉末を拡散付着させたものを開発している(特願昭6
2−136934号参照)。
Therefore, the present inventors have developed a high-strength alloy steel powder for powder metallurgy that can solve the above problems by adding Ni and C to high-purity pure iron powder.
We have developed a product in which fine alloy powder made by pre-alloying two or more elements of u and Mo is diffused and adhered (patent application filed in 1983).
2-136934).

上記開発に係る合金鋼粉は、第1図に示すように、純鉄
粉にNt−Cu粉末、Nt−Mo粉末、あるいはNi−
Cu−Mo粉末等の何れかが拡散付着しているものであ
る。なお、この合金鋼粉は、上記合金微粉末の他に上記
元素の単体微粉末が拡散付着していても良い、ここで拡
散付着(ディフェージョンボンディング)とは、上記合
金微粉末が完全に固溶しているのではなく、該合金微粉
末の例えばCu成分が鉄粉中に拡散し、両者の界面では
一部が合金化し、この状態で付着していることを言う。
As shown in Fig. 1, the developed alloy steel powder includes pure iron powder, Nt-Cu powder, Nt-Mo powder, or Ni-
Either Cu-Mo powder or the like is diffused and adhered thereto. In addition to the above-mentioned alloy fine powder, this alloy steel powder may also have a single fine powder of the above elements diffused and adhered thereto. Here, diffusion bonding means that the above-mentioned alloy fine powder is completely bonded. Rather than being in a solid solution, for example, the Cu component of the alloy fine powder is diffused into the iron powder, and at the interface between the two, a portion is alloyed and adhered in this state.

上記開発に係る合金鋼粉では、Ni、Cu、MOの合金
微粉末を拡散付着させるようにしたので、これらの単体
元素の微粉末の場合に比較して融点を低下させることが
でき、高温長時間焼結を要することなく、短時間で十分
に拡散させることができ、焼結強度を向上できる。
In the alloy steel powder developed above, fine alloy powders of Ni, Cu, and MO are diffused and adhered, so the melting point can be lowered compared to the case of fine powders of these single elements, and it can be used for long periods at high temperatures. It can be sufficiently diffused in a short time without requiring time-consuming sintering, and the sintering strength can be improved.

ところがその後の実験研究により、上述の合金微粉末を
採用しても、その母粉に対する成分割合の如何によって
は上述の効果が十分に現れない、あるいは逆に製品の寸
法変化のばらつきが大きくなる等の問題が生じる場合が
あることが判明した。
However, subsequent experimental research has shown that even if the above-mentioned alloy fine powder is used, the above-mentioned effects may not be fully manifested depending on the proportion of the components in the mother powder, or conversely, the variation in dimensional changes of the product may increase. It has been found that problems may occur.

そこで本発明は、上記状況に鑑みてなされたもので、添
加元素が最適成分範囲になるように合金用微粉末を拡散
付着させることにより、確実十分な拡散を実現し、焼結
体強度の向上及び寸法変化率のばらつきの抑制が図れる
粉末冶金用高強度合金鋼粉を提供することを目的として
いる。
Therefore, the present invention was made in view of the above situation, and by diffusing and adhering the fine powder for alloying so that the added elements fall within the optimum range, it is possible to ensure sufficient diffusion and improve the strength of the sintered body. Another object of the present invention is to provide a high-strength alloy steel powder for powder metallurgy that can suppress variations in dimensional change rate.

〔間n点を解決するための手段〕[Means for solving n points in between]

本発明は、C: 0.01wt%以下、S i  : 
0.02wt%以下、Mn  :0.10wt%以下、
P : 0.01wt%以下、S : 0.010 w
t%t%以下 : 0.15wt%以下で残部鉄及び不
可避的不純物からなる高純度純鉄粉に、Ni、Cu、M
oのうち2種類以上の元素を予め合金化した合金微粉末
を、上記純鉄粉に対してNi:6〜8wt%、 Cu:
O〜2iit%、Mo  :0.5〜1゜Owt%Mo
になるように拡散付着させることを特徴とする焼結合金
用高強度合金鋼粉である。
In the present invention, C: 0.01 wt% or less, S i :
0.02wt% or less, Mn: 0.10wt% or less,
P: 0.01wt% or less, S: 0.010w
t% or less: 0.15wt% or less of high-purity pure iron powder consisting of the balance iron and unavoidable impurities, Ni, Cu, M
Fine alloy powder prepared by pre-alloying two or more elements of o is added to the above pure iron powder with Ni: 6 to 8 wt% and Cu:
O~2iit%, Mo: 0.5~1°Owt%Mo
This is a high-strength alloy steel powder for sintered alloys, which is characterized by being diffused and adhered so that it becomes sintered.

ここで本発明における各構成要件の限定理由について説
明する。
Here, the reason for limiting each component in the present invention will be explained.

(1)母籾である純鉄粉の組成を、C: 0.01wt
%以下、S i  10.02wt%以下、Mn  :
 0.10w4t%以下、P :0.01wt%以下、
S : 0.010 wt%t%以下:0゜15−t%
以下で残部鉄及び不可避的不純物からなる、として許容
限界を定めたのは優れた圧縮性を確保するためである。
(1) The composition of pure iron powder, which is the mother rice, is C: 0.01wt.
% or less, Si 10.02wt% or less, Mn:
0.10w4t% or less, P: 0.01wt% or less,
S: 0.010 wt% or less: 0°15-t%
The reason why the allowable limit is defined below as consisting of the remainder iron and unavoidable impurities is to ensure excellent compressibility.

Si、Mn+純鉄粉の製造過程において溶鋼の脱酸を行
うために、少量のStあるいはMnを添加するが、これ
らの0との親和力の強い元素は、水アトマイズ時に酸化
され、酸化介在物となって鉄粉中に残存して圧縮性を阻
害する。従ってMn、Siの添加量が多くなると酸化介
在物も多くなつり、次の還元行程においてもこれらの酸
化介在物は還元されずに残存して圧縮性を低下させるこ
とから、Slは0.02wt%以下、Mnは0.1 w
t%以下と極力少なくすることが望ましい。
A small amount of St or Mn is added to deoxidize the molten steel in the process of producing Si, Mn + pure iron powder, but these elements, which have a strong affinity for 0, are oxidized during water atomization and form oxidized inclusions. It remains in the iron powder and inhibits compressibility. Therefore, as the amount of Mn and Si added increases, the number of oxidized inclusions increases, and even in the next reduction process, these oxidized inclusions remain without being reduced and reduce compressibility, so Sl is 0.02wt. % or less, Mn is 0.1 w
It is desirable to reduce it to t% or less as much as possible.

p、s:  溶鋼の精練時にP、  Sが残存すると鉄
粉粒子を硬化させ、圧縮性を低下させる。そしてこのP
、Sが多いと、還元処理後においても粒子が軟らか(な
らない、この鉄粉粒子の硬化を防止するため、P、S共
に0.010 wt%以下とした。
p, s: If P and S remain during smelting of molten steel, they harden iron powder particles and reduce compressibility. And this P
If the iron powder particles contain a large amount of S, the particles will remain soft even after reduction treatment.In order to prevent the iron powder particles from hardening, the contents of both P and S were set to 0.010 wt% or less.

C,O:このC20については還元雰囲気中で加熱する
還元行程において、脱炭、脱酸反応により低減すること
が可能であるが、還元後の鉄粉中にCが多量に残存する
と圧縮性を著しく低下させることから、Cは0.01w
t%以下とした。またOが多いと圧縮性を低下させるだ
けでなく、通常の粉末冶金法において混合使用される黒
鉛粉の歩留を低下させ、さらにMi織のばらつきの原因
になることから、Oは0.15wt%以下とした。
C, O: This C20 can be reduced through decarburization and deoxidation reactions during the reduction process of heating in a reducing atmosphere, but if a large amount of C remains in the iron powder after reduction, it will reduce compressibility. C is 0.01w because it significantly reduces
It was set to t% or less. Furthermore, if there is a large amount of O, it not only reduces compressibility but also reduces the yield of graphite powder mixed and used in normal powder metallurgy, and also causes variations in the Mi weave. % or less.

(2)上記母親に、Ni 、Cu 、Moのうち2種類
以上の元素を予め合金化した合金微粉末を、上記母親に
対してNiが6〜8wt%、Cuが0〜2−仁%、Mo
が0.5〜1.Q wt%となるように拡散付着させる
ようにしたのは、以下の理由による。
(2) Add to the above mother an alloy fine powder pre-alloyed with two or more elements among Ni, Cu, and Mo; 6 to 8 wt% of Ni and 0 to 2 wt% of Cu; Mo
is 0.5 to 1. The reason why the diffusion and adhesion was made to achieve Q wt% is as follows.

■ Ni は靭性、焼入性を改善する効果があり、Mo
は焼入性を高め、焼入、焼戻処理時の軟化を防止する。
■ Ni has the effect of improving toughness and hardenability, and Mo
improves hardenability and prevents softening during hardening and tempering treatments.

またCuは強度を向上させる効果がある。Further, Cu has the effect of improving strength.

この場合、Niが6wt%未満の場合は強度が不十分で
あり、一方8wt%を越えると残留オーステナイトの増
加により強度が劣化する。Moが0.5wt%未満場合
は焼入性向上効果が得られず、1.0wt%を越えると
靭性(ill値)が低下する。またCuが2%を越える
と焼結時の寸法変化率のばらつき(標準偏差)が大幅に
増加する。従ってNl:6〜8wt%、Cu:0〜2w
t%、Mo : 0.5〜1、Q wt%とする必要が
ある。
In this case, if the Ni content is less than 6 wt%, the strength will be insufficient, while if it exceeds 8 wt%, the strength will deteriorate due to an increase in retained austenite. If Mo is less than 0.5 wt%, the effect of improving hardenability cannot be obtained, and if it exceeds 1.0 wt%, the toughness (ill value) decreases. Moreover, when Cu exceeds 2%, the variation (standard deviation) in the dimensional change rate during sintering increases significantly. Therefore, Nl: 6-8wt%, Cu: 0-2w
t%, Mo: 0.5 to 1, Q wt%.

■ 上述のようにNi、Moは鉄粉中に拡散固溶される
と、焼結材、あるいは熱処理材の強度を著しく向上でき
る。しかしこのNi、Moは融点が高く、また鉄粉中へ
の拡散速度が遅く、そのため十分な拡散を得るには、高
温かつ長時間の焼結処理が必要となる。また、Ni 、
Cu 、Moをそれぞれ単体元素粉末のまま使用した場
合、ある場所にそれぞれの元素粉末が存在する場合と、
ある元素粉末だけが存在する場合とがある確率で発生し
、組織的に不均一となるやさらにCuを単体粉末として
添加すると、Cuの溶出による異常膨張が発生し、製品
の寸法精度が低下する。
(2) As mentioned above, when Ni and Mo are diffused and dissolved in iron powder, the strength of sintered materials or heat-treated materials can be significantly improved. However, Ni and Mo have a high melting point and a slow diffusion rate into iron powder, so a high temperature and long sintering process is required to achieve sufficient diffusion. Also, Ni,
When Cu and Mo are used as single element powders, when each element powder exists in a certain place,
It occurs with a certain probability that only a certain elemental powder exists, and when the structure becomes non-uniform, if Cu is added as a single powder, abnormal expansion will occur due to Cu elution, and the dimensional accuracy of the product will decrease. .

そこで本発明では、Ni、Cu、MoO内2種顆以上の
元素を予め合金化した合金微粉末、例えばNi−Mo粉
末、Ni−Cu粉末、あるいはNi −Cu−Mo粉末
を使用するようにしたものであり、この合金化された微
粉末は、Ni、Moの単体粉末の場合より融点を低下さ
せることとなり、また拡散性を向上できる。
Therefore, in the present invention, a fine alloy powder in which Ni, Cu, and two or more elements in MoO are alloyed in advance, such as Ni-Mo powder, Ni-Cu powder, or Ni-Cu-Mo powder, is used. This alloyed fine powder has a lower melting point than the case of single powders of Ni and Mo, and can also improve diffusivity.

またCuを合金微粉末として添加することにより、単体
添加時に見られるCuの溶出による異常膨張がないため
、寸法精度が向上し、焼結後の密度も上昇し強度が向上
する。
Furthermore, by adding Cu as an alloy fine powder, there is no abnormal expansion due to elution of Cu, which occurs when Cu is added alone, so dimensional accuracy is improved, density after sintering is also increased, and strength is improved.

ここで本発明に使用される合金微粉末自体の成分割合は
特に限定されるものではないが、以下の組成か好ましい
Although the component ratio of the fine alloy powder used in the present invention itself is not particularly limited, the following composition is preferred.

Ni−Mo系二Moの高融点をNi−Mo合金粉とする
ことににより低下させ、鉄粉中への拡散性を向上させる
ことができる。しかしMoがsowt%以上になると、
この融点低下効果がほとんどなくなるので、Moは50
w t%以下にするのが望ましい。
The high melting point of Ni-Mo based di-Mo can be lowered by forming Ni-Mo alloy powder, and the diffusibility into iron powder can be improved. However, when Mo becomes more than sowt%,
Since this melting point lowering effect is almost eliminated, Mo is 50
It is desirable to keep it below wt%.

Ni −Cu系:この系では全固溶型の合金粉が得られ
、Cu wt%が増加するほど融点を下げることができ
、鉄粉中への拡散を容易化できる。しかしC,uが40
w t%以上になると焼結後の寸法が膨張するため実用
性の点で効果がな(なる、従ってCUは40wt%以下
が望ましい。
Ni-Cu system: In this system, an all-solid solution type alloy powder can be obtained, and as the Cu wt% increases, the melting point can be lowered and diffusion into the iron powder can be facilitated. However, C, u is 40
If it exceeds wt%, the dimensions after sintering will expand, making it ineffective in terms of practicality (therefore, it is desirable that CU be 40wt% or less).

Ni  Cu−Mo系: この系においては、上述の点
から、Moは50w t%以下、Cuは40wt%以下
の組成にするのが望ましい。
Ni Cu-Mo system: In this system, from the above point, it is desirable that the composition of Mo be 50 wt% or less and Cu be 40 wt% or less.

ところで本発明の合金鋼粉は例えば以下の方法で製造す
ることができる。即ち、上記高純度純鉄粉と、上記合金
微粉末とを有機溶媒中にて湿式混合し、しかる後該混合
粉を還元性雰囲気中にて750℃を越え、かつ1000
℃未満の温度で還元焼鈍し、上記純鉄粉に上記合金微粉
末及び単体元素微粉末を拡散付着させることを特徴とし
ている。
By the way, the alloy steel powder of the present invention can be produced, for example, by the following method. That is, the above-mentioned high-purity pure iron powder and the above-mentioned alloy fine powder are wet mixed in an organic solvent, and then the mixed powder is heated in a reducing atmosphere at a temperature exceeding 750°C and at a temperature of 1000°C.
The method is characterized in that reduction annealing is performed at a temperature below .degree. C., and the fine alloy powder and fine single element powder are diffused and adhered to the pure iron powder.

ここで上記製造方法において、純鉄粉と合金粉とを有機
溶媒中で湿式混合するようにしたのは、純鉄粉の表面に
合金粉末を均一かつ十分に付着させるためである。金属
粉末の混合には、金属粉末を一対の円錐型コーンの底面
同士を接続してなるダブルコーン型混合機内に装入し、
該コーンを水平軸廻りに回転させるようにした乾式混合
法があるが、この方法では、各金属粉の比重差によって
層状に分離され易く、均一な混合は困難である。
Here, in the above manufacturing method, the pure iron powder and the alloy powder are wet mixed in an organic solvent in order to uniformly and sufficiently adhere the alloy powder to the surface of the pure iron powder. To mix metal powder, the metal powder is charged into a double cone mixer made by connecting the bottoms of a pair of cones.
There is a dry mixing method in which the cone is rotated around a horizontal axis, but in this method, metal powders tend to separate into layers due to differences in specific gravity, making uniform mixing difficult.

これに対して上記製造方法では、例えばエチルアルコー
ル等の有機溶媒に合金粉末を分散させたものと、母親の
純鉄粉とを混合攪拌する湿式混合法を採用したので、純
鉄粉末に合金粉末が均一に分散され、かつ各粉末の表面
に形成された溶媒の薄膜の濡れ性により、均一に分散さ
れた状態で付着する。従って上記乾式の場合のような比
重差で各粉末が分離することはない、その結果次の還元
工程での拡散付着が均一かつ十分に行われ、焼結強度が
向上する。
On the other hand, in the above manufacturing method, a wet mixing method is adopted in which alloy powder is dispersed in an organic solvent such as ethyl alcohol and mother pure iron powder is mixed and stirred. are uniformly dispersed and adhere to each powder in a uniformly dispersed state due to the wettability of the thin film of solvent formed on the surface of each powder. Therefore, the powders do not separate due to the difference in specific gravity as in the case of the dry method, and as a result, the diffusion adhesion in the next reduction step is uniform and sufficient, and the sintering strength is improved.

なお、上記湿式混合法を工業化した場合、混合後、次の
還元工程までの間にある程度時間が経過し、上記溶媒が
蒸発し、上記付着した合金粉が分離してしまう恐れがあ
る。そこで上記付着状態を保持するために、上記溶媒中
にレジン等の結合剤を添加しておくことが望ましい。
In addition, when the wet mixing method is industrialized, there is a risk that a certain amount of time will elapse between mixing and the next reduction step, and the solvent will evaporate and the adhered alloy powder will separate. Therefore, in order to maintain the above-mentioned adhesion state, it is desirable to add a binder such as a resin to the above-mentioned solvent.

また上記還元焼鈍温度を750〜1000℃としたのは
以下の理由による。
Further, the reason why the reduction annealing temperature is set to 750 to 1000°C is as follows.

還元焼鈍温度が750℃より低い場合は、還元ケーキが
硬くならないため見掛は密度の高いものが得られ、成形
体密度も優れているが、焼結強度が若干低くなる。これ
は処理温度が低いため合金粉末の拡散付着(合金化)が
少ないためと思われる。
When the reduction annealing temperature is lower than 750° C., the reduction cake does not become hard, so a product with high apparent density is obtained, and the compact density is also excellent, but the sintering strength is slightly lower. This is thought to be due to the low processing temperature, which causes less diffusion and adhesion (alloying) of the alloy powder.

一方、1000℃より高くなると、成形体密度が低くな
る。これは合金元素の鉄粉中への拡散固溶が進み、鉄粉
粒子が硬くなり、圧縮性が低下するためであると考えら
れる。
On the other hand, when the temperature is higher than 1000°C, the density of the compact becomes low. This is thought to be because the alloying elements diffuse into the iron powder as a solid solution, making the iron powder particles harder and reducing compressibility.

〔作用〕[Effect]

本発明に係る粉末冶金用高強度合金鋼粉によれば、高純
度純鉄粉に拡散付着させる強化用粉末としてNi 、C
u 、Moのうち2種以上の元素を予め合金化1.でな
る合金微粉末を採用したので、合金微粉末の融点が合金
元素単体の微粉末より低くなることから、鉄粉への拡散
、即ち合金化が容易確実に行われる。
According to the high-strength alloy steel powder for powder metallurgy according to the present invention, Ni, C can be used as the reinforcing powder to be diffused and adhered to the high-purity pure iron powder.
Pre-alloying two or more elements among u and Mo1. Since the alloy fine powder consisting of the above is used, the melting point of the alloy fine powder is lower than that of the fine powder of a single alloying element, so that diffusion into iron powder, that is, alloying, can be easily and reliably performed.

また、上記合金元素を添加するにあたって、該合金元素
の純鉄粉に対する成分割合を所定範囲に規制したので、
Ni、Cuによる強度向上効果(実施例!参照)、MO
による靭性(衝II値)向上効果(実施例2参照)が得
られ、また、Cuの単体添加時に見られるCu溶出によ
る異常膨張を抑制できる効果(実施例3参照)が得られ
る。
In addition, when adding the alloying element, the proportion of the alloying element to the pure iron powder was regulated within a predetermined range.
Strength improvement effect by Ni and Cu (see examples!), MO
(see Example 2), and the effect of suppressing abnormal expansion due to Cu elution, which is observed when Cu is added alone (see Example 3).

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

大差層上 本実施例は、予めNiをCuと合金化した微粉末を、N
iが所定の成分範囲になるよう純鉄粉に拡散付着させる
本発明の焼結体強度向上効果を効果を確認するために、
以下の手順で行った。
In this example, a fine powder in which Ni is alloyed with Cu in advance is
In order to confirm the effect of improving the strength of the sintered compact of the present invention by diffusing and adhering it to pure iron powder so that i is within a predetermined component range,
The procedure was as follows.

■ Ni−Cu合金微粉およびNl、Cu、Moの単体
粉末を第1表のA−Fに示す組成になるように高純度純
鉄粉に湿式混合した後、該混合粉をAXガス(アンモニ
ア分解ガス−H1ニア5%、N2・25%)雰囲気中で
850℃×30分間還元焼鈍処理し、しかる後に解粒し
た。また比較のため、NiCu 、Moの単体粉末だけ
を使用して、第1表のG−1に示す組成になるように湿
式混合し、還元焼鈍熱処理5解粒を行った。
■ After wet-mixing Ni-Cu alloy fine powder and single powders of Nl, Cu, and Mo into high-purity pure iron powder so as to have the composition shown in Table 1, A-F, the mixed powder was heated with AX gas (ammonia decomposition Reduction annealing was performed at 850° C. for 30 minutes in a gas-H1 (5% near gas, 25% N2) atmosphere, followed by disintegration. For comparison, only single powders of NiCu and Mo were wet-mixed to obtain the composition shown in G-1 in Table 1, and subjected to reduction annealing heat treatment and granulation.

■ 上記解粒した各銅粉に黒鉛わ)未0.6 wt%と
潤滑剤としてのステアリン酸亜鉛粉末0.75wt%と
を添加した後、V型混合器により30分間混合し、この
混合粉末を金型を用いて6 TON/cdの圧力で成形
して10 X 10 X 55gmの成形体を得た。
■ After adding 0.6 wt% of graphite powder and 0.75 wt% of zinc stearate powder as a lubricant to each of the above disintegrated copper powders, the mixed powder was mixed for 30 minutes using a V-type mixer. was molded using a mold at a pressure of 6 TON/cd to obtain a molded product of 10 x 10 x 55 gm.

■上記成形体をAXガス雰囲気中で1120℃×30分
間焼結した。この焼結体から平行部6φの引張り試験片
を形成し、これの引張り強度を測定した。
(2) The above molded body was sintered at 1120° C. for 30 minutes in an AX gas atmosphere. A tensile test piece with a parallel portion of 6φ was formed from this sintered body, and its tensile strength was measured.

以上の実験より、得られたデータを第2表に示す。The data obtained from the above experiments are shown in Table 2.

同表から明らかなように、本発明二こ従った銅粉(A−
Fa)に比較して、比較例鋼粉(G〜■欄)は若干Ni
成分が低くなっており、本発明の予め合金化したNi−
Cu合金微粉を用いる方法が、Ni 、Cuの単体微粉
末を用いた場合より拡散付着性に優れていることが判る
As is clear from the same table, the copper powder (A-
Compared to Fa), the comparative example steel powder (G~■ column) has a slight amount of Ni.
The pre-alloyed Ni-
It can be seen that the method using fine Cu alloy powder has better diffusion adhesion than the method using single fine powder of Ni and Cu.

また例えば8NL1.5 Cu−1,0Mo  (B、
 E。
Also, for example, 8NL1.5 Cu-1,0Mo (B,
E.

Ha)を見ると、焼結体強度はB>E>Hとなっており
、合金微粉の使用比率を高くすると強度が向上すること
を示している。またNiが8%時において強度が最高と
なり、6%より少なく10%より多くなると強震は著し
く低下することが理解できる。
Looking at Ha), the strength of the sintered body is B>E>H, indicating that the strength improves as the ratio of alloy fine powder used increases. It can also be seen that the strength is highest when the Ni content is 8%, and that when the Ni content is less than 6% and more than 10%, the strong earthquakes decrease significantly.

去W 本実施例は、Moを本発明範囲内で添加することによる
靭性向上効果を確認するためのもので、上記実施例1の
手順に従い、MOの含有量が0.5〜2.Owt%の試
験片を作成し、シャルピー衝N試験(ノツチなし)を行
い、街!!l値を測定した。なお、この試験片の焼結体
密度は7.20g/am’であった・ 測定結果を第3図に示す、同図からも明らかなように、
MO添加量が0.5.1.0wt%の場合は、衝撃値は
高い水準にあるが、1.0 st%を越えると急に低下
していることが判る。
This example was conducted to confirm the effect of improving toughness by adding Mo within the range of the present invention, and according to the procedure of Example 1 above, the MO content was 0.5 to 2. Owt% test piece was prepared, Charpy impact N test (no notch) was performed, and the town! ! The l value was measured. The sintered body density of this test piece was 7.20 g/am'. The measurement results are shown in Figure 3. As is clear from the figure,
It can be seen that when the amount of MO added is 0.5 and 1.0 wt%, the impact value is at a high level, but when it exceeds 1.0 st%, it suddenly decreases.

大立桝↓ 本実施例は、Cuを合金化した微粉末を純鉄む)に本発
明範囲内で拡散付着させることによる寸法変化率のばら
つきの抑制効果を確認するためのもので、上記実施例1
の手順に従い、Ni−Cu合金の形で添加したCuの含
有量がO〜2,5 wt%の試験片(64Φ〜24Φ)
を作成し、焼結時の寸法変化率の標準偏差を求めた。比
較のために、Cuを上記含有量になるよう単体で添加し
た試験片についても同様に測定した。
Otachimasu ↓ This example was conducted to confirm the effect of suppressing variations in the dimensional change rate by diffusing and adhering fine powder alloyed with Cu to pure iron within the scope of the present invention. Example 1
A test piece (64Φ~24Φ) with a Cu content of O~2.5 wt% added in the form of Ni-Cu alloy according to the procedure of
was created and the standard deviation of the dimensional change rate during sintering was determined. For comparison, a test piece in which Cu was added alone to the above content was similarly measured.

測定結果を第4図に示す、同図からも明らかなように、
CuをNi−Cu合金の形で添加した場合はCu単体で
添加した場合に比較して、何れの含有量においても寸法
変化率の標準偏差が小さくなっている。また、添加量が
2.Owt%を越えると、Cu単体で添加した場合だけ
でな(Ni−Cu合金で添加した場合にも、急激に寸法
変化率の標準偏差が大きくなっている。
The measurement results are shown in Figure 4.As is clear from the figure,
When Cu is added in the form of a Ni-Cu alloy, the standard deviation of the dimensional change rate is smaller at any content than when Cu is added alone. Also, the amount added is 2. When it exceeds Owt%, the standard deviation of the dimensional change rate suddenly increases not only when Cu is added alone (also when it is added as a Ni-Cu alloy).

〔発明の効果〕〔Effect of the invention〕

以とのように、本発明に係る粉末冶金用高強度合金鋼粉
によれば、Ni 、Cu 、Moのうち2種類以−Fの
元素を予め合金化してなる合金微粉末を、それぞれ6〜
8wt%0〜2wt%、0.5〜1.0 wt%の組成
になるように高純度純鉄粉に拡散付着させたので、合金
微粉末の融点が合金元素単体より低いことから、鉄粉へ
の拡散、即ち合金化を容易化でき、圧縮性を向上できる
とともに、焼結体・強度を太き(向上できる効果がある
As described above, according to the high-strength alloy steel powder for powder metallurgy according to the present invention, alloy fine powder obtained by pre-alloying two or more elements of Ni, Cu, and Mo, respectively
Since the melting point of the fine alloy powder is lower than that of the alloy element alone, the iron powder This has the effect of making it easier to diffuse into the sintered body, that is, to make it into an alloy, improve compressibility, and thicken (improve) the strength of the sintered body.

嶌1表 本発明による合伶ゴ頭諧すTable 1: Comparison according to the present invention

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る合金鋼粉の純鉄粉に合金粉が拡散
付着している状態を示す模式図、第2図は従来の合金鋼
粉の模式図、第3図及び第4図は本発明の詳細な説明す
るための図であり、第3図はMo添加量−衝撃値特性図
、第4図はCu添加量−寸法変化率標準偏差特性図であ
る。 特許出願人 株式会社 神戸製鋼所 代理人    弁理士 下車 努 第3図 第4 図 Cu (Z)
Fig. 1 is a schematic diagram showing a state in which alloy powder is diffused and adhered to pure iron powder of alloy steel powder according to the present invention, Fig. 2 is a schematic diagram of conventional alloy steel powder, and Figs. 3 and 4. 3 is a diagram for explaining the present invention in detail, FIG. 3 is a characteristic diagram of Mo addition amount vs. impact value, and FIG. 4 is a diagram of Cu addition amount vs. dimensional change rate standard deviation characteristic diagram. Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Tsutomu Tsutomu Figure 3 Figure 4 Cu (Z)

Claims (1)

【特許請求の範囲】[Claims] (1)C:0.01wt%以下、Si:0.02wt%
以下、Mn:0.10wt%以下、P:0.01wt%
以下、S:0.010%wt%以下、O:0.15wt
%以下で残部Fe及び不可避的不純物からなる高純度純
鉄粉に、Ni、Cu、Moのうち2種類以上の元素を予
め合金化した合金微粉末を、Ni:6〜8wt%、Cu
:0〜2wt%、Mo:0.5〜1.0wt%になるよ
うに拡散付着(ディフェージョンボンディング)させた
ことを特徴とする粉末冶金用高強度合金鋼粉。
(1) C: 0.01wt% or less, Si: 0.02wt%
Below, Mn: 0.10wt% or less, P: 0.01wt%
Below, S: 0.010%wt% or less, O: 0.15wt
% or less, the balance is Fe and unavoidable impurities, and alloy fine powder pre-alloyed with two or more elements among Ni, Cu, and Mo is mixed with Ni: 6 to 8 wt%, Cu
A high-strength alloy steel powder for powder metallurgy, characterized in that it has been bonded by diffusion so that Mo: 0 to 2 wt% and Mo: 0.5 to 1.0 wt%.
JP63299344A 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy Expired - Lifetime JPH0689363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299344A JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299344A JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPH02145702A true JPH02145702A (en) 1990-06-05
JPH0689363B2 JPH0689363B2 (en) 1994-11-09

Family

ID=17871336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299344A Expired - Lifetime JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH0689363B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
WO2010074634A1 (en) * 2008-12-23 2010-07-01 Höganäs Ab (Publ) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
CN102672180A (en) * 2012-06-07 2012-09-19 太仓市锦立得粉末冶金有限公司 Powdery metallurgical finished product process
CN106086659A (en) * 2016-06-24 2016-11-09 江阴市宝能特种钢线有限公司 A kind of high-strength alloy steel wire and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540851A (en) * 2013-10-11 2014-01-29 芜湖市鸿坤汽车零部件有限公司 High-performance powder metallurgy material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918740A (en) * 1972-06-05 1974-02-19
JPS5049106A (en) * 1973-09-03 1975-05-01
JPS61223101A (en) * 1985-03-28 1986-10-03 Kobe Steel Ltd Atomized iron powder for green compact magnetic powder and production thereof
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH01159301A (en) * 1987-09-30 1989-06-22 Kawasaki Steel Corp Conjugate steel powder having excellent compressibility and homogeneity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918740A (en) * 1972-06-05 1974-02-19
JPS5049106A (en) * 1973-09-03 1975-05-01
JPS61223101A (en) * 1985-03-28 1986-10-03 Kobe Steel Ltd Atomized iron powder for green compact magnetic powder and production thereof
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH01159301A (en) * 1987-09-30 1989-06-22 Kawasaki Steel Corp Conjugate steel powder having excellent compressibility and homogeneity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
WO2010074634A1 (en) * 2008-12-23 2010-07-01 Höganäs Ab (Publ) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
CN102672180A (en) * 2012-06-07 2012-09-19 太仓市锦立得粉末冶金有限公司 Powdery metallurgical finished product process
CN106086659A (en) * 2016-06-24 2016-11-09 江阴市宝能特种钢线有限公司 A kind of high-strength alloy steel wire and production method thereof

Also Published As

Publication number Publication date
JPH0689363B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US6126894A (en) Method of producing high density sintered articles from iron-silicon alloys
JPH044362B2 (en)
JPH02145703A (en) High strength alloy steel powder for powder metallurgy
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JPH02145702A (en) High strength alloy steel powder for powder metallurgy
JP4371003B2 (en) Alloy steel powder for powder metallurgy
CN100449024C (en) Alloy steel powder for powder metallurgy
JP3634376B2 (en) Manufacturing method of powder metal sintered product
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
US4321091A (en) Method for producing hot forged material from powder
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
US7455711B1 (en) Process for manufacturing hardened powder metal parts
JPH0633101A (en) Production of high-strength alloy steel powder for powder metallurgy
JPH01290702A (en) Ferrous powder for powder metallurgy and its production
KR102533137B1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPH0751721B2 (en) Low alloy iron powder for sintering
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPH02163337A (en) Manufacture of high hardness tungsten liquid phase sintered alloy
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
JPH0328336A (en) Manufacture of aluminum alloy powder sintered parts