JPH0214319B2 - - Google Patents

Info

Publication number
JPH0214319B2
JPH0214319B2 JP19018984A JP19018984A JPH0214319B2 JP H0214319 B2 JPH0214319 B2 JP H0214319B2 JP 19018984 A JP19018984 A JP 19018984A JP 19018984 A JP19018984 A JP 19018984A JP H0214319 B2 JPH0214319 B2 JP H0214319B2
Authority
JP
Japan
Prior art keywords
single crystal
crucible
fine powder
compound semiconductor
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19018984A
Other languages
Japanese (ja)
Other versions
JPS6168387A (en
Inventor
Katsutoshi Yoneya
Akihiko Tsuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19018984A priority Critical patent/JPS6168387A/en
Publication of JPS6168387A publication Critical patent/JPS6168387A/en
Publication of JPH0214319B2 publication Critical patent/JPH0214319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はLEC法による化合物半導体単結晶の
製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for manufacturing a compound semiconductor single crystal using the LEC method.

[発明の技術的背景とその問題点] 従来から、Ga−As、In−P、Ga−P等の融点
での分解圧が高い化合物半導体単結晶の製造方法
としてLEC法が知られている。
[Technical Background of the Invention and Problems Therewith] The LEC method has been known as a method for producing compound semiconductor single crystals such as Ga-As, In-P, Ga-P, etc., which have a high decomposition pressure at their melting point.

この方法を図面を用いて説明すると、まず、結
晶原料とB2O3等の封止剤とを入れたるつぼ2を
高圧容器1内に配設されているるつぼ受け台3,
4,5に装着する。
To explain this method using drawings, first, a crucible 2 containing a crystal raw material and a sealant such as B 2 O 3 is placed in a crucible holder 3 disposed in a high-pressure container 1 .
Attach to 4 and 5.

次にるつぼ2を同軸的に取り囲む発熱体6によ
つてるつぼ2を加熱し、結晶原料と封止剤とを加
熱溶融する。
Next, the crucible 2 is heated by a heating element 6 coaxially surrounding the crucible 2, and the crystal raw material and the sealant are heated and melted.

このとき結晶原料融液7と封止剤融液8とは密
度差によつて2層状態となり、密度の大きい結晶
原料融液7(融液の密度はGa−Asで約5.7g/
cm3、In−Pで約5.0g/cm3、Ga−Pで約4.4g/
cm3)は密度の小さい封止剤融液8(融液の密度は
B2O3で約1.5g/cm3)によつて被覆され、結晶原
料融液7の分解蒸発が抑えられる。また、このと
き高圧容器1内を不活性ガスで加圧することによ
つて結晶原料融液7の気化が抑えられる。
At this time, the crystal raw material melt 7 and the sealant melt 8 are in a two-layer state due to the density difference, and the crystal raw material melt 7 has a large density (the density of the melt is about 5.7 g/Ga-As).
cm 3 , about 5.0 g/cm 3 for In-P, about 4.4 g/cm 3 for Ga-P
cm 3 ) is a low-density encapsulant melt 8 (the density of the melt is
It is coated with B 2 O 3 (approximately 1.5 g/cm 3 ) to suppress decomposition and evaporation of the crystal raw material melt 7. Further, at this time, by pressurizing the inside of the high-pressure container 1 with an inert gas, vaporization of the crystal raw material melt 7 can be suppressed.

この状態で結晶引き上げ軸9の先端に取付けた
種結晶10を封止剤融液8を通過させて結晶原料
融液7に接触させ、しかる後、結晶引き上げ軸9
を回転させながら引き上げて単結晶11を得る。
これらの操作は、通常高圧容器の上面に取付けら
れた監視窓12から単結晶の形成過程を監視しな
がら行われている。
In this state, the seed crystal 10 attached to the tip of the crystal pulling shaft 9 is passed through the sealant melt 8 and brought into contact with the crystal raw material melt 7, and then the crystal pulling shaft 9
The single crystal 11 is obtained by pulling up while rotating.
These operations are normally performed while monitoring the single crystal formation process through a monitoring window 12 attached to the top surface of the high-pressure container.

ところで、るつぼ2内の温度分布を均一にし、
発熱体6の加熱効率を確保するためには、るつぼ
2の全周を保温部材で覆うことが望ましいが、従
来のカーボン製の保温部材を用いたのでは視界が
遮られるため前述した監視を行なうことができな
くなつて、形状を制御しながら単結晶を引き上げ
る作業が困難になり、従つて、安定した形状の単
結晶が得られ難いという難点があつた。
By the way, by making the temperature distribution inside the crucible 2 uniform,
In order to ensure the heating efficiency of the heating element 6, it is desirable to cover the entire circumference of the crucible 2 with a heat insulating member, but if a conventional carbon heat insulating member is used, the visibility will be obstructed, so the above-mentioned monitoring is carried out. As a result, it becomes difficult to pull the single crystal while controlling its shape, making it difficult to obtain a single crystal with a stable shape.

[発明の目的] 本発明はこのような難点を解消するためなされ
たもので、透光性に優れ、かつ保温性や熱衝撃性
にも優れた窓材を監視窓とるつぼ間に配置するこ
とにより、るつぼ上を保温材で覆つたまま単結晶
の形成過程を監視することが可能な化合物半導体
単結晶の製造装置を提供することを目的とする。
[Object of the invention] The present invention has been made to solve these difficulties, and it is to arrange a window material with excellent light transmission, heat retention and thermal shock resistance between the monitoring window and the crucible. Accordingly, an object of the present invention is to provide an apparatus for manufacturing a compound semiconductor single crystal in which the formation process of the single crystal can be monitored while the crucible is covered with a heat insulating material.

[発明の概要] すなわち本発明の化合物半導体単結晶の製造装
置は、監視窓を有する高圧容器と、該高圧容器内
に配設されたるつぼおよびるつぼ受け台と、該る
つぼを取り囲んで加熱する発熱体と、前記るつぼ
上に昇降自在に配置された結晶引上げ装置とを備
えた化合物半導体単結晶の製造装置において、前
記監視窓とるつぼ間にAlNまたはAlONからなる
透光性セラミツクス焼結体で形成された保温窓材
を配設してなることを特徴としている。
[Summary of the Invention] That is, the compound semiconductor single crystal manufacturing apparatus of the present invention includes a high-pressure container having a monitoring window, a crucible and a crucible holder arranged in the high-pressure container, and a heat generating device that surrounds and heats the crucible. and a crystal pulling device disposed on the crucible such that it can be raised and lowered, wherein a translucent ceramic sintered body made of AlN or AlON is formed between the monitoring window and the crucible. It is characterized by being equipped with heat-insulating window material.

本発明において透光性のAlNセラミツクス焼
結体からなる窓材は、次のようにして製造され
る。
In the present invention, a window material made of a translucent AlN ceramic sintered body is manufactured as follows.

すなわち、高純度AlN微粉末を主成分として
用い、他に好ましくはY2O3等の希土類元素の酸
化物やCaO等のアルカリ土類金属元素の酸化物を
焼結助剤として0.2〜5重量%添加し、さらにバ
インダを加えて板状あるいは円盤状の所定形状に
成形した後、脱脂し、次いでホツトプレスあるい
は常圧焼結法によつて焼成する。なお高純度
AlN微粉松として改良アルミナ還元法により得
られた平均粒径(光透過式の遠心式粒度分布測定
装置により測定)1〜2μm、最大粒径4〜5μm
のものを用いる。
That is, high-purity AlN fine powder is used as the main component, and 0.2 to 5 weight of an oxide of a rare earth element such as Y 2 O 3 or an oxide of an alkaline earth metal element such as CaO is used as a sintering aid. %, and then a binder is added and formed into a predetermined plate-like or disc-like shape, degreased, and then fired by hot pressing or pressureless sintering. Furthermore, high purity
Average particle size (measured using a light-transmitting centrifugal particle size distribution analyzer) obtained as AlN fine powder by an improved alumina reduction method is 1 to 2 μm, and maximum particle size is 4 to 5 μm.
Use the one.

また、透光性のAlONセラミツクス焼結体から
なる窓材は、次のようにして製造される。
Further, a window material made of a translucent AlON ceramic sintered body is manufactured as follows.

汎用のAlN微粉末とスピネル型のAl2O3微粉末
とを1:2〜2:1の比率で混合し、さらに好ま
しくはY2O3等の希土類元素の酸化物やアルカリ
土類金属元素の酸化物を焼結助剤として0.5〜2
重量%添加し、次いでAlNセラミツクス焼結体
の場合と同様に製造する。
A general-purpose AlN fine powder and a spinel-type Al 2 O 3 fine powder are mixed in a ratio of 1:2 to 2:1, and more preferably rare earth element oxides such as Y 2 O 3 or alkaline earth metal elements are mixed. 0.5 to 2 oxides as sintering aids
% by weight, and then manufactured in the same manner as the AlN ceramic sintered body.

このようにして得られた窓材は、高圧容器の監
視窓とるつぼ間に配設して使用する。
The window material thus obtained is used by being placed between the monitoring window of the high-pressure container and the crucible.

[発明の実施例] 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

実施例 1 高純度AlN微粉末に3重量%のY2O3を添加混
合し、中心部に貫通孔を有する円盤状に成形した
後、窒素雰囲気中1900℃×3時間の条件でホツト
プレスしてAlNセラミツクス焼結体からなる窓
材を製造した。
Example 1 High-purity AlN fine powder was mixed with 3% by weight of Y2O3 , formed into a disc shape with a through hole in the center, and then hot pressed at 1900°C for 3 hours in a nitrogen atmosphere. A window material made of sintered AlN ceramics was manufactured.

この窓材13を、図面に示すように、上面に監
視窓12を有する高圧容器1内のるつぼ2の上方
に配設して本発明装置を得た。なお図中符号14
は汎用のAlNセラミツクス焼結体からる円筒状
の保温部材である。
As shown in the drawings, this window material 13 was disposed above the crucible 2 in the high-pressure vessel 1 having the monitoring window 12 on the upper surface to obtain an apparatus of the present invention. In addition, the number 14 in the figure
is a cylindrical heat-insulating member made of a general-purpose AlN ceramic sintered body.

この装置内の発熱体6によりるつぼ2を加熱し
結晶材料および封止剤を溶融し、上方によりGa
As単結晶を引き上げた。この操作は窓材13が
透光性かつ保温性に優れているので、引き上げる
単結晶の形状を監視しつつ行え、安定した形状の
高品質の単結晶が得られた。
The heating element 6 in this device heats the crucible 2 to melt the crystal material and sealant, and
As single crystal was pulled up. Since the window material 13 has excellent light transmittance and heat retention, this operation could be performed while monitoring the shape of the single crystal to be pulled, and a high quality single crystal with a stable shape was obtained.

実施例 2 汎用のAlN微粉末とスピネル型Al2O3微粉末と
をほぼ1:1の比率で混合し、さらに3重量%の
Y2O3を添加混合して実施例1と同様の形状に成
形し、窒素雰囲気中1850℃×2時間の条件で常圧
焼結して窓材を得た。この窓材を実施例1と同様
に装置に取付けて常法によりGa As単結晶を引
き上げた。
Example 2 General-purpose AlN fine powder and spinel-type Al 2 O 3 fine powder were mixed at a ratio of approximately 1:1, and 3% by weight of the mixture was added.
Y 2 O 3 was added and mixed, molded into the same shape as in Example 1, and pressureless sintered at 1850° C. for 2 hours in a nitrogen atmosphere to obtain a window material. This window material was attached to the apparatus in the same manner as in Example 1, and a Ga As single crystal was pulled by a conventional method.

この窓材も透光性かつ保温性に優れているの
で、単結晶の形状を監視しつつ引き上げることが
でき、安定した形状の高品質の単結晶が得られ
た。
Since this window material also has excellent light transmittance and heat retention, it was possible to pull the single crystal while monitoring its shape, and a high quality single crystal with a stable shape was obtained.

[発明の効果] 以上説明したように本発明装置によれば、監視
窓とるつぼとの間に透光性および保温性に優れた
セラミツクス焼結体からなる窓材が取付けられて
いるので、単結晶の形状を監視しつつ引き上げる
ことができるとともに、るつぼ内の温度分布を均
一にすることができ、その結果、安定した形状の
高品質の単結晶を製造することができる。
[Effects of the Invention] As explained above, according to the device of the present invention, a window material made of a ceramic sintered body with excellent translucency and heat retention is installed between the monitoring window and the crucible. It is possible to pull the crystal while monitoring its shape, and it is also possible to make the temperature distribution within the crucible uniform, and as a result, it is possible to produce a high-quality single crystal with a stable shape.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明装置の一実施例を概略的に示す断
面図である。 1……高圧容器、2……るつぼ、3,4,5…
…るつぼ受け台、6……発熱体、7……結晶原料
融液、8……封止剤融液、11……単結晶、12
……監視窓、13……窓材。
The drawing is a sectional view schematically showing an embodiment of the device of the present invention. 1... High pressure container, 2... Crucible, 3, 4, 5...
... Crucible holder, 6 ... Heating element, 7 ... Crystal raw material melt, 8 ... Sealant melt, 11 ... Single crystal, 12
...Surveillance window, 13...Window material.

Claims (1)

【特許請求の範囲】 1 監視窓を有する高圧容器と、該高圧容器内に
配設されたるつぼおよびるつぼ受け台と、該るつ
ぼを取り囲んで加熱する発熱体と、前記るつぼ上
に昇降自在に配置された結晶引上げ装置とを備え
た化合物半導体単結晶の製造装置において、前記
監視窓とるつぼ間にAlNまたはAlONからなる透
光性セラミツクス焼結体で形成された保温窓材を
配設してなることを特徴とする化合物半導体単結
晶の製造装置。 2 透光性AlNセラミツクス焼結体は、高純度
AlN微粉末に希土類元素またはアルカリ土類金
属元素の酸化物を焼結助剤として添加し焼成する
特許請求の範囲第1項記載の化合物半導体単結晶
の製造装置。 3 透光性AlONセラミツクス焼結体は、AlN微
粉末とAl2O3微粉末とを1:2〜2:1の重量比
で混合したものを主成分とするセラミツクス微粉
末を所定の形状に成形して焼成したものである特
許請求の範囲第1項記載の化合物半導体単結晶の
製造装置。 4 透光性AlONセラミツクス焼結体は、AlN微
粉末とAl2O3微粉末に希土類元素またはアルカリ
土類金属元素の酸化物を焼結助剤として添加し、
これを所定の形状に成形して焼成したものである
特許請求の範囲第3項記載の化合物半導体単結晶
の製造装置。
[Scope of Claims] 1. A high-pressure container having a monitoring window, a crucible and a crucible holder disposed in the high-pressure container, a heating element that surrounds and heats the crucible, and a heating element disposed above the crucible so as to be movable up and down. A compound semiconductor single crystal manufacturing apparatus equipped with a crystal pulling device according to the present invention, wherein a heat insulating window material formed of a translucent ceramic sintered body made of AlN or AlON is disposed between the monitoring window and the crucible. A compound semiconductor single crystal manufacturing device characterized by the following. 2 Translucent AlN ceramic sintered body has high purity
2. The compound semiconductor single crystal manufacturing apparatus according to claim 1, wherein an oxide of a rare earth element or an alkaline earth metal element is added as a sintering aid to the AlN fine powder and fired. 3. The translucent AlON ceramic sintered body is made by shaping ceramic fine powder whose main component is a mixture of AlN fine powder and Al 2 O 3 fine powder at a weight ratio of 1:2 to 2:1 into a predetermined shape. An apparatus for manufacturing a compound semiconductor single crystal according to claim 1, which is formed by molding and firing. 4 Translucent AlON ceramic sintered body is made by adding rare earth element or alkaline earth metal element oxide to AlN fine powder and Al 2 O 3 fine powder as a sintering aid.
4. The compound semiconductor single crystal manufacturing apparatus according to claim 3, wherein the compound semiconductor single crystal is molded into a predetermined shape and fired.
JP19018984A 1984-09-11 1984-09-11 Apparatus for producing compound semiconductor single crystal Granted JPS6168387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19018984A JPS6168387A (en) 1984-09-11 1984-09-11 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19018984A JPS6168387A (en) 1984-09-11 1984-09-11 Apparatus for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS6168387A JPS6168387A (en) 1986-04-08
JPH0214319B2 true JPH0214319B2 (en) 1990-04-06

Family

ID=16253931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19018984A Granted JPS6168387A (en) 1984-09-11 1984-09-11 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6168387A (en)

Also Published As

Publication number Publication date
JPS6168387A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
US4117096A (en) Process for producing powder of β-type silicon carbide
US4444615A (en) Method for producing a single crystal
JPS61107609A (en) Manufacture of high frequency dielectric porcelain
US2040236A (en) Process of making bonded silicon carbide refractories
JPH0214319B2 (en)
JPS5951716B2 (en) Manufacturing method of heating element
JPS6228118B2 (en)
JP3142402B2 (en) SiC refractory
US3472667A (en) Elemental boron-containing vitreous silica bodies and method
CN114477996B (en) Preparation method of barium titanate-based ceramic
US5340515A (en) Polycrystalline γ-lithium aluminate fibers and process of manufacture
JPS6374978A (en) Ceramic composite body
CN112663143B (en) Preparation method of high-purity lead germanate crystal with cubic perovskite structure
JPS61101484A (en) Production of single crystal ferrite
JP3770082B2 (en) Method for producing potassium niobate
CN117448962A (en) Lead magnesium niobate lead titanate piezoelectric monocrystal and preparation method thereof
JPH027309A (en) Manufacture of oxide type superconductive wire
JPS6054795B2 (en) Manufacturing method for high-density piezoelectric ceramics
Applegate et al. CRITIC-I: Instrumented lithium oxide irradiation: Part 1, Lithium oxide fabrication and characteristics
JPH0547504B2 (en)
JP2000313697A (en) Preparation of oxide single crystal
JP2538227B2 (en) Method for producing single crystal ferrite
JPH06135800A (en) Production of single crystal
JPS6163596A (en) Installation for production of single crystal of compound semiconductor
JPS6159261B2 (en)